Challenge Problem Set for Math 292, April 11, 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

April 11, 2013

This challenge problem set is about using symmetry - especially scaling symmetry - to find changes of variables that make it possible to solve differential equations, at least in implicit form.

Consider the differential equation

$$
\begin{equation*}
y^{\prime}(x)=f(x, y) . \tag{0.1}
\end{equation*}
$$

The solutions of this equation describe curves $y=y(x)$ in the x, y plane.
One way to "solve" this equation is to find a function $F(x, y)$ on the x, y plane such that:
(1) The function F is constant on the curves $(x, y(x))$ where $y(x)$ is a solution of (0.1), and
(2) $\nabla F(x, y) \neq(0,0)$ for any (x, y) so that the equation $F(x, y)=F\left(x_{0}, y_{0}\right)$ defines, via the Implicit Function Theorem, a curve

$$
y=y(x) \quad \text { with } \quad y\left(x_{0}\right)=y_{0} \quad \text { and } \quad y^{\prime}(x)=f(x, y(x))
$$

for all x on some interval $\left(x_{0}-a, x_{0}+a\right)$.
(1) Let F be continuously differential on an open set $U \subset \mathbb{R}^{2}$. Suppose that $\nabla F(x, y) \neq(0,0)$ for any $(x, y) \in U$, so that there is a unique level curve of F passing through each point in U.

Suppose that $\nabla F(x, y)$ is orthogonal to $(1, f(x, y))$ at each (x, y). Show that a function $y=y(x)$, defined for x such that $(x, y(x)) \in U$, satisfies $y^{\prime}(x)=f(x, y(x))$ if and only if

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} F(t, y(t))=0 \tag{0.2}
\end{equation*}
$$

Conversely, show that if (0.2) is true for each solution of $y=y(x)$, then $\nabla F(x, y)$ is orthogonal to $(1, f(x, y))$ at each (x, y).
(2) Now let $h(x, y)=(u(x, y), v(x, y))$ be a continuously differentiable function from $U \subset \mathbb{R}^{2}$ to $V \subset \mathbb{R}^{2}$ that is one to one and onto, and hence invertible. Define

$$
G(u, v)=F \circ h^{-1}(u, v) .
$$

Let $\mathbf{x}(t)=(x(t), y(t))$ be a continuously differentiable curve in in \mathbb{R}^{2}. Let $\mathbf{u}(t)=h(\mathbf{x}(t))=$ $(u(t), v(t))$. That is,

$$
(u(t), v(t))=h(x(t), y(t))
$$

[^0]Show that

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} G(\mathbf{u}(t)) & =\left[\nabla F\left(h^{-1}(\mathbf{u}(t))\right] \cdot \frac{\mathrm{d}}{\mathrm{~d} t} h^{-1}(\mathbf{u}(t))\right. \\
& =\left[\nabla F\left(h^{-1}(\mathbf{u}(t))\right] \cdot\left[J_{h^{-1}}(\mathbf{u}(t))\right] \mathbf{u}^{\prime}(t)\right.
\end{aligned}
$$

Of course, we also have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} G(\mathbf{u}(t))=\nabla G(\mathbf{u}(t)) \cdot \mathbf{u}^{\prime}(t) .
$$

Put this together to deduce that transformation rule for gradients under a coordinate change:

$$
\nabla G(u, v)=\left[J_{h^{-1}}(u, v)\right]^{t} \nabla F\left(h^{-1}(u, v)\right) .
$$

where t denote the transpose.

We now seek to choose the coordinate change h so that the level curves of the transformed function $G=F \circ h^{-1}$ satisfy an autonomous first order equation

$$
\begin{equation*}
v^{\prime}(u)=w(v(u)), \tag{0.3}
\end{equation*}
$$

for some function $w(v)$. This is helpful, because we know how to solve such equations.
(3) Recall the fundamental formula for solving (0.3): We can write they verse function $u(v)$ in the form

$$
u(v)-u_{0}=\int_{v_{0}}^{v} \frac{1}{w(z)} \mathrm{d} z
$$

Define a function $G(u, v)$ by

$$
G(u, v)=u-\int_{v_{0}}^{v} \frac{1}{w(z)} \mathrm{d} z .
$$

Show that the level curves of G are integral curves of (0.3), and in particular that

$$
\begin{equation*}
\nabla G(u, v) \cdot(1, w(v))=0 . \tag{0.4}
\end{equation*}
$$

Show that the solution of (0.3) with $v\left(u_{0}\right)=v_{0}$ lies on the curve $G(u, v)=u_{0}$.

Thus, we may not be able to do the algebra to invert $u(v)$ and find v as a function of u, but we can always, at least in integral form, find a function $G(u, v)$ wholes level curves are the solutions of the autonomous equation $v^{\prime}=w(v)$.

We now seek, by change of variables, to do the same for certain non-autonomous equations.
(4) Let $v(u)$ be a solution of the autonomous equation (0.3), and define a curve $\mathbf{x}(t)$ by

$$
\begin{equation*}
\mathbf{x}(t)=h^{-1}(t, v(t)) \tag{0.5}
\end{equation*}
$$

and a function

$$
\begin{equation*}
F(x, y)=G \circ h(x, y) \tag{0.6}
\end{equation*}
$$

where G is determined by the autonomous equation as above.
Show that for a solution $y(x)$ of $y^{\prime}=f(x, y)$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(t, y(t))=0
$$

if and only if

$$
\left[J_{h^{-1}}(u, v)\right](1, w(v))=a(u, v)\left(1, f\left(h^{-1}(u, v)\right)\right)
$$

for some non-zero function $a(u, v)$, and therefore, if we can find a change of variables h such that

$$
\left[J_{h^{-1}}(u, v)\right]^{-1}\left(1, f\left(h^{-1}(u, v)\right)\right)=\frac{1}{a(u, v)}(1, w(v))
$$

the curve (0.5), written in the form $y=y(x)$, will be a solution of $y^{\prime}=f(x, y)$.

In class we have seen how when $f(x, y)$ has the form

$$
f(x, y)=\sum_{j=1}^{m} a_{j} x^{p_{j}} y^{q_{j}}
$$

with power, which need not be integer, such that for some α and β

$$
\alpha p_{j}+\beta q_{j}=\beta-\alpha
$$

for all j, then the change of variables

$$
h(x, y)=\left(\frac{1}{\alpha} \ln x, x^{-\beta / \alpha} y\right),
$$

will have the desires property, and have seen how this property follows from generalized scale symmetry of the equation $y^{\prime}=f(x, y)$.
(5) Apply this method to find a function $F(x, y)$ whose level curves satisfy

$$
y^{\prime}=y^{2}+x y^{3} .
$$

[^0]: ${ }^{1}$ © 20013 by the author.

