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1 Changes of variables and diffeomorphisms

The key step in the solution to many mathematical problems is to show that two problems are
equivalent to one another in the sense that there is an explicit method for turning every solution
of one problem into a solution of the other problem, and vice-versa.

In linear algebra, this is particularly simple: If two systems of linear equations are related to
one another by a sequence of elementary row operations, every solution of one system simply is a
solution of the other system, and vice-versa. Therefore, to solve a system of linear equations, you
can apply repeated elementary row operations to simplify the system – by eliminating variables –
and then solve the simplified system.

Our goal in these notes is to explain some important ideas concerning this strategy in the
context of solving differential equations.

Changes of variables that are useful for studying differential equations are given by diffeomor-
phisms; that is, functions h that are invertible and such that both h and its inverse function h−1

are continuously differentiable. We will begin by studying the case in which the domain of h is an
open set U ⊂ R2, and the range is an open set V ⊂ R2.

Recall that the derivative of a function

h(x, y) = (u(x, y), v(x, y))

from U ⊂ R2 to V ⊂ R2 is expressed by is Jacobian matrix [Jh(x)] at x ∈ U , which is the 2 × 2
matrix

[Jh(x)] =

[
∇u(x)
∇v(x)

]
. (1.1)

That is, the first row of [Jh(x)] is ∇u(x) while the second row is ∇v(x). Written out explicitly as
a 2× 2 matrix,

[Jh(x)] =

[
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

]
. (1.2)

It is usually more useful to think of matrices as lists of vectors instead of arrays of numbers,
and hence (1.1) will be useful to us, and is probably more memorable that (1.2).
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When all of the partial derivatives in [Jh(x)] exist and are continuous at a point x0 ∈ U , the
function h is differentiable there, meaning that

h(x) = h(x0) + [Jh(x0)](x− x0) + r(x; x0) (1.3)

where the remainder term r(x; x0) satisfies

lim
x→x0

r(x; x0)
‖x− x0‖

= 0 .

That is,
h(x) ≈ h(x0) + [Jh(x0)](x− x0) ,

up to an error which is a vanishingly small fraction of the size ‖[Jh(x0)](x − x0)‖ of the main
term on the right in (1.3). Differentiability of a function at a point means exactly that this linear
approximation is a good approximation sufficiently close to the point.

Now, if g is a differentiable map from V to W ⊂ R2, we can form the composition g ◦ h which
is a function from U to W . If both functions are differentiable, so is their composition. Indeed, by
the differentiability of g, and then the differentiability of h,

g(h(x)) ≈ g(h(x0)) + [Jg(h(x0))](h(x)− h(x0))

≈ g(h(x0)) + [Jg(h(x0))]([Jh(x0)](x− x0))

= g(h(x0)) + ([Jg(h(x0))][Jh(x0)]) (x− x0)

Going back trough this and keeping track of the remainder terms, one sees that g ◦ h is differ-
entiable at x0, and we obtain the chain rule:

[Jg◦h(x0)] = [Jg(h(x0))][Jh(x0)] . (1.4)

That is, the Jacobian of the the composition is the product of the Jacobians.
Note also that if h is a linear transformation, so that for some 2× 2 matrix

A =

[
a b

c d

]
,

h(x) = Ax = (ax+ by, cx+ dy) ,

we have
[Jh(x)] = A .

Thus, the Jacobian of a linear transformation is simply the constant matrix A that represents that
linear transformation. In particular, if h is invertible, h−1 ◦ h is the identity transformation, which
is the linear transformation represented by the identity matrix

I =

[
1 0
0 1

]
.

Therefore, by the chain rule (1.4), supposing that both h and h−1 are differentiable,

I = [Jh−1◦h(x)] = [Jh−1(h(x0))][Jh(x0)] .
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It then follows that
[Jh−1(h(x0))] = [Jh(x0)]−1 . (1.5)

In fact, the Inverse Function Theorem says that if h is differentiable at a point x0, and if [Jh(x0)] is
an invertible matrix, then h is invertible on a neighborhood of x0, and this inverse is differentiable,
and satisfies (1.5).

Finally, there is another case of the multivarible chain rule that will be useful to us here: If
x(t) is a differentiable curve in U , and we define u(t) = h(x(t)) where h is a differentiable function
from U to V , then u(t) is a differentiable curve in V , and

u′(t) = [Jh(x(t))]x′(t) . (1.6)

Now that we have reviewed these facts about differentiability in to variables, let us look at some
examples of coordinate transformations.

1 Example (The polar coordinate transformation). Let

U = {(x, y) : x 6= 0 or y > 0 } ,

which is R2 with the non-positive y-axis removed Let

V =
{

(r, θ) : r > 0 and − π

4
< θ <

3π
4

}
.

Define
h(x, y) = (r(x, y), θ(x, y))

where

r(x, y) =
√
x2 + y2 and θ(x, y) =


arctan(y/x) x > 0

π/2 x = 0

π + arctan(y/x) x < 0 .

The inverse transformation h−1 is

h−1(r, θ) = (x(r, θ), y(r, θ))

where
x(r, θ) = r cos θ and y(r, θ) = r sin θ .

Not only are both h and h−1 differentiable, we can readily calculate the derivatives, which are
expressed as the Jacobian matrices [Jh] and [Jh−1 ] respectively.

We find

[Jh(x, y)] =

[
∂r/∂x ∂r/∂y

∂θ/∂x ∂θ/∂y

]
=

[
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

]
.

Likewise,

[Jh−1(r, θ)] =

[
∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
.



4

Note that

[Jh(x, y)] ◦ h−1(r, θ) =

 x(r,θ)√
x2(r,θ)+y2(r,θ)

y(r,θ)√
x2(r,θ)+y2(r,θ)

−y(r,θ)
x2(r,θ)+y2(r,θ)

x(r,θ)
x2(r,θ)+y2(r,θ)

 =

[
cos θ sin θ

−(sin θ)/r (cos θ)/r

]
.

We cah check our work by verifying that

[Jh−1(r, θ)] = [Jh ◦ h−1(r, θ)]−1 ,

which must be true according to (1.5).

2 Example (The homogeneous coordinate transformation). Let

U = {(x, y) : x > 0 } ,

which is called the right half-plane. Let V = R2.
Define

h(x, y) = (u(x, y), v(x, y))

where
u(x, y) = ln(x) and v(x, y) =

y

x
.

The inverse transformation h−1 is

h−1(r, θ) = (x(u, v), y(u, v))

where
x(u, v) = eu and y(u, v) = euv .

Again, it is easy to compute the derivatives; i.e., Jacobian matrices. We find

[Jh(x, y)] =

[
∂u/∂x ∂u/∂y

∂v/∂x ∂v/∂y

]
=

[
1/x 0
−y/x2 1/x

]
,

and

[Jh−1(u, v)] =

[
∂x/∂u ∂x/∂v

∂u/∂u ∂y/∂v

]
=

[
eu 0
veu eu

]
.

We see that

[Jh ◦ h−1(u, v)] =

[
e−u 0
−ve−u e−u

]
and hence

[Jh−1(u, v)] = [Jh ◦ h−1(u, v)]−1 ,

as must be the case.
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2 How vector fields and direction fields transform under changes

of variables

Let
h(x, y) = (u(x, y), v(x, y))

be a diffeomorphism of an open set U in R2 onto V , another open set in R2.
Let x(t), a < t < b, be a continuously differentiable curve in U . Then define

u(t) = h(x(t)) .

As we have noted above, this is a differentiable curve in V , and by the chain rule,

u′(t) = [Jh(x(t))]x′(t) .

Let
v(x, y) = (f(x, y), g(x, y))

be a smooth vector field on an open set U in R2. Suppose that x(t) is an integral curve of v,
meaning that

x′(t) = v(x(t)) .

Then

u′(y) = [Jh(x(t))]v(x(t))

= [Jh(h−1(u(t)))]v(h−1(x(t)))

= w(u(t)) , (2.1)

where w(u, v) is the vector field on V defined by

w(u, v) = [Jh(h−1(u, v)]v(h−1(u, v)) . (2.2)

Thus, whenever v and w are related by (2.2), the diffeomophism h carries integral curves of v onto
integral curves of w. Moreover, since [Jh−1(u, v)] = [Jh ◦ h(u, v)]−1, whenever v and w are related
by (2.2), we also have

v(x.y) = [Jh−1(h(x, y)]w(h(x, y)) , (2.3)

and vice-versa.
Thus (2.2) and (2.3) are equivalent to one another, and whenever either holds, h carries integral

curves of v onto integral curves of w, and h−1 carries integral curves of w onto integral curves of
v. This brings us to the following definition:

2.1 DEFINITION (Conjugate vector fields). Let U and V be open sets in R2 with a diffeomor-
phism h from U onto V . Let v and w be continuously differentiable vector fields on U and V

respectively. Then w is conjugate to v under h in case (2.2) is true.

Since, as we have observed above (2.2) is equivalent to (2.3), w is conjugate to v under h if and
only if v is conjugate to w under h−1 What we have noted above also proves the following theorem:
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2.2 THEOREM (Conjugate vector fields). Let U and V be open sets in R2 with a diffeomorphism
h from U onto V . Let v and w be continuously differentiable vector fields on U and V respectively.
Suppose that v and w are conjugate to one another under h and h−1 respectively. Then a curve
x(t) in U solves

x′(t) = v(x(t)) x(t0) = x0 (2.4)

if and only if the curve u(t) in V given by u(t) = h(x(t)) satisfies

u(t) = w(u(t)) u(t0) = u0 := h(x0) . (2.5)

The point of the definition is that whenever v and w are conjugate, and we know how to solve
(2.5), then we know how to solve (2.4): The solution is h−1(u(t)).

3 Example (Conjugacy under the polar diffeomorphism). Let U and V and h be given as in
Example 1. Let

v(x, y) = (y + x(1− x2 − y2),−x+ y(1− x2 − y2)) . (2.6)

Define
w(r, θ) := h∗v(r, θ) = [Jh(h−1(r, θ))]v(h−1(r, θ) ,

which makes w conjugate to v under h.
Computing we find, using results from Example 1,

w(u, v) =

[
cos θ sin θ

−(sin θ)/r (cos θ)/r

]
(r sin θ + r(1− r2) cos θ,−r cos θ + r(1− r2) sin θ)

= (r(1− r2),−1) .

Thus, to solve the equation x′(t) = v(x(t)), it suffices to solve

(r′, θ′) = (r(1− r2),−1) . (2.7)

This is much simpler, and we have solved (2.7) already in exercises. By making the inverse trans-
formation, we recover the solution of the original differential equation.

We will frequently be working with transformations of vector fields under diffeomorphisms. The
following definition will be useful.

2.3 DEFINITION (The push-forward of a vector field). Let Let U and V be open sets in R2 with
a diffeomorphism h from U onto V . Let v be a smooth vector filed on U , Then the push-forward
of v under h is the vector field on V denoted by h∗v and defined by

h∗v = w(u, v) = [Jh(h−1(u, v))]v(h−1(u, v)) . (2.8)

Now consider a diffeomorphism h from U to V , and then a diffeomorphism g from V to W

where U , V and W are all open sets in R2. Then, by the chain rule (1.4) g ◦ h is a diffeomorphism
from U onto W , and its derivative is given by [Jg◦h(x)] = [Jg(h(x))][Jh(x)]. Using this and the fact
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that (g ◦ h)−1 = h−1 ◦ g−1, is is easy to compute g ◦ h∗ in terms of g∗ and h∗: For any vector field
v on U , and any z ∈W

(g ◦ h)∗v(z) = [Jg◦h((g ◦ h)−1(z))]v((g ◦ h)−1(z))

= [Jg(h(h−1(g−1(z)))][Jh(h−1(g−1(z)))]v((h−1(g−1(z)))

= [Jg(g−1(z))][Jh(h−1(g−1(z)))]v((h−1(g−1(z)))

= [Jg(g−1(z))]h∗v((g−1(z))

= g∗(h∗v)(z) .

(2.9)

What this computation shows is that, essentially as a consequence of the chain rule (??), the push
forward of a composition of diffeomorphisms is the composition of their push-forwards. This will
turn out to be a useful fact, so we record it in a theorem:

2.4 THEOREM (The push-forward and composition). For any diffeomorphism h from U to V ,
and any diffeomorphism g from V to W where U , V and W are all open sets in R2,

(g ◦ h)∗ = g∗ ◦ h∗ . (2.10)

We close this section by discussing a strategy for solving the equation x′(t) = v(x(t)) on and
open set U ⊂ R2: Find a diffeomorphism h of U onto V ⊂ R2 such that

h∗v(u, v) = (a(v), b(v)) .

That is, such that h∗v(u, v) depends on v alone. Then we can solve

u′ = (u′, v′) = (a(v), b(v))

by separately solving

d
dt
u = a(v)

d
dt
v = b(v) .

Note that the second of these equations may be solved by separation of variables. Then with v(t)
known, so that the right hand side of the first equation is known, it can be solved by integration.

3 How direction fields transform under changes of variables

Consider the differential equations
dy
dx

= f(x, y) (3.1)

and
x′(t) = a(x(t))(1, f(x(t)) (3.2)

where a(x, t) is some smooth function that is never zero anywhere on its domain of definition, and
of course x′(t) = (x′(t), y′(t)).
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Given a curve x(t) that satisfies (3.2), define

x(t) = x0 +
∫ t

t0

a(x(s))ds .

Since a(x) is never zero, x(t) is a strictly monotone function of t, and hence the inverse function
t(x) is defined and differentiable. Then

y(x) := y(t(x))

solves (3.1) since
dy
dx

=
dy
dt

dt
dx

= a(x, y)f(x, y)
1

a(x, y)
= f(x, y) .

Conversely, suppose that a function y(x) solves (3.1). Define the curve x(t) by

x(t) = (t, y(t)) . (3.3)

Then differentiating,

x′(t) = (1, y′(t)) = (1, f(t, y(t))) = (1, f(x(t), y(t))) ,

so that x(t) solves (3.2) with a(x, y) = 1. This gives us a recipe for passing back and forth between
the equations (3.1) and (3.2).

The difference between (3.1) and (3.2) is that (3.1) involves only two variables, x and y, and is
given by a direction field, while (3.2) involves three variables, x, y and t, and is given by a vector
field. The difference in the number of variables involved accounts for the fact that for any given
(smooth and non-vanishing) function a(x), there is a one to one correspondence between solutions
of (3.1) and (3.2).

Recall that a direction field on an open set U in R2 is non-singular in case none of the lines
it associates to any point of U is either vertical or horizontal. In this case, the line that the
direction field associates to the point (x, y) has a non-zero and finite slope f(x, y). The vector field
v(x, y) = (1, f(x, y)) is called the slope field of the corresponding direction field. This brings us to
the following definition;

3.1 DEFINITION (Conjugate direction fields). Let U and V be open sets in R2 with a diffeo-
morphism h from U onto V . Let non-singular direction fields be given on U and V whose slope
fields are v(x, y) = (1, f(x, y)) and w(u, v) = (1, g(u, v)) respectively. Then these directions are
conjugate in case there is a smooth function a(u, v) such that a(u, v) 6= 0 anywhere on V and

w(u, v) = a(u, v)h∗v(u, v) , (3.4)

where h∗v is defined in (2.8).

The following theorem is a direct consequence of Theorem 2.2 and what we have said above
about the relation between equations (3.1) and (3.2).

3.2 THEOREM (Conjugate direction fields). Let U and V be open sets in R2 with a diffeomor-
phism h from U onto V . Let continuously differentiable direction fields on U and V be given that
are conjugate under h. Then y(x) is an integral curve of the given direction field on U if and only
if h(x, y(x)) is an integral curve of the conjugate direction field on V .
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4 Example (Homogeneous equations). Consider the differential equation

dy
dx

= F
(y
x

)
(3.5)

on x > 0.
Associated to this equation is the slope field

v(x, y) = (1, F (y/x)) .

Let h be the homeomorphism of the right half plane onto R2 considered in Example 2. That is;

h(x, y) = (u(x, y), v(x, y) = (ln(x), y/x) .

Let us compute h∗v. We find:

h∗v(u, v) =

[
e−u 0
−ve−u e−u

]
(1, F (v)) = e−u(1, F (v)− v) .

Since e−u is never zero, the slope field (1, F (v) − v) is conjugate to the slope field (1, F (x/y)).
Consequently, if (u, v(u)) is any integral curve of the slope field (1, F (v)− v),

h−1(u, v(u))

is an integral curve of the slope field (1, F (x/y)).
To make this more concrete, let us carry through a specific example. Take F (y/x) = (y/x)2 so

that (3.6) becomes
d

dx
y =

(y
x

)2
. (3.6)

Then the conjugate slope field is (1, v2− v), and we find integral equations of this slope field by
solving

d
du
v = v2 − v . (3.7)

Note that v = 0 and v = 1 are equilibrium solutions. All other solutions remain forever in one
of the intervals (−∞, 0), (0, 1) or (1,∞). Since u is not present on the right hand side, we can
separate variables to find

du =
dv

v2 − v
=
(

1
v − 1

− 1
v

)
dv .

Integrating, we find, for v > 1,

u+ C = ln
(
v − 1
v

)
.

Letting v0 denote v(0), we solve to find

v(u) =
v0

eu(1− v0) + v0
.

This function defines an integral curve for −∞ < u < ln(v0/(v0 − 1), at which value of u the curve
has a vertical asymptote.
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Now simply undo the change of variables to express this curve in terms of x and y. Since for
u = 0, x = 1, y(1) = v(0) = v0. Hence we find

y(x) =
y1x

x(1− y1) + y1
.

You may now easily check that y(x) solves

dy
dx

=
(y
x

)2
and y(1) = y1

for y1 > 1. In fact, it solves it for all y1, as you can verify by direct computation. (This is another
reason to check our work as we go along: It saves us from explicitly considering the cases 0 < v0 < 1
and −∞ < v0 < 0.

There is another interesting thing to note about this example. The equation (3.7) has two
equilibrium solutions, namely v = 0 and v = 1, while the equation (3.6) has only one equilibrium
solution, namely y = 0. The y = 0 solution of (3.7) corresponds to the v = 0 solution of (3.6) since

h(x, 0) = (lnx, 0) = (u, 0) .

Now compute
h−1(u, 1) = (eu, eu) = (x, x) ,

and hence the v = 1 solution of (3.7) corresponds to the solution y(x) = x of (3.6). Although the
original slope field is singular only at y = 0, the conjugate slope field is singular at v = 0 and v = 1.
Hence we see that even though this diffeomorphism produces singularities, it still enables us to find
all solutions of (3.6).

4 Symmetries of vector fields

Very often, the source of a change of variables; i.e., coordinate transformation, that enables one to
solve the differential equation

v′(t) = v(x(t))

is a symmetry property of the vector field v.

4.1 DEFINITION (Symmetry of a vector field). Let U be an open set in R2 and let v be a
continuously differentiable vector field on U . A homeomorphism h of U onto U is a symmetry of v
in case

h∗v = v .

That is, h is a symmetry of v in case the push forward of v under h is v itself.
A one parameter group {gt}t∈R of diffeomorphisms of U onto itself is a one parameter symmetry

group of v in case each gt is a symmetry of v.

5 Example (Rotation invariance). Let us consider one of the most familiar one groups of diffeo-
morphisms of R2 into itself: The planar rotation group. This is given by

gθ(x) = [R(θ)]x (4.1)
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where [R(θ)] is the 2× 2 rotation matrix

[R(θ)] =

[
cos θ − sin θ
sin θ cos θ

]
. (4.2)

For any vector x ∈ R2, [R(θ)]x is the result of rotating x counter-clockwise through that angle θ.
Note that since gθ is a linear transformation, its derivative; i.e., its Jacobian matrix, is simply

[Jgθ ] = [R(θ)] ,

and the right hand side is independent of x. Also, it is clear that the inverse of gθ is g−θ. Hence,
for any vector field v on R2,

gθ∗v(x) = [R(θ)]v([R(−θ)]x) . (4.3)

Now, given a vector field v(x) = (a(x), b(x)), when is v symmetric under rotations? Let us
write a and b in terms of polar coordinates r and ϕ:

a(x) = a(r, ϕ) and b(x) = b(r, ϕ)

Then
v([R(−θ)]x) = (a(r, ϕ− θ), b(r, ϕ− θ)) ,

it follows from (4.3), this is the case if and only if

(a(r, ϕ), b(r, ϕ)) =

[
cos θ − sin θ
sin θ cos θ

]
(a(r, ϕ− θ), b(r, ϕ− θ)) ,

for each r, ϕ and θ, which means

a(r, ϕ) = cos θa(r, ϕ− θ)− sin θb(r, ϕ− θ)
b(r, ϕ) = sin θa(r, ϕ− θ) + cos θb(r, ϕ− θ) .

Differentiating both sides of both equations in θ, and evaluating at θ = 0, we find

0 = −a(r, ϕ) + b′(r, ϕ)

0 = −a′(r, ϕ) + b(r, ϕ)

where primes denote derivatives with respect to the angular variable. Hold r fixed as a parameter,
and consider a and b as functions of ϕ. Then we see that v is invariant if and only if these functions
satisfy the system of differential equations

b′(r, ϕ) = −a(r, ϕ)

a′(r, ϕ) = b(r, ϕ)

But we know the general solution to this system: It is

a(r, ϕ) = a(r, 0) cosϕ+ b(r, 0) sinϕ

b(r, ϕ) = −a(r, 0) sinϕ+ b(r, 0) cosϕ (4.4)
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Now define, for r > 0,

f1(r) =
b(r, 0)
r

and f2(r) =
a(r, 0)
r

.

Then we can rewrite (4.4) as

(a(r, ϕ), b(rϕ)) = (f2(‖x‖)y + f1(‖x‖)x , −f2(‖x‖)x+ f1(‖x‖)y) .

We have proved the following theorem:

4.2 THEOREM (Characterization of rotation symmetric vector fields). A vector field v on R2 is
symmetric under rotations if and only if it has the form

v(x, y) = (f2(‖x‖)y + f1(‖x‖)x , −f2(‖x‖)x+ f1(‖x‖)y) . (4.5)

for some functions f1 and f2.

In particular, the vector field v given in (2.6) of Example 3 has this form: In this case f1(r) =
1− r2 and f2(r) = 1. Hence it is symmetric under the planar rotation group. As we shall see, this
is why the change to polar coordinates lead to an explicit solution of the corresponding equation.

More generally, let h be the polar coordinate diffeomorphism, and let us compute h ∗ v for v
given by (??). Computing as in Example 3, we find

h∗v(r, θ) =

[
cos θ sin θ

−(sin θ)/r (cos θ)/r

]
(f2(r)r sin θ + f1(r)r cos θ , −f2(r)r cos θ + f1(r)r sin θ)

= (f1(r)r,−f2(r) .

Therefore, solving the equation x′(t) is reduced to solving

r′ = rf1(r)

θ′ = −f2(r) .

5 Symmetries of direction fields

We are also concerned with symmetries of direction fields. Again, symmetry means invariance
under a transformation, but since we are only concerned with invariance of directions and not
magnitudes, the notion of symmetry for direction fields is more comprehensive.

5.1 DEFINITION (Symmetry of a direction field). Let U be an open set in R2 and consider a
non-singular direction field on U whose slope field is v = (1, f(x, y)). A homeomorphism h of U
onto U is a symmetry of this direction field in case

h∗v = av

where a(x, y) is some function that is not zero for any (x, y) in U .
A one parameter group {gt}t∈R of diffeomorphisms of U onto itself is a one parameter symmetry

group of this direction field in case each gt is a symmetry of of this direction field. Note that a
vector field is symmetric under a diffeomorphism if and only if it is invariant under the action of
the diffeomorphism. The terms symmetry and invariance are often used interchangeably in this
context.
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6 Example (Scale invariance). Here is another simple diffeomorphism group that is relevant to
the solution of many differential equations: Fot t ∈ R, define

gt(x, y) = (etx, ety) . (5.1)

It is easy to check that gt ◦ gs = gt+s, that g0 is the identity transformation, and that g−t = (gt)−1.
Finally, gt is linear, given by

gt(x) = [S(t)]x (5.2)

where S(t) is the 2× 2 scaling matrix

[S(t)] =

[
et 0
0 et

]
. (5.3)

Again since for each t, gt is a linear transformation of R2 to R2, it is differentiable and its derivative;
i.e., its Jacobian matrix, is given by

[Jgt ] = [S(t)] =

[
et 0
0 et

]
.

Again, the right hand side is independent of x.
Hence, for any vector field v on R2,

gt∗v(x) = [S(t)]v([S(−t)]x) .

If the vector field v is linear; i.e., if there is a 2× 2 (constant) matrix A so that

v(x) = Ax ,

then
gt∗v(x) = [S(t)]A([S(−t)]x) = [S(t)][S(−t)](Ax) = Ax = x(x) ,

since, while matrix multiplication is not generally commutative, [S(t)] does commute with every
other 2× 2 matrix – it is a multiple of the identity.

Thus, every linear vector field is conjugate to itself under scale transformations. However, a
much broader class of direction fields are conjugate to themselves under scale transformations.

Recall that a nonsingular direction field is conjugate to itself under a transformation h in case
the corresponding slope field v = (1, f(x, y)) satisfies

h∗v(x) = a(x)v(x) (5.4)

for some function a(x) with a(x) non-zero everywhere.
Hence, the direction field whose slope field is v = (1, f(x, y)) is self-conjugate under scaling

transformations in case for each t,

[S(t)]v([S(−t)]x)) = a(x)v(x)

for some function a(x) with a(x) non-zero everywhere.
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For v(x, y) = (1, f(x, y)),
v([S(−t)]x)) = (1, f(etx, ety)) .

Therefore, if
f(x, y) = F

(y
x

)
,

v([S(−t)]x)) = v(x) and then
gt∗v(x) = etv(x) .

Thus, with gt in place of h, (5.4) is satisfied with a(x) = et – independent of x, and certainly
non-zero.

The fact that direction fields whose slope fields have the form (1, F (y/x)) are self-conjugate
under scale transformations is the source of the change of coordinates we used in Example 4.

6 Constructing canonical coordinates for a symmetry

As we shall now show, whenever one can find a one parameter group of symmetries of a vector field
or a non-singular direction field on R2, one can construct a canonical set of coordinates so that
changing variables to the new coordinates reduces the problem of solving the differential equation
to integration. In this section, we explain how to construct these coordinates. In the next section
we explain why these coordinates are useful for solving differential equations.

The orbits of the one parameter transformation group gt are the points on the curves x(u) =
gu(x0) for each fixed x0. Any two orbits either coincide or are disjoint. Suppose that x(v),
a < v < b, is a curve such that x(v) passes through each orbit exactly once. (We allow, but do not
requires, a = −∞ or b =∞.) It is usually easy to find such a curve, and once this is done, the rest
of the construction is canonical; i.e., by the rules. Here is the rule:

Define a transformation h−1(u, v) from

V := R× (a, b)

to U by
h−1(u, v) = gu(x(v)) .

Since each (x, u) ∈ U lies on exactly one orbit of the group {gt}, and since x(v) intersects each
orbit exactly once, for each (x, y) ∈ U , there is a unique u ∈ R and v ∈ (a, b) such that

(x, y) = gu(x(v)) = h−1(u, v) .

Thus h−1 is an invertible transformation from V to U , and its inverse h is an invertible transfor-
mation from U to V .

To investigate the differentiability, introduce the vector field z(x) associated to {gt}:

z(x) = lim
t→0

1
t
(gt(x)− x) . (6.1)

We then have:
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6.1 THEOREM (Coordinates from symmetry groups). With h defined as above, through h−1, h
is a diffeomorphism provided that for each v,

det([z(x(v)),x′(v)]) 6= 0 . (6.2)

Proof: From what we have said above, it suffice to show that h−1 and H are both differentiable.
We start with h−1, which is directly defined.

∂

∂u
h−1(u, v) = lim

t→0

1
t
(gt(h−1(u, v))− h−1(u, v))

= lim
t→0

1
t
(gt(gu(x(v)))− gu(x(v)))

= lim
t→0

1
t
(gt+u(x(v)))− gu(x(v)))

= lim
t→0

1
t
(gu(gt(x(v)))− gu(x(v)))

= [Jgu(x(v)]z(x(v)) ,

where in the last line we have used the chain rule.
Much more directly, by the chain rule,

∂

∂v
h−1(u, v) = lim

t→0

1
t
(gu(x(v + t))− gu(x(v))) = [Jgu(x(v)]x′(v) .

Thus h−1 is differentiable, and its Jacobian is

[Jh−1(u, v)] =

[
∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

]
=
[
[Jgu(x(v)]z(x(v)), [Jgu(x(v)]x′(v)

]
,

where for any a and b in R2, [a,b] denotes the 2 × 2 matrix whose fist column is a, and whose
second column is b. Then since for any 2× 2 matrix A, [Aa, Ab] = A[a,b], we have

[Jh−1(u, v)] = [Jgu(x(v)][z(x(v)),x′(v)] .

Since gu is a diffeomorphism, [Jgu(x(v)] is invertible. Hence as long as [z(x(v)),x′(v)] is in-
vertible for each v, [Jh−1(u, v)] is the product of invertible matrices, and hence is invertible. It
then follows from the Inverse Function Theorem that h is also differentiable. Now note that the
condition that the condition det([z(x(v)),x′(v)]) 6= 0 implies that [z(x(v)),x′(v)] is invertible.

7 Example (From rotation symmetry to polar coordinates). Consider the planar rotation group
{gθ} defined by (4.1) and (4.2). The orbits of this group are the circles centered on the origin.
The positive x-axis intersects each of the orbits exactly once. Parameterize the positive x-axis by
x(r) = (r, 0), r > 0. Here, we use r in place of v. Then

h−1(r, θ) = {gθ}(x(r)) = [R(θ)](r, 0) = (r cos θ, r sin θ) .

Writing (x, y) = h−1(r, θ), we have

x = r cos θ and y = r sin θ .

Thus, our method of constructing coordinate systems out of symmetries leads from rotation sym-
metry to polar coordinates.



16

8 Example (From scale symmetry to homogeneous coordinates). Consider the scale transformation
group {gt} defined by (5.1), (5.2) and (5.3). The line x(v) = (1, v) intersects each orbit of {gu} in
the right half-plane exactly once. Hence we define

(x, y) = h−1(u, v) = gu(1, v) =

[
eu 0
0 eu

]
(1, v) = (eu, euv) .

Solving for u and v in terms of x and y, we find

u = ln(x) and v =
y

x
.

Thus, our method of constructing coordinate systems out of symmetries leads from scale symmetry
to homogeneous coordinates.

In the last two examples, we have seen that our method of constructing coordinates out of sym-
metries leads to some familiar coordinate systems. But what is so spacial about this method? The
answer is that the action of a symmetry group is very simple when expressed in the corresponding
coordinates.

Suppose that U and V are open sets in R2, and h is a diffeomorphism from U onto V . Suppose
also that {gt} is a one parameter family of diffeomorphisms of U onto itself. Define

g̃t = h ◦ gt ◦ h−1 . (6.3)

Since compositions of diffeomorphisms are diffeomorphisms, g̃t is a diffeomorphism from V onto V .
Moreover,

g̃s ◦ g̃t = (h ◦ gs ◦ h−1) ◦ (h ◦ gt ◦ h−1) = h ◦ gs+t ◦ h−1 = g̃s+t ,

and clearly g̃0 is the identity transformation. Hence {g̃t} is a one parameter group of diffeomor-
phisms of V .

6.2 DEFINITION (Conjugate groups of diffeomorphisms). Suppose that U and V are open sets
in R2, and h is a diffeomorphism from U onto V . Suppose also that {gt} is a one parameter family
of diffeomorphisms of U onto itself. Then with g̃t defined by (6.3), {g̃t} is the one parameter group
of diffeomorphisms of V conjugate to {gt} under h.

6.3 THEOREM (Transformation to translation). Suppose that {gt} is a one parameter family of
diffeomorphisms of an open set U ⊂ R2 onto itself. Suppose that x(v), a < v < b is a continuously
differentiable curve that intersects each orbit of {gu} exactly once and such that for each v, (6.2) is
true where z is defined by (6.1). Let h(x) be the diffeomorphism from U onto V defined implicitly
by h−1(u, v) = gu(x(v), noting that Theorem 6.1 ensures that this is a diffeomorphism. Then

g̃s(u, v) = h(gs(h−1(u, v))) = (u+ s, v) .

That is, the one parameter group of diffeomorphisms of V conjugate to {gt} under h acts on V by
translation.

Proof: We compute

h(gs(h−1(u, v))) = h(gs(gu(x(v))

= h((gs+u(x(v))

= (u+ s, v) .
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7 How symmetries lead to useful coordinate transformations

Let {gt} be a one parameter group of diffeomorphisms of an open set U ⊂ R2 onto itself. Suppose
that h is a diffeomorphism of U onto another open set V ⊂ R2 so that the conjugate one parameter
group of diffeomorphisms {g̃t}, where g̃t = h ◦ gt ◦ h−1, acts on V by translation in one coordinate:

g̃t(u, v) = (u+ t, v) .

We have already seen how to construct such a diffeomorphism h, starting from {gt}. Note that
the Jacobian of g̃t is simply the identity:

Jegt(u, v) =
[
∂gt(u, v)
∂u

,
∂gt(u, v)

∂v

]
=

[
1 0
0 1

]
.

Therefore, if w(u, v) is any vector field on V , its push-forward under g̃t is very easy to work out:

g̃t∗w(u, v) =

[
1 0
0 1

]
w(u− t, v) = w(u− t, v) .

We observe that a vector field w on V is invariant under the one parameter group of diffeomor-
phisms {g̃t} if and only if w does not depend on u; i.e., if and only if

w(u, v) = (a(v), b(v))

for some functions a and b.
Next, we observe that if v is any vector field on U that is invariant under the original one

parameter group of diffeomorphisms {gt}, then the push-forward of v under h is invariant under
the conjugate group {g̃t}.

To see this, note that since g̃t = h ◦ gt ◦ h−1, Theorem 2.4 gives us

g̃t∗ = h∗ ◦ gt∗ ◦ h−1
∗ .

But then
g̃t∗(h∗v) = (h∗ ◦ gt∗ ◦ h−1

∗ )(h∗v) = h∗(gt∗v) = h∗v .

We have proved:

7.1 THEOREM (From symmetry to good coordinates). Let v be vector field on U , and open
subset of R2. Let {gt} be a one parameter group of diffeomorphisms of U such that each gt is a
symmetry of v. Let h be a diffeomorphism of U onto V ⊂ R2 so that the conjugate one parameter
group of diffeomorphisms {g̃t} acts on V by translation in one coordinate:

g̃t(u, v) = (u+ t, v) .

Then, the conjugate vector field w := h∗v has the special form

w(u, v) = (a(v), b(v))

for some functions a and b.
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The same sort of thing works for direction fields. Consider a direction field on U whose slope
fields is v = (1, f(x, y)). Suppose that {gt} is a one parameter group of diffeomorphisms of U such
that for each t,

gt∗v(x) = ct(x)v(x) (7.1)

where ct(x) does not equal zero for any t or x ∈ U . That is. suppose that each gt us a symmetry
of the given direction field. Let h be a diffeomorphism of U onto V ⊂ R2 so that the conjugate one
parameter group of diffeomorphisms {g̃t} acts on V by translation in one coordinate: g̃t(u, v) =
(u+ t, v), as above. Define w = h∗w. Then, computing as above,

g̃t∗w(u, v) = h∗g
t
∗v(u, v) = h∗ctv(u, v) = ct(h−1(u, v))w(u, v) .

But we also have
g̃t∗w(u, v) = w(u+ t, v) .

Since the slope associated to the vector field ct(h−1(u, v))w(u, v) is the same as the slope associated
to the vector field w, since ct is never zero, it follows that w(u+ t, v) has the same slope as x(u, v)
for all t and all u and v.

Thus, the change of variables associated to h eliminates one variable, namely u, from the slope
field. The transformed equation can then be solved by separation of variables

9 Example (Quasi-homogenous coordinates). Let non-zero real numbers α and β be given, and
consider the one parameter group {gt} of transformation of the right half plane; i.e. U = {(x, y) :
x > 0} given by

gt(x, y) = (eαtx, eβty) . (7.2)

Again, this is linear, and so

[Jgt(x)] =

[
eαt 0
0 eβt

]
.

Hence, for any vector field v(x) on U ,

gt∗v(x) =

[
eαt 0
0 eβt

]
v(e−αtx, e−βty) . (7.3)

We now prove:

7.2 THEOREM (Quasi-homogeneous direction fields). The direction field with slope field v =
(1, f(x, y)) is symmetric under the quasi-homogenous scale transformation group {gt} given by (7.2)
if and only if

f(e−αtx, e−βty) = e(α−β)tf(x, y) , (7.4)

for all t.

Proof: Let v(x) = (1, f(x)). Then (7.3) simplifies to

gt∗v(x) = (etα, etβf(e−αtx, e−βty)

= etα(1 , e(β−α)tf(e−αtx, e−βty))
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Thus, (7.1) is satisfied for this v if and only if e(β−α)tf(e−αtx, e−βty) = f(x, y), in which case (7.1)
is true with ct(x) = eαt.

Hence, whenever (7.4) is true, the canonical coordinates associated to {gt} will render the
equation

d
dx
y = f(x, y) (7.5)

separable.
Here is a useful characterization of a class of functions that satisfy (7.4).

7.3 THEOREM (Quasi-homogeneous slopes). Let f(x, y) have the form

f(x, y) =
m∑
j=1

ajx
pjyqj ,

For some positive integer m, non-negative integers qj, and some integers pj. Define p0 = 1 and
q0 = 1. Then f(x, y) satisfies (7.4) if and only if for some number s,

αpj + βqj = s for all j = 0, 1, . . . ,m .

That is, f(x, y) satisfies (7.4) if and only if all of the points (p0, q0), (p1, q1), . . . , (pm, qm) lie on a
common line in the p, q plane.

Proof: By direct computation we find

e(β−α)tf(e−αtx, e−βty) =
m∑
j=1

e(β−α)t−αpjt−βqjtajx
pjyqj .

The right hand side can equal f(x, y) (which is independent of t) if and only if

e[(β−α)−αpj−βqj ]t = 1

for each j = 1, . . . ,m, and this is the case if and only if

αpj + βqj = β − α

for each j = 1, . . . ,m. Since (p0, q0) satisfies this equation, we see that this condition is equivalent
to the condition that all of the points (p0, q0), (p1, q1), . . . , (pm, qm) lie on a common line in the p, q
plane.

10 Example (A quasi-homogeneous slope field). Let For example, consider

f(x, y) = −x−3 − 2
x
y + xy2 . (7.6)

We have

(p0, qo) = (−1, 1) (p1, q1) = (−3, 0) (p2, q2) = (−1, 1) and (p3, q3) = (1, 2) .

These points all lie on a common line of slope 1/2. Since the slope is 1/2, the vector (−1, 2) in the
p, q plane is orthogonal to this line, and so (7.4) is satisfied with

α = −1 and β = 2 .

Notice that plotting the points not only tells us whether f(x, y) satisfies (??) for some α and β; it
also gives us the values of α and β.
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11 Example (Constructing quasi-homogeneous coordinates). For constructing the coordinates,
notice that each orbit of {gt} intersects the line x = 1 exactly once. This line is parameterized by
x(v) = (1, v), We define h−1(u, v) = gux(v). We find

(x, y) = h−1(u, v) =

[
euα 0
0 euβ

]
(1, v) = (euα, euβv) .

Thus,
x(u, v) = euα and y(u, v) = euβv .

Inverting we find

u(x, y) =
1
α

lnx and v(x, y) = x−β/αy .

The diffeomorphism h then is

h(x, y) =
(

1
α

lnx , x−β/αy
)
. (7.7)

12 Example (Solving an equation via quasi-homogeneous coordinates). Consider the function
f(x, y) given by (7.6). Then as we have seen, (7.4) is satisfied with α = −1 and β = 2. Then from
(7.7), we find that quasi-homogeneous coordinate transformation to use for this example is

h(x, y) = (− lnx, x2y) .

Thus,

[Jh] =

[
−1/x 0
2xy x2

]
=

[
−eu 0
2euv e−2u

]
.

Hence

h∗(1, f)(u, v) =

[
−eu 0
2euv e−2u

]
(1,−e3u − 2e3uv + e3uv2) = eu(−1,−1 + v2) .

Hence the transformed slope field is simply

(1, v2 − 1) .

Thus, this change of variables reduces the solution of the Riccatit equation
d

dx
y = −x−3 − 2

x
y + xy2

to the solution of

d
du
v = v2 − 1 .

This can be solved separating variables. computing as usual, one finds

v(u) =
(v0 + 1) + (v0 − 1)e2u

(v0 + 1)− (v0 − 1)e2u

where v0 = v(0).
Translating this back into x and y terms, one finds

y(x) =
(y1 + 1)x2 + (y1 − 1)

(y1 + 1)x4 − (y1 − 1)x2

where y1 = y(1).


