Homework Set 2, Math 292 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

February 3, 2013

These exercises are due Monday, February 11.

1. Consider the equation

$$
x^{\prime}=x+x^{2} .
$$

(a) Find the general solution; i.e., the solution for general initial data $x(0)=x_{0}$, by treating this equation as a Bernouli equation.
(b) Find the general solution by writing the equation as $x^{\prime}=v(x)$ with $v(x)=x+x^{2}$, and using the formula $t(x)=t_{0}+\int_{x_{0}}^{x}(1 / v(z)) \mathrm{d} z$.
(c) For each x_{0}, there is a time $t\left(x_{0}\right)$ such that $\lim _{t \rightarrow t\left(x_{0}\right)} x(t)=+\infty$. Find a formula for $t\left(x_{0}\right)$.
2. Consider the Riccati equation

$$
x^{\prime}=x^{2}-x-2 .
$$

(a) Find a particular solution of the form $x(t)=C t^{\alpha}$,
(b) Find the general solution; i.e., the solution for general initial data, using the Riccati reduction method. (Since the equation is autonomous, you could also use the $t(x)$ formula, but use the reduction method instead.)
(c) find the solution with $x(0)=-1$.
3. Find the general solution of the Riccati equation

$$
x^{\prime}=(x-t)^{2}+1
$$

4. Let $U(x, y)=x^{2}+2 y^{2}+2 x y+x-5 y$. Consider the system of equations

$$
\mathbf{x}^{\prime}(t)=\nabla U^{\perp}(\mathbf{x}(t)) \quad \text { with } \quad \mathbf{x}(0)=(1,1)
$$

Sketch a plot of the solution curve. Also, compute

$$
\min \{y(t): t \in \mathbb{R}\} \quad \text { and } \quad \min \{y(t): t \in \mathbb{R}\}
$$

5. In this problem, we shall see how to use reduction of order and inversion of dependence to solve

$$
x^{\prime \prime}=-4 x,
$$

[^0]with $x(0)=x_{0}$ and $x^{\prime}(0)=y_{0}$. Both of these techniques were on the previous problem set, and now we shall put them together to get another way to solve this equation.
(a) Introduce $y:=x^{\prime}$. The equation becomes $y^{\prime}=-4 x$ where the prime denotes differentiation by t. Now note that by the chain rule
$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$
where we use the function $t(x)$ to regard y as a function of x. (In a slight abuse of notation, we write $y(x)=y(t(x))$.) Show that
$$
y \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4 x
$$
(b) Now separate variables, and find the general solution of the original equation.

[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

