Homework Set 4, Math 292 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

March 3, 2013

These exercises are due Wednesday, .March 6
In these exercises, M and A are the matrices

$$
M=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
31 & 32 \\
32 & 40
\end{array}\right]
$$

All of the exercises below are closely related, and are steps along the way to the solution of the equation

$$
M \mathbf{x}^{\prime \prime}=-A \mathbf{x}+\mathbf{f} \quad \text { with } \quad \mathbf{x}(0)=\mathbf{x}_{0}, \quad \mathbf{x}^{\prime}(0)=\mathbf{v}_{0}
$$

1. Show that M and A are positive definite, and find the positive definite matrix $M^{1 / 2}$ so that $\left(M^{1 / 2}\right)^{2}=M$. Finally, compute $K:=M^{-1 / 2} A M^{-1 / 2}$.
2. (a) Find vectors \mathbf{y}_{0} and \mathbf{w}_{0} so that if $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are two twice continuously differentiable curves, $\mathbf{x}(t)$ satisfies

$$
\begin{equation*}
M \mathrm{x}^{\prime \prime}=-A \mathbf{x} \quad \text { with } \quad \mathbf{x}(0)=\mathbf{x}_{0}, \quad \mathbf{x}^{\prime}(0)=\mathbf{v}_{0} \tag{0.1}
\end{equation*}
$$

if and only if $\mathbf{y}(t)$ satisfies

$$
\begin{equation*}
\mathbf{y}^{\prime \prime}=-L \mathbf{y} \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}, \quad \mathbf{y}^{\prime}(0)=\mathbf{w}_{0} \tag{0.2}
\end{equation*}
$$

(b) Find an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ of \mathbb{R}^{2} consisting of eigenvectors of K.
(c) Let $\mathbf{y}(t)$ be the solution of (0.2). Using the orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ found above, write

$$
\mathbf{y}(t)=w_{1}(t) \mathbf{u}_{1}+w_{2}(t) \mathbf{u}_{2} .
$$

Find the equations that w_{1} and w_{2} must satisfy, and then solve these equations.
(d) Find the solutions to equations (0.4) and (0.2).
3. (a) Now consider the driving force $\mathbf{f}=3 \cos (\omega t)(1,2)$, where $\omega>0$.

Using the method of normal modes together with Duhamel's formula, find the solution to

$$
\begin{equation*}
M \mathbf{x}^{\prime \prime}=-A \mathbf{x}+\mathbf{f} \quad \text { with } \quad \mathbf{x}(0)=\mathbf{0}, \quad \mathbf{x}^{\prime}(0)=\mathbf{0} \tag{0.3}
\end{equation*}
$$

For which values of ω will resonance occur?
(b) Using the superposition principle, use the previous results to find the general solution to

$$
\begin{equation*}
M \mathbf{x}^{\prime \prime}=-A \mathbf{x}+\mathbf{f} \tag{0.4}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

