Problem Set 5 for Math 292, April 8, 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

April 9, 2013

The problems concern the use of symmetry for finding a change of variables that permits the solution of a differential equation. In these problems, the symmetry transformations will all be a general scaling transformation given by

$$
g^{u}(x, y)=\left[\begin{array}{cc}
e^{u \alpha} & 0 \\
0 & e^{u \beta}
\end{array}\right](x, y)=\left(e^{u \alpha} x, e^{u \beta} y\right)
$$

Recall that slope field ($1, f\left(x, y\right.$) is invariant under the transformations g^{u} in case

$$
\left[\begin{array}{cc}
e^{u \alpha} & 0 \\
0 & e^{u \beta}
\end{array}\right]\left(1, f\left(e^{-u \alpha} x, e^{-u \beta} y\right)=a(x, y)(1, f(x, y))\right.
$$

for some non-zero function $a(x, y)$, so that the transformed slope field had the same slope as the original slope field.

We have seen that in this case the change of variables

$$
\begin{equation*}
h(x, y)=\left(\frac{1}{\alpha} \ln x x^{-\beta / \alpha} y\right) \tag{*}
\end{equation*}
$$

will transform ($1, f(x, y)$ into a slope field of the form $(1, w(v))$, corresponding to the differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} u} v=w(v)
$$

which we can solve, at least implicitly by integration.

1. Consider the equation

$$
\begin{equation*}
y^{\prime}=-3 \frac{y}{x}-y^{3 / 2} x^{1 / 2}, \tag{1}
\end{equation*}
$$

corresponding to the slope field

$$
\left(a, f(x, y)=\left(1,-3 \frac{y}{x}-y^{3 / 2} x^{1 / 2}\right) .\right.
$$

(a) Show that this slope field is invariant under the scaling transformation with $\alpha=-1$ and $\beta=3$.
(b) Show that under the change of variables $(*)$, the slope field $(1, f(x, y))$ transforms into (a multiple of) the slope field

$$
\left(1, v^{3 / 2}\right),
$$

[^0]corresponding to the equation
\[

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} u} v=v^{3 / 2} \tag{2}
\end{equation*}
$$

\]

(c) Find the general solution of (2), and then change this back into x, y terms to find the general solution of (1). You should find

$$
y(x)=x^{-3}\left(C+\frac{\ln (x)}{2}\right)^{-2} .
$$

Check that this is indeed a solution.
2. Consider the equations

$$
\begin{equation*}
y^{\prime}=4 x^{2} y^{2}+x^{5} y^{3} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime}=4 x^{4} y^{2}+x^{5} y^{3} \tag{4}
\end{equation*}
$$

(a) One of these equations is scale invariant for some α and β and one is not. Determine which one is, and find values of α and β for which it is invariant.
(b) Find an equation of the form

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} u} v=w(v) \tag{5}
\end{equation*}
$$

that is equivalent to the invariant equation under a change of variables of the form $(*)$.
(c) Apply our usual method of solving such an equation to find a function $g(v)$ so that the solutions of (5) satisfy

$$
g(v)+u=C,
$$

C an arbitrary constant.
(d) Use the change of variables to express this as a function $F(x, y)$ that is constant on the solution of the original equation in the x, y variables. That is, $F(x, y)=C$ gives the solution curves of the differential equation in implicit form.

[^0]: ${ }^{1}$ © 2013 by the author.

