Challenge Problem Set for Math 292, April 25, 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

April 25, 2013

This challenge problem set is about the Calculus of Variations and Minimial Surfaces. Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ with $x_{2}>x_{1}$ and $y_{1}, y_{2}>0$, Let \mathcal{K} denote the set of continuously differentiable functions y on $\left[x_{1}, x_{2}\right]$ such that $y\left(x_{1}\right)=y_{1}, y\left(x_{2}\right)=y_{2}$, and $y(x)>0$ for all $x_{1} \leq x \leq x_{2}$.

Now consider the surface obtained by rotating the curve $y=y(x)$ about the x-axis for $x_{1} \leq$ $x \leq x_{2}$. Call this surface of revolution \mathcal{S}_{y}. Then the surface area of \mathcal{S}_{y} equals $I[y]$ where

$$
I[y]:=2 \pi \int_{x_{1}}^{x_{2}} y \sqrt{1+\left(y^{\prime}\right)^{2}} \mathrm{~d} x .
$$

For now, let us fix

$$
\begin{equation*}
\left(x_{1}, y_{1}\right)=(0, R) \quad \text { and } \quad\left(x_{2}, y_{2}\right)=(L, R) \tag{0.1}
\end{equation*}
$$

where $R, L>0$.
(1.) Consider the curves $y_{n}(x)$ where

$$
y(x)=\frac{R}{L^{2 n}}(2 x-L)^{2 n}
$$

Note that for our chosen endpoints, $y \in \mathcal{K}$ for each non-negative integer n.
Compute $I\left[y_{0}\right]$, and compute $\lim _{n \rightarrow \infty} I\left[y_{n}\right]$. Hint: to do this, you do not need to compute $I\left[y_{n}\right]$ as a function of n, which would be very messy. Instead show that the surface of revolution produced by rotating y_{n} about the x-axis is for large n, essentially two disks of radius R at $x=0$ and $x=L$, perpendicular to the x-axis, and connected by a very narrow "neck", almost a line. You can then figure out the limiting area of this.

Also, compute $I\left[y_{1}\right]$, which involves rotating a parabola. Which of the example you computed does best?

Now let us try to find the optimal curve by solving the corresponding Euler-Lagrange equation. Since the variable x is missing from $f(x, y, z)=2 \pi y \sqrt{1+z^{2}}$, the Euler-Lagrange equation

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial}{\partial y^{\prime}} f\left(x, y, y^{\prime}\right)\right)-\frac{\partial}{\partial y} f\left(x, y, y^{\prime}\right)=0
$$

[^0]reduces to
$$
\frac{\partial}{\partial y^{\prime}} f\left(x, y, y^{\prime}\right) y^{\prime}-f=c_{1}=\text { constant }
$$
(2.) Show that the Euler-Lagrange equation reduces to
$$
c_{1} y^{\prime}=\sqrt{y^{2}-c_{1}^{2}} .
$$
(3.) Separate variables to deduce that
$$
x(y)=c_{1} \ln \left(\frac{y+\sqrt{y^{2}-c_{1}^{2}}}{c_{1}}\right)+c_{2} .
$$
(4.) Solve for $y(x)$ to deduce
$$
y(x)=c_{1} \cosh \left(\frac{x-c_{2}}{c_{1}}\right) .
$$
(5.) The equations determining c_{1} and c_{2} are
$$
\frac{R}{c_{1}}=\cosh \left(\frac{-c_{2}}{c_{1}}\right)
$$
and
$$
\frac{R}{c_{1}}=\cosh \left(\frac{L-c_{2}}{c_{1}}\right) .
$$

Show that $c_{2}=L / 2$, and if we define

$$
a=\frac{L}{2 c_{1}},
$$

then

$$
\frac{2 R}{L}=\frac{\cosh (a)}{a}
$$

Show that if R / L is too small, this equation has no solution, and that there is a unique value of R / L where it has exactly one solution, and for all larger values of R / L, is has exactly two solutions.
(6.) For $R=2 L$, the two solutions of $4 a=\cosh (a)$ are approximately $a=0.258$ and $a=3.259$. Show that both values of a give a curve $y \in \mathcal{K}$, and compute to see which one is the best of the two. (You may use Maple, Mathematica, or a calculator to do numerical integrals.)
(7.) Show that if R / L is sufficiently small, the problem has no minimizer in \mathcal{K}. Can you find the greatest lower bound to $I[y]$ for $y \in \mathcal{K}$ is this situation?

[^0]: ${ }^{1}$ © 2013 by the author.

