6.1.

6.3.

6.5.

6.6.

NOTE: In these solutions (for example in #6) we sometimes use the subscript notation for partial
derivatives. In that notation,

of of _ 0% 0% f 0% f

%) fy:%, fxw_alQ) fxy:m7 fyxza?aya

etc.

fx:

_ 2y 20 +2y—1 _ 2 3
[Hessf(z,y)] = [2x—|—2y 1 9 ] so [Hessf(xo)] = [Hess¢(1,1)] = [3 2}
For v = (1,2),
d? 2 3
—= f(x0 +tv) = v[Hessf(xg)| o v =(12) [3 2] e (1,2) =22
dt =0
2yz 20z + 2y 2xy —1 2 4 1
[Hessf(x,y,2)] = | 2zz + 2y 2z x? so [Hessf(xo)] = [Hess¢(1,1,1)] = |4 2 1
2xy — 1 x? 0 1 10
For v = (1,0,1),
d2 2 4 1
oo+ tv)|  =v[Hessp(xo)lev=(1,0,1) |4 2 1]e(1,0,1)=4.
t=0 1 10
1—t 2 ) . . .
det 9 4_¢| = t* — 5t = t(t — 5). The eigenvalues are 0 and 5. Since A — 0/ = A, an eigenvector

for the eigenvalue 0 is (1,2)* = (—=2,1), and an eigenvector for the eigenvalue 5 is (—2,1)* = (=1, —-2).
An orthonormal basis of R? consisting of eigenvectors is

The formulas for f,, fy, fzy away from (0, 0) are routine consequences of the quotient rule. That f,, = fyz
away from (0,0) is a consequence of Clairaut’s Theorem.

(a) £.(0,0) = lim f(2,0) = f0,0) _p 0=0_ o0

z—0 xT z—0 I z—0

Similarly f,(0,0) = lim,_,o(f(0,y) — f(0,0))/y = 0.

Continuity of f, and f, away from (0,0) is obvious. To prove continuity of f, at (0,0) we must prove
that
oyt 4ty — oY)
lim

- 0.
(2,5)—(0,0) (z2 +y?)?
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6.7.

6.11.

This follows from the Squeeze Principle, because

2% + 42292 + 2°
(22 + y2)2

4 2.2 4 4 2.2 4
o< U= +24:vy22y) _ y +24wy22y)\§‘y
(2% + y?) (=% +y?)

,!x‘*! + 4]z?y?| + |y

=2
(22 +y2)? i

<yl

and lim(, ) (0,0) 2|y| = 0. Continuity of f, at 0 is similarly proved.

_ 2% + 9zty? — 9294
(b)  lim SR
(2,)—+(0,0) (22 4 y2)3
2%/25 = 1 while along the y-axis (z = 0) the function equals —1.

_ .6
Y does not exist because along the z-axis (y = 0) the function equals

(c) Because of (b), fszy and fy, can’t possibly be continuous at (0,0). So Clairaut’s Theorem does not
apply.

Note that f,(z,0) = 25/2* =z for x # 0, and f,(0,y) = —y°/y* = —y for y # 0. Then

fy(a:,O)—fy(0,0) -

fym(oao):aljl_r)% T :;lli%gzla
Fuy(0,0) = timg £OW) = S00) vy
y—0 Y y—=0 y

so the conclusion of Clairaut’s Theorem doesn’t hold. This is fine since the theorem doesn’t apply. This
example shows that the continuity assumption in the theorem cannot be removed.

Similar to 6.5; eigenvalues are 2 and 6.

2 2
2 2

an eigenvector for the eigenvalue 6. An orthonormal basis of R? consisting of eigenvectors is

A—-2] = [ ] so (2,2)t = (—2,2) is an eigenvector for the eigenvalue 2, and (—2,2)* = (-2, —2) is

Of 0z =3y> +2+ 2% =0, 0f /0y = 9zy® + 9y = Yy(ay + 1) = 0.

. 32 992
The Hessian is H(z,y) = |:9y2 182y + 9]
L : . . 3-22/3 0 :
If y = 0 we get the critical point y = 0, x = —2'/3; the Hessian there is H = 0 L Since

a=3-2%3>0and det H > 0, there is a local minimum at (—2'/3,0).

Ify#0thenay+1=0,y=—1/z, —=3/23+2+23 =0, 25+ 223 — 3 = 0, a quadratic equation for z3. So
23=1,-3,and z =1 or x = —3Y/3. As y = —1/x, this gives critical points (1, —1) and (—3'/3,371/3),
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6.13.

6.15.

H(1,-1) = [3 _99} Since det H(1,—1) = —108 < 0, f has a saddle point at (1,—1). The signs of

the entries of H at (—3'/3,371/3) are {i 4__} , so the determinant is negative and f has another saddle

point at (—3%/3,371/3),

(b) xo = (—2'/3,0) is a good choice since H is already diagonal. An orthonormal basis of eigenvectors
consists of e; (eigenvalue 3 - 22/3) and e, (eigenvalue 9). The level curves near xo are approximately
ellipses with major axes parallel to e; and minor axes parallel to es.

(a) Of/0z = 2z(1 — 2y) = 0, Of /Oy = 2(y — 2*) = 0. Also, H(x,y) = [2(1_2;‘”) _;133]
2 0

If x = 0 then y = 0; (0,0) is a critical point. H(0,0) = {0 9

] so f has a local minimum at (0, 0).

_ _ _ _[ o F2v2
If z #0then 1 -2y =0, y = 1/2, x = +1/V2. H(£1/v2,1/2) = [;2\/5 )

determinant so f has saddle points at (£1/v/2,1/2).

] has negative

(b) Since H(0,0) = 2I we can use e; and ey as eigenvectors. Since the eigenvalues are equal, the level
curves near (0,0) are approximated by circles u? + v? = K, where u =z — 0 = 2z and v = y.

At (1/v/2,1/2), H(1/v/2,1/2) = [ﬂoﬂ i22\/§

eigenvalues are A =4 and A = —2. Further,

] has characteristic polynomial A\? — 2\ — 8 = 0, so the

rare [ Y]

so an eigenvector for the eigenvalue 4 is (1,1/2). Then an eigenvector for the eigenvalue —2 is (1,v/2)* =
(_\/i 1)

The level curves of f near (1/v/2,1/2) are approximately the hyperbolas 4u? — 2v? = K, where the u and
v-axes intersect at (1/v/2,1/2), and the u- and v-axes are parallel to (1,+/2) and (—v/2,1), respectively.

The analysis near (—1/v/2,1/2) is similar; the eigenvalues of H(—1/v/2,1/2) are also 4 and —2, but the
eigenvectors are (1, —+/2) and (v/2,1).

flx,y) = 2* + y* — 22%y. We seek a critical point (x¢,yo) with zo > 0 and yo > 0.

Of |0z = 423 — dvy = 0, Of /0y = 4y> — 22% = 0. The first equation gives y = z? (since we are assuming

that 2 > 0), so the second equation gives 4y> — 2y = 0, y = 1//2 (since we are assuming that y > 0).
Then z = \/y = 2-1/4,



42 —4.271/4

(1222 -4y —4x
—4.9-1/4 6

(a) H(‘T7y) - —Ax 12y2 SO H(271/4’ 271/2) =

SO
det H(27Y4, 2712y = 16v/2 > 0.
As the upper left entry of H is positive, f has a local minimum at (274, 271/2),

(b) The largest (resp. smallest) directional second derivative has value equal to the largest (resp. smallest)
eigenvalue of H(27/4,271/2), These occur in the directions of the respective unit eigenvectors.

The eigenvalues are roots of A2 — (6 + 4\/5))\ +16v/2 = 0, namely,

A =3+ 2V24+1/17 — 4V2.

_ _ /17 — —4.9-1/4
H - )1 = 3+2v2 I7T-4v2 —4-2 } so an eigenvector corresponding to Ay is (—4 -
* *

271/4 3 4+ 2y/2 — /17 — 4/2). An eigenvector for A_ is similarly found.



