Homework Set 3, Math 292 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

February 17, 2013

These exercises are due Thursday, February 28.

1. Consider the system of equations

$$
\mathrm{x}^{\prime}=A \mathrm{x}
$$

where

$$
A=\left[\begin{array}{rr}
5 & -1 \\
4 & 1
\end{array}\right]
$$

(a) Find the flow transformation Φ_{t} for this system, which, since this is a linear system is $\Phi_{t}(\mathbf{x})=$ $e^{t A} \mathbf{x}$.
(b) Note that $\mathbf{0}$ is an equilibrium point for the vector field $\mathbf{v}(\mathbf{x})=A \mathbf{x}$. Is it Lyapunov stable, asymptotically stable or unstable? (To decide this, look at how $e^{t a} \mathbf{x}$ behaves for large t.)
2. Consider the system of equations

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

where

$$
A=\left[\begin{array}{rr}
0 & 4 \\
-1 & 0
\end{array}\right]
$$

(a) Find the flow transformation Φ_{t} for this system, which, since this is a linear system is $\Phi_{t}(\mathbf{x})=$ $e^{t A} \mathbf{x}$.
(b) Note that $\mathbf{0}$ is an equilibrium point for the vector field $\mathbf{v}(\mathbf{x})=A \mathbf{x}$. Is it Lyapunov stable, asymptotically stable or unstable? (To decide this, look at how $e^{t a} \mathbf{x}$ behaves for large t.)
3. Consider the system of equations

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

where

$$
A=\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & -2 & 4 \\
0 & 0 & -2
\end{array}\right]
$$

(a) Find the flow transformation Φ_{t} for this system, which, since this is a linear system is $\Phi_{t}(\mathbf{x})=$ $e^{t A} \mathbf{x}$.

[^0](b) Note that $\mathbf{0}$ is an equilibrium point for the vector field $\mathbf{v}(\mathbf{x})=A \mathbf{x}$. Is it Lyapunov stable, asymptotically stable or unstable? (To decide this, look at how $e^{t a} \mathbf{x}$ behaves for large t.)
4. Consider the system of equations
$$
\mathrm{x}^{\prime}=A \mathrm{x}
$$
where
\[

A=\left[$$
\begin{array}{rrr}
-5 & 3 & 2 \\
-8 & 5 & 4 \\
4 & -3 & -3
\end{array}
$$\right]
\]

(a) Find the flow transformation Φ_{t} for this system, which, since this is a linear system is $\Phi_{t}(\mathbf{x})=$ $e^{t A} \mathbf{x}$.
(b) Find all values of \mathbf{x}_{0} such that the solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ with $\mathbf{x}(0)=\mathbf{x}_{0}$ satisfies

$$
\lim _{t \rightarrow \infty} \mathbf{x}(t)=\mathbf{0} .
$$

[^0]: ${ }^{1}$ © 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

