7.2. (a)
$$\int_{y=-\sqrt{3}}^{\sqrt{3}} \int_{x=1-\sqrt{4-y^2}}^{-1+\sqrt{4-y^2}} x^2 y^2 \, dx \, dy$$

(b) The region D is symmetric with respect to the y-axis and the integrand is unchanged when x is replaced by -x. So let D^+ be the half of D in the first and 4th quadrants. Then

$$\int_{D} x^{2} y^{2} \, dA = 2 \int_{D^{+}} x^{2} y^{2} \, dA = 2 \int_{x=0}^{1} \int_{y=-\sqrt{4-(x+1)^{2}}}^{y=\sqrt{4-(x+1)^{2}}} x^{2} y^{2} \, dy \, dx$$

(c)
$$2\int_{x=0}^{1} x^2 \frac{y^3}{3} \Big|_{y=-\sqrt{4-(x+1)^2}}^{y=\sqrt{4-(x+1)^2}} dx = 2\int_{x=0}^{1} 2x^2\sqrt{4-(x+1)^2}^3 dx$$

Let $x + 1 = 2\sin\theta$, $dx = 2\cos\theta \, d\theta$, $\sqrt{4 - (x+1)^2} = 2\cos\theta$. The integral equals

$$4\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (2\sin\theta - 1)^2 \cdot 8\cos^3\theta \cdot 2\cos\theta \,d\theta = 64\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (4\sin^2\theta - 4\sin\theta + 1)\cos^4\theta \,d\theta \text{ etc.}$$

7.4. Draw the region D. It is a triangle with vertices (0,0), (1.5,1.5), and (3,9).

(a) The line y = 1.5 separates D into two triangular regions E_1 and E_2 , each with a horizontal side. The lower triangle E_1 is bounded on the left by y = 3x and on the right by y = x; the triangle E_2 is bounded on the left by y = 3x and on the right by y = 5x - 6. Thus,

$$\int_D xy \, dA = \int_{E_1} xy \, dA + \int_{E_2} xy \, dA = \int_{y=0}^{1.5} \int_{x=y/3}^y xy \, dx \, dy + \int_{y=1.5}^9 \int_{x=y/3}^{(y+6)/5} xy \, dx \, dy$$

(b) The line x = 1.5 separates D into two triangular regions D_1 and D_2 , each with a vertical side. The left triangle D_1 is bounded below by y = x and above by y = 3x; the triangle D_2 is bounded below by y = 5x - 6 and above by y = 3x. Thus,

$$\int_D xy \, dA = \int_{D_1} xy \, dA + \int_{D_2} xy \, dA = \int_{x=0}^{1.5} \int_{y=x}^{3x} xy \, dy \, dx + \int_{x=1.5}^3 \int_{y=5x-6}^{3x} xy \, dy \, dx$$

(c) Using (b),

$$\int_{D} xy \, dA = \int_{x=0}^{1.5} \left(x \frac{(3x)^2}{2} - x \frac{x^2}{2} \right) \, dx + \int_{x=1.5}^{3} \left(x \frac{(3x)^2}{2} - x \frac{(5x-6)^2}{2} \right) \, dx$$
$$= \int_{0}^{1.5} 4x^3 \, dx + \int_{1.5}^{3} -8x^3 + 30x^2 - 18x \, dx$$
$$= x^4 \Big|_{0}^{3/2} + \left(-2x^4 + 10x^3 - 9x^2 \right) \Big|_{3/2}^{3} = \frac{81}{16} - 162 + 270 - 81 + \frac{162}{16} - \frac{270}{8} + \frac{81}{4} = \frac{459}{16}$$

7.8. Let the change of variable $\mathbf{u} = \mathbf{u}(\mathbf{x})$ be defined by u = xy and v = y/x. Let \overline{D} be the region in the u, v-plane defined by $1 \le u \le 2$ and $1 \le v \le 2$. Then \overline{D} corresponds to D under the correspondence $\mathbf{u}(\mathbf{x})$.

Solving u = xy and v = y/x for x and y gives the inverse correspondence $\mathbf{x}(\mathbf{u})$, namely $uv = y^2$, $y = \sqrt{uv}$, $x = u/y = \sqrt{u/v}$.

The Jacobian of the inverse correspondence and its determinant are

$$D_{\mathbf{x}}(\mathbf{u}) = \frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{2} \begin{bmatrix} \frac{1}{\sqrt{uv}} & -\frac{\sqrt{u}}{\sqrt{v^3}} \\ \frac{\sqrt{v}}{\sqrt{u}} & \frac{\sqrt{u}}{\sqrt{v}} \end{bmatrix}, \quad \det D_{\mathbf{x}}(\mathbf{u}) = \frac{1}{4}\frac{2}{v} = \frac{1}{2v}$$

Finally

$$\int_{D} xy \, d^2 \mathbf{x} = \int_{\bar{D}} u \cdot |\det D_{\mathbf{x}}(\mathbf{u})| \, d^2 \mathbf{u} = \int_{u=1}^{2} \int_{v=1}^{2} \frac{u}{2v} \, dv \, du$$
$$= \int_{u=1}^{2} \frac{u \ln 2}{2} \, du = \frac{3 \ln 2}{4}.$$

7.10. The curve is $r^2 = (r^2 - r \cos \theta)^2 = r^2(r - \cos \theta)^2$. Apart from the point at the origin, this is equivalent to $(r - \cos \theta)^2 = 1$ or $r - \cos \theta = \pm 1$. Since r is always positive except at the origin, and since $\cos \theta \le 1$ for all θ , this is equivalent to $r - \cos \theta = 1$, or $r = 1 + \cos \theta$.

The curve looks like a heart resting on its left side. The enclosed area D is described in polar coordinates by $0 \le \theta \le 2\pi$, $0 \le r \le 1 + \cos \theta$. The area of D is

$$\int_{D} d^{2}\mathbf{x} = \int_{\theta=0}^{2\pi} \int_{r=0}^{1+\cos\theta} r \, dr \, d\theta = \int_{\theta=0}^{2\pi} \frac{1}{2} (1+\cos\theta)^{2} \, d\theta = \frac{3}{2}\pi$$

7.12. As θ goes from 0 to 2π , this equation traces out a figure eight, going from NorthEast (the point $(\sqrt{2}, \sqrt{2})$ at $\theta = \pi/4$) to SouthWest (the point $(-\sqrt{2}, -\sqrt{2})$ at $\theta = 5\pi/4$). The area of the enclosed region D is

$$\int_D d^2 \mathbf{x} = \int_{\theta=0}^{2\pi} \int_{r=0}^{1+\sin 2\theta} r \, dr \, d\theta = \int_{\theta=0}^{2\pi} \frac{1}{2} (1+\sin 2\theta)^2 \, d\theta = \frac{3}{2}\pi.$$

7.14. Let $\mathbf{u}(\mathbf{x})$ be defined by u = xy and $v = x^2y$. Let \overline{D} be the region in the *u*, *v*-plane defined by $1 \le u \le 2$ and $3 \le v \le 4$. Then \overline{D} corresponds to D under the correspondence $\mathbf{u}(\mathbf{x})$.

Solving u = xy and $v = x^2y$ for x and y gives the inverse correspondence $\mathbf{x}(\mathbf{u})$, namely x = v/u, $y = u^2/v$.

The Jacobian of the inverse correspondence and its determinant are

$$D_{\mathbf{x}}(\mathbf{u}) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{bmatrix} -v/u^2 & 1/u\\ 2u/v & -u^2/v^2 \end{bmatrix}, \quad \det D_{\mathbf{x}}(\mathbf{u}) = -\frac{1}{v}.$$

Finally

$$\int_{D} xy \, d^2 \mathbf{x} = \int_{\bar{D}} u \cdot |\det D_{\mathbf{x}}(\mathbf{u})| \, d^2 \mathbf{u} = \int_{u=1}^{2} \int_{v=3}^{4} \frac{u}{v} \, dv \, du = \frac{3}{2} \ln\left(\frac{4}{3}\right).$$

7.16. The region D has two symmetric pieces, D_1 in the first quadrant and D_2 in the third quadrant. The integrand is unchanged by the double sign change $x \to -x$ and $y \to -y$, so

$$\int_{D} (x^{2} + y^{2}) d^{2}\mathbf{x} = 2 \int_{D_{1}} x^{2} + y^{2} d^{2}\mathbf{x}$$

Define $\mathbf{u}(\mathbf{x})$ by $u = x^2 - y^2$ and v = xy and let \overline{D}_1 be the region $0 \le u \le 4, 1 \le v \le 2$ in the u, v-plane.

The inverse transformation is messy but $D_{\mathbf{u}}(\mathbf{x})$ is easy to compute; it's

$$D_{\mathbf{u}}(\mathbf{x}) = \begin{bmatrix} 2x & -2y \\ y & x \end{bmatrix}, \quad \det D_{\mathbf{u}}(\mathbf{x}) = 2(x^2 + y^2)$$

Therefore by the change of variable formula in reverse (tricky!)

$$\int_{D} (x^2 + y^2) d^2 \mathbf{x} = 2 \int_{D_1} (x^2 + y^2) d^2 \mathbf{x} = \int_{D_1} |\det D_{\mathbf{u}}(\mathbf{x})| d^2 \mathbf{x} = \int_{\bar{D}_1} 1 d^2 \mathbf{u} = \text{ area of } \bar{D}_1 = 4 \cdot 1 = 4.$$