
NOTE: In these solutions (for example in #6) we sometimes use the subscript notation for partial

derivatives. In that notation,

fx =
∂f

∂x
, fy =

∂f

∂y
, fxx =

∂2f

∂x2
, fxy =

∂2f

∂y∂x
, fyx =

∂2f

∂x∂y
, etc.

6.1. [Hessf (x, y)] =

[
2y 2x+ 2y − 1

2x+ 2y − 1 2x

]
so [Hessf (x0)] = [Hessf (1, 1)] =

[
2 3
3 2

]
.

For v = (1, 2),

d2

dt2
f(x0 + tv)

∣∣∣∣
t=0

= v[Hessf (x0)] • v = (1 2)

[
2 3
3 2

]
• (1, 2) = 22.

6.3. [Hessf (x, y, z)] =

 2yz 2xz + 2y 2xy − 1
2xz + 2y 2x x2

2xy − 1 x2 0

 so [Hessf (x0)] = [Hessf (1, 1, 1)] =

 2 4 1
4 2 1
1 1 0

.

For v = (1, 0, 1),

d2

dt2
f(x0 + tv)

∣∣∣∣
t=0

= v[Hessf (x0)] • v = (1, 0, 1)

 2 4 1
4 2 1
1 1 0

 • (1, 0, 1) = 4.

6.5. det

[
1− t 2

2 4− t

]
= t2 − 5t = t(t − 5). The eigenvalues are 0 and 5. Since A − 0I = A, an eigenvector

for the eigenvalue 0 is (1, 2)⊥ = (−2, 1), and an eigenvector for the eigenvalue 5 is (−2, 1)⊥ = (−1,−2).

An orthonormal basis of R2 consisting of eigenvectors is{
1√
5

(−2, 1),
1√
5

(1, 2)

}

6.6. The formulas for fx, fy, fxy away from (0, 0) are routine consequences of the quotient rule. That fxy = fyx
away from (0, 0) is a consequence of Clairaut’s Theorem.

(a) fx(0, 0) = lim
x→0

f(x, 0)− f(0, 0)

x
= lim

x→0

0− 0

x
= lim

x→0
0 = 0.

Similarly fy(0, 0) = limy→0(f(0, y)− f(0, 0))/y = 0.

Continuity of fx and fy away from (0, 0) is obvious. To prove continuity of fx at (0, 0) we must prove

that

lim
(x,y)→(0,0)

y(x4 + 4x2y2 − y4)

(x2 + y2)2
= 0.
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This follows from the Squeeze Principle, because

0 ≤
∣∣∣∣y(x4 + 4x2y2 − y4)

(x2 + y2)2

∣∣∣∣ =
|y(x4 + 4x2y2 − y4)|

(x2 + y2)2
≤ |y| |x

4|+ 4|x2y2|+ |y4|
(x2 + y2)2

≤ |y|2x
4 + 4x2y2 + 2y4

(x2 + y2)2
= 2|y|

and lim(x,y)→(0,0) 2|y| = 0. Continuity of fy at 0 is similarly proved.

(b) lim
(x,y)→(0,0)

x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
does not exist because along the x-axis (y = 0) the function equals

x6/x6 = 1 while along the y-axis (x = 0) the function equals −1.

(c) Because of (b), fxy and fyx can’t possibly be continuous at (0, 0). So Clairaut’s Theorem does not

apply.

Note that fy(x, 0) = x5/x4 = x for x 6= 0, and fx(0, y) = −y5/y4 = −y for y 6= 0. Then

fyx(0, 0) = lim
x→0

fy(x, 0)− fy(0, 0)

x
= lim

x→0

x

x
= 1,

fxy(0, 0) = lim
y→0

fx(0, y)− fx(0, 0)

y
= lim

y→0

−y
y

= −1,

so the conclusion of Clairaut’s Theorem doesn’t hold. This is fine since the theorem doesn’t apply. This

example shows that the continuity assumption in the theorem cannot be removed.

6.7. Similar to 6.5; eigenvalues are 2 and 6.

A − 2I =

[
2 2
2 2

]
so (2, 2)⊥ = (−2, 2) is an eigenvector for the eigenvalue 2, and (−2, 2)⊥ = (−2,−2) is

an eigenvector for the eigenvalue 6. An orthonormal basis of R2 consisting of eigenvectors is

{
1√
2

(−1, 1),
1√
2

(1, 1)

}

6.11. ∂f/∂x = 3y3 + 2 + x3 = 0, ∂f/∂y = 9xy2 + 9y = 9y(xy + 1) = 0.

The Hessian is H(x, y) =

[
3x2 9y2

9y2 18xy + 9

]

If y = 0 we get the critical point y = 0, x = −21/3; the Hessian there is H =

[
3 · 22/3 0

0 9

]
. Since

a = 3 · 22/3 > 0 and detH > 0, there is a local minimum at (−21/3, 0).

If y 6= 0 then xy+ 1 = 0, y = −1/x, −3/x3 + 2 +x3 = 0, x6 + 2x3−3 = 0, a quadratic equation for x3. So

x3 = 1,−3, and x = 1 or x = −31/3. As y = −1/x, this gives critical points (1,−1) and (−31/3, 3−1/3).
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H(1,−1) =

[
3 9
9 −9

]
. Since detH(1,−1) = −108 < 0, f has a saddle point at (1,−1). The signs of

the entries of H at (−31/3, 3−1/3) are

[
+ +
+ −

]
, so the determinant is negative and f has another saddle

point at (−31/3, 3−1/3).

(b) x0 = (−21/3, 0) is a good choice since H is already diagonal. An orthonormal basis of eigenvectors

consists of e1 (eigenvalue 3 · 22/3) and e2 (eigenvalue 9). The level curves near x0 are approximately

ellipses with major axes parallel to e1 and minor axes parallel to e2.

6.13. (a) ∂f/∂x = 2x(1− 2y) = 0, ∂f/∂y = 2(y − x2) = 0. Also, H(x, y) =

[
2(1− 2y) −4x
−4x 2

]

If x = 0 then y = 0; (0, 0) is a critical point. H(0, 0) =

[
2 0
0 2

]
so f has a local minimum at (0, 0).

If x 6= 0 then 1 − 2y = 0, y = 1/2, x = ±1/
√

2. H(±1/
√

2, 1/2) =

[
0 ∓2

√
2

∓2
√

2 2

]
has negative

determinant so f has saddle points at (±1/
√

2, 1/2).

(b) Since H(0, 0) = 2I we can use e1 and e2 as eigenvectors. Since the eigenvalues are equal, the level

curves near (0, 0) are approximated by circles u2 + v2 = K, where u = x− 0 = x and v = y.

At (1/
√

2, 1/2), H(1/
√

2, 1/2) =

[
0 ±2

√
2

±2
√

2 2

]
has characteristic polynomial λ2 − 2λ− 8 = 0, so the

eigenvalues are λ = 4 and λ = −2. Further,

H − 4I =

[
−4 ±2

√
2

±2
√

2 −2

]

so an eigenvector for the eigenvalue 4 is (1,
√

2). Then an eigenvector for the eigenvalue −2 is (1,
√

2)⊥ =

(−
√

2, 1).

The level curves of f near (1/
√

2, 1/2) are approximately the hyperbolas 4u2− 2v2 = K, where the u and

v-axes intersect at (1/
√

2, 1/2), and the u- and v-axes are parallel to (1,
√

2) and (−
√

2, 1), respectively.

The analysis near (−1/
√

2, 1/2) is similar; the eigenvalues of H(−1/
√

2, 1/2) are also 4 and −2, but the

eigenvectors are (1,−
√

2) and (
√

2, 1).

6.15. f(x, y) = x4 + y4 − 2x2y. We seek a critical point (x0, y0) with x0 > 0 and y0 > 0.

∂f/∂x = 4x3 − 4xy = 0, ∂f/∂y = 4y3 − 2x2 = 0. The first equation gives y = x2 (since we are assuming

that x > 0), so the second equation gives 4y3 − 2y = 0, y = 1/
√

2 (since we are assuming that y > 0).

Then x =
√
y = 2−1/4.
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(a) H(x, y) =

[
12x2 − 4y −4x
−4x 12y2

]
so H(2−1/4, 2−1/2) =

[
4
√

2 −4 · 2−1/4
−4 · 2−1/4 6

]
so

detH(2−1/4, 2−1/2) = 16
√

2 > 0.

As the upper left entry of H is positive, f has a local minimum at (2−1/4, 2−1/2).

(b) The largest (resp. smallest) directional second derivative has value equal to the largest (resp. smallest)

eigenvalue of H(2−1/4, 2−1/2). These occur in the directions of the respective unit eigenvectors.

The eigenvalues are roots of λ2 − (6 + 4
√

2)λ+ 16
√

2 = 0, namely,

λ± = 3 + 2
√

2±
√

17− 4
√

2.

H − λ+I =

[
−3 + 2

√
2−

√
17− 4

√
2 −4 · 2−1/4

∗ ∗

]
so an eigenvector corresponding to λ+ is (−4 ·

2−1/4,−3 + 2
√

2−
√

17− 4
√

2). An eigenvector for λ− is similarly found.
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