Challenge Problem Set 2, Math 292 Fall 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

February 19, 2013

This problems set concerns differentiability for the flow transformation associated to a nonautonomous but uniformly Lifschitz equations in one variables.

That is we consider the equation

$$
\begin{equation*}
x^{\prime}(t)=v(t, x(t)) \quad \text { with } \quad x(0)=x_{0} \tag{0.1}
\end{equation*}
$$

(Here we are using x for the dependent variable, and t for the independent variable, as opposed to y for the dependent variable and x for the independent variable. That is, we solve for $x(t)$ instead of $y(x)$ as in Simmons.)

We assume that for some finite constant L,

$$
\begin{equation*}
|v(t, x)-v(t, y)| \leq L|x-y| \quad \text { for all } \quad x, y, t \in \mathbb{R} \tag{0.2}
\end{equation*}
$$

In fact, we shall assume the slightly stronger condition

$$
\begin{equation*}
\left|\frac{\partial}{\partial x} v(t, x)\right| \leq L \quad \text { for all } \quad x, t \in \mathbb{R} \tag{0.3}
\end{equation*}
$$

Let $x\left(t, x_{0}\right)$ be the solution of (0.1). We want to show that this is differentiable as a function of x_{0}, and to compute the derivative.

We have seen that

$$
\begin{equation*}
x\left(t, x_{0}\right)=\lim _{n \rightarrow \infty} x_{n}\left(t, x_{0}\right) \tag{0.4}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}\left(t, x_{0}\right)=x_{0} \quad \text { and } \quad x_{n}\left(t, x_{0}\right)=x_{0}+\int_{0}^{t} v\left(s, x_{n-1}\left(s, x_{0}\right)\right) \mathrm{d} s \quad \text { for } \quad n \geq 1 . \tag{0.5}
\end{equation*}
$$

(1) Show by induction that for each n and $t, x_{n}\left(t, x_{0}\right)$ is continuously differentiable as a function of x_{0}, and if we define

$$
\begin{equation*}
z_{n}\left(t, x_{0}\right)=\frac{\partial}{\partial x_{0}} x_{n}\left(t, x_{0}\right), \tag{0.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
z_{n}\left(t, x_{0}\right)=1+\int_{0}^{t} \frac{\partial}{\partial x} v\left(t, x_{n-1}\left(s, x_{0}\right)\right) z_{n-1}\left(s, x_{0}\right) \mathrm{d} s . \tag{0.7}
\end{equation*}
$$

[^0](2) Based on what we have seen, it is natural to guess that
$$
\lim _{n \rightarrow \infty} z_{n}\left(t, x_{0}\right)=z\left(t, x_{0}\right)
$$
exists, and that the convergence is uniform on any bounded interval $[0, T]$.
Assuming this, which is true, show that
\[

$$
\begin{equation*}
z\left(t, x_{0}\right)=1+\int_{0}^{t} \frac{\partial}{\partial x} v\left(s, x\left(s, x_{0}\right)\right) z\left(s, x_{0}\right) \mathrm{d} s \tag{0.8}
\end{equation*}
$$

\]

(3) Building on part (2), define

$$
a\left(t, x_{0}\right):=\frac{\partial}{\partial x} v\left(t, x\left(t, x_{0}\right)\right) .
$$

Show that

$$
z\left(t, x_{0}\right)=\exp \left(\int_{0}^{t} a\left(s, x\left(s, x_{0}\right)\right) \mathrm{d} s\right),
$$

where $x\left(t, x_{0}\right)$ solves(0.1).
(4) Show that if v is autonomous; i.e., independent of t, so that

$$
\begin{gathered}
a\left(t, x_{0}\right):=\frac{\partial}{\partial x} v\left(x\left(t, x_{0}\right)\right) . \\
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \ln \left(v\left(x\left(t, x_{0}\right)\right)\right)=a\left(t, x_{0}\right)\right),
\end{gathered}
$$

and therefore that

$$
z\left(t, x_{0}\right)=\frac{v\left(x\left(t, x_{0}\right)\right)}{v\left(x_{0}\right)},
$$

as we found before in the autonomous case.
(5) Let

$$
v(t, x)=\sqrt{\frac{1+x^{2}}{1+t^{2}}} .
$$

Compute the solution $x\left(t, x_{0}\right)$ of (0.1), and the, by direct computation, compute

$$
z\left(t, z_{0}\right)=\frac{\partial}{\partial x_{0}} x\left(t, x_{0}\right) .
$$

(6) Extra Credit Returning to (2), show that

$$
\lim _{n \rightarrow \infty} z_{n}\left(t, x_{0}\right)=z\left(t, x_{0}\right)
$$

exists, and that the convergence is uniform on any bounded interval $[0, T]$.

[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

