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(b) The region D is symmetric with respect to the y-axis and the integrand is unchanged when x is
replaced by −x. So let D+ be the half of D in the first and 4th quadrants. Then∫
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Let x+ 1 = 2 sin θ, dx = 2 cos θ dθ,
√

4− (x+ 1)2 = 2 cos θ. The integral equals
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7.4. Draw the region D. It is a triangle with vertices (0, 0), (1.5, 1.5), and (3, 9).

(a) The line y = 1.5 separates D into two triangular regions E1 and E2, each with a horizontal side.
The lower triangle E1 is bounded on the left by y = 3x and on the right by y = x; the triangle E2 is
bounded on the left by y = 3x and on the right by y = 5x− 6. Thus,∫
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(b) The line x = 1.5 separates D into two triangular regions D1 and D2, each with a vertical side.
The left triangle D1 is bounded below by y = x and above by y = 3x; the triangle D2 is bounded
below by y = 5x− 6 and above by y = 3x. Thus,∫
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7.8. Let the change of variable u = u(x) be defined by u = xy and v = y/x. Let D̄ be the region in the
u, v-plane defined by 1 ≤ u ≤ 2 and 1 ≤ v ≤ 2. Then D̄ corresponds to D under the correspondence
u(x).

Solving u = xy and v = y/x for x and y gives the inverse correspondence x(u), namely uv = y2,
y =
√
uv, x = u/y =

√
u/v.

The Jacobian of the inverse correspondence and its determinant are
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∫
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7.10. The curve is r2 = (r2−r cos θ)2 = r2(r−cos θ)2. Apart from the point at the origin, this is equivalent
to (r−cos θ)2 = 1 or r−cos θ = ±1. Since r is always positive except at the origin, and since cos θ ≤ 1
for all θ, this is equivalent to r − cos θ = 1, or r = 1 + cos θ.

The curve looks like a heart resting on its left side. The enclosed area D is described in polar
coordinates by 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 + cos θ. The area of D is∫
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7.12. As θ goes from 0 to 2π, this equation traces out a figure eight, going from NorthEast (the point
(
√

2,
√

2) at θ = π/4) to SouthWest (the point (−
√

2,−
√

2) at θ = 5π/4). The area of the enclosed
region D is ∫
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7.14. Let u(x) be defined by u = xy and v = x2y. Let D̄ be the region in the u, v-plane defined by
1 ≤ u ≤ 2 and 3 ≤ v ≤ 4. Then D̄ corresponds to D under the correspondence u(x).

Solving u = xy and v = x2y for x and y gives the inverse correspondence x(u), namely x = v/u,
y = u2/v.

The Jacobian of the inverse correspondence and its determinant are

Dx(u) =
∂(x, y)
∂(u, v)

=
[
−v/u2 1/u
2u/v −u2/v2

]
, detDx(u) = −1

v
.
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Finally ∫
D

xy d2x =
∫
D̄

u · | detDx(u)| d2u =
∫ 2

u=1

∫ 4
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u

v
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(
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.

7.16. The region D has two symmetric pieces, D1 in the first quadrant and D2 in the third quadrant. The
integrand is unchanged by the double sign change x→ −x and y → −y, so∫

D

(x2 + y2) d2x = 2
∫
D1

x2 + y2d2x

Define u(x) by u = x2 − y2 and v = xy and let D̄1 be the region 0 ≤ u ≤ 4, 1 ≤ v ≤ 2 in the
u, v-plane.

The inverse transformation is messy but Du(x) is easy to compute; it’s

Du(x) =
[

2x −2y
y x

]
, detDu(x) = 2(x2 + y2)

Therefore by the change of variable formula in reverse (tricky!)∫
D

(x2 + y2) d2x = 2
∫
D1

(x2 + y2) d2x =
∫
D1

|detDu(x)| d2x =
∫
D̄1

1 d2u = area of D̄1 = 4 · 1 = 4.
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