Homework Set 1, Math 292 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

January 26, 2013

These exercises are due Thursday, January 31.

1. This problem illustrates the use of reduction of order. Consider the second order equation

$$
t x^{\prime \prime}-x^{\prime}=3 t^{2}
$$

Introduce a new variable $y(t)=x^{\prime}(t)$, and notice that the equation becomes a linear first order equation in y. Use this fact to find $y(t)$, and then $x(t)$, given that $x(1)=1$ and $x^{\prime}(1)=2$.
2. Use the method of the previous exercise to find the solution of

$$
x^{\prime \prime}=-4 x,
$$

with $x(0)=x_{0}$ and $x^{\prime}(0)=y_{0}$. (Your answer will be a function of t, x_{0} and y_{0}.)
3. (a) For $0<p<1$, and $x_{0}>0$, consider the equation

$$
x^{\prime}=x(1-x)-p x \quad x(0)=x_{0},
$$

which is a variant of the logistic equation. Note that the equation is $x^{\prime}=v(x)$ with $v(x)=$ $x(1-x)-p x$. This is a quadratic polynomial, and so it has two roots, namely $x=0$ and $x=1-p$. Factor it, and solve the equation.
(a) Is $v(x)$ Lipschitz continuous on $(1,1-p)$? justify your answer. For $x_{0} \in(0,1-p)$, determine $\lim _{t \rightarrow \pm \infty} x(t)$. Justify your answer.
(b) Solve the equation for $x_{0}>1-p$, Compute $\lim _{t \rightarrow \infty} x(t)$, but show that for each $x_{0}>1-p$, there is a value $t_{*}<0$ so that $\lim _{t \rightarrow t_{*}} x(t)=\infty$; ie.e, the graph of $x(t)$ has a vertical asymptote at $t=t_{*}$. Compute $t *$ as a function of x_{0}.
4. (a) Find the solution of the equation

$$
x^{\prime}=2 x^{2}+t x^{2}, \quad x(0)=1 .
$$

(b) On which interval in t around the origin in the solution defined?
(c) What is the minimum value of the solution?
5. We have seen that in solving $x^{\prime}(t)=v(x(t))$, it is useful to find the inverse function $t(x)$ first, and then invert this to obtain $x(t)$.

[^0]This approach is also useful for other sorts of equations. Recalling that $t^{\prime}(x)=1 / x^{\prime}(t(x))$, or more briefly, $t^{\prime}=1 / x^{\prime}$, convert

$$
\left(e^{x}-2 t x\right) x^{\prime}=x^{2}, \quad x(1)=2
$$

into a differential equation for $t(x)$, and solve this differential equation. In this case, inverting to find x as a function of t involves solving a transcendental equation, so you cannot do it explicitly for all t, but you can use Newton's method to evaluate $x(t)$ for any t. Use this approach to compute $x(2)$ accurately to 10 decimal places.
6. Use the change of variables $z=x / t$ to find the general solution of

$$
t x^{\prime}=x+2 t e^{-x / t}
$$

[^0]: ${ }^{1}$ © 2012 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

