
5.1. (a) ∇f = (3x2y − 3y2, x3 + 2− 6xy).

The equations ∇f = 0 may be written 3y(x2 − y) = 0, x3 − 6xy + 2 = 0. The first equation gives
y = 0 or y = x2.

If y = 0 then x = −21/3; so (0,−21/3) is a critical point.

If y = x2 then x3 = 2/5; so ((2/5)1/3, (2/5)2/3) is a critical point.

In particular there are exactly two critical points.

(b) No. The contour plot shows three critical points, one in the first quadrant, one near the negative
x-axis, and one near the negative y-axis.

5.3. (a) ∇f = (3x2 + 3y, 3y2 + 3x).

Critical points occur where y = −x2 and x = −y2. These equations lead to x = −x4, so x = 0 or
−1, and then y = −x2 determines y. The critical points are (0, 0) and (−1,−1).

(b) The tangent line is given by ∇f(1, 1) • (x − (1, 1)) = 0, that is, (6, 6) • (x − 1, y − 1) = 0, or
x+ y = 2.

(c) Yes; at least it seems to show critical points at the right places and has the right tangent line
at (1, 1) (slope −1).

5.5. ∇f = (y2 − y, 2xy − x).

(a) y2 = y gives y = 0 or 1; for either of these, 2xy − x = 0 gives x = 0. So there are two critical
points, at (0, 0) and (0, 1).

(b) ∇f(3/2, 1/3) • (x − (3/2, 1/3)) = 0, that is, (3/4,−1/2) • (x − 3/2, y − 1/3) = 0, that is,
3x− 2y = 23/6.

(c) No, the contour plot shows a critical point that’s not at (0, 0) or (0, 1).

5.7. The domain D is a closed elliptical disk. The critical points of f occur at ∇f = (y, x) = 0, i.e.,
(0, 0) is the only critical point. On the boundary, ∇g = (2x, 8y) is never 0. So the candidate points
on the boundary are those where

det
[
∇f
∇g

]
= 0, i.e., det

[
y x
2x 8y

]
= 8y2 − 2x2 = 0.

Solving this together with the boundary equation x2+4y2 = 6 gives 16y2 = 12, y = ±
√

3/2, x2 = 3,
x = ±

√
3. We have 5 candidates:

(0, 0), ±(
√

3/2,
√

3), ±(
√

3/2,−
√

3).
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These give f(x, y) = 0, 3/2, and −3/2, respectively.

Therefore the maximum value is 3/2, achieved at the maximizers ±(
√

3/2,
√

3), and the minimum
value is −3/2, achieved at the minimizers ±(

√
3/2,−

√
3).

5.9. Again f(x, y) = xy has a unique critical point at (0, 0). The boundary is given by g(x, y) =
x4 + 2x2y2 + y4 − x2 + y2 = 0.

The gradient of g is
∇g = (4x3 + 4xy2 − 2x, 4x2y + 4y3 + 2y).

Setting ∇g = 0 gives (4x2 + 4y2− 2)x = 0 = (4x2 + 4y2 + 2)y = 0, so y = 0, as 4x2 + 4y2 + 2 never
equals 0. Then x = 0 or 4x2 − 2 = 0. But on the boundary g = 0, x4 = x2, so x = 0 or x2 = 1.
The upshot is that on the boundary there is a unique point where ∇g = 0, and that point is (0, 0),
which is already on our list of possibilities.

The remaining possibilities therefore must come from the boundary points where

det
[
∇f
∇g

]
= 0, i.e., det

[
y x

4x3 + 4xy2 − 2x 4x2y + 4y3 + 2y

]
= −4x4 + 4y4 + 2(x2 + y2) = 0.

Completing the square for the y-terms and x-terms separately, we add and subtract 1/4 and get

(2y2 + 0.5)2 − (2x2 − 0.5)2 = 0.

Therefore 2y2 + 0.5 = ±(2x2 − 0.5). The minus sign gives 2y2 = −2x2, so (x, y) = (0, 0), a point
we already have. So consider the + sign:

2x2 − 2y2 = 1, x2 − y2 = 1/2.

Therefore (x2 +y2)2 = 1/2, x2 +y2 =
√

2/2. Combining this with x2−y2 = 1/2, 2x2 = (1+
√

2)/2,

x = ±1
2

√√
2 + 1, y = ±1

2

√√
2− 1.

These give four points, one in each quadrant. The maximum value of xy is

1
2

√√
2 + 1 · 1

2

√√
2− 1 =

1
4

at the points in the first and third quadrant, and the minimum value is −1/4, at the other two
points.

5.11. ∇f = (2x− y, 2y − x) equals 0 only at (0, 0).

Here g(x, y) = x2 +y2−1, and ∇g = (2x, 2y) is never 0 on the boundary of D. So other than (0, 0)
our candidate points are the solutions of

det
[
∇f
∇g

]
= 0, i.e., det

[
2x− y 2y − x
y x

]
= 2(x2 − y2) = 0, i.e., y = ±x.
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On the boundary of D these are the points (±
√

2/2,±
√

2/2), which together with (0, 0) are our
candidates. We compute f(0, 0) = 0, f(±(

√
2/2,
√

2/2)) = 1/2, and f(±(
√

2/2,−
√

2/2)) = 3/2.
So the minimum value of f on D is 0, at the minimizer (0, 0). The maximum value of f is 3/2, at
the maximizers (

√
2/2,−

√
2/2)) and (−

√
2/2,
√

2/2)).

5.13. We have to check (1) the interior of D for critical points of f ; (2) the parabola y = 1 − x2 for
−1 < x < 1, using Lagrange’s method; (3) the segment y = 0, −1 < x < 1; and (4) the vertices
(±1, 0).

(1) The critical points of f are at ∇f = 0, i.e., y + 2 = x− 2 = 0, i.e., the point (2,−2). However,
this point is not in D so it is to be ignored.

(2) On this curve g(x, y) = x2 + y − 1 = 0 and ∇g = (2x,−1) is never 0. The Lagrange method
gives

det
[
∇f
∇g

]
= 0, i.e., det

[
y + 2 x− 2

2x −

]
1 = −y − 2− 2x2 + 4x = 0.

Solving together with y = 1 − x2 gives −2x2 + 4x − 2 = y = 1 − x2, x2 − 4x + 3 = 0, x = 1, 3.
Neither of these is in the interval (−1, 1), however, so we ignore them in this step.

(3) On the interval y = 0, −1 < x < 1, f(x, y) = 2x has no critical point.

(4) All our candidates therefore have to come from this step: they are (0, 0) and (1, 0). The
minimum value is f(0, 0) = 0 and the maximum is f(1, 0) = 2.

5.15. (This problem is easily solved geometrically by drawing the level lines of f(x, y) = (x− y)2. These
lines are easy to track as they cross the region D.)

Analytically, as in 5.13, we examine (1) the interior of D, (2) the lower boundary y = x2/2,
−2 < x < 2; (3) the upper boundary y = 2, −2 < x < 2, and (4) the vertices (±2, 2).

(1) ∇f = (2(x − y), 2(y − x)) = 0 everywhere on the line y = x, where f(x, y) = (x − y)2 = 0.
These are obviously minimizers, since f(x, y) is a square.

(2) Lagrange method, with g(x, y) = (x2/2)− y, points to

det
[
∇f
∇g

]
= 0, i.e., det

[
2(x− y) 2(y − x)

x −1

]
= 2(y − x)(1− x) = 0,

so y = x (already considered) or x = 1. This gives us the point (1, 1/2), where f(1, 1/2) = 1/4.

(3) On y = 2, −2 < x < 2, f(x, y) = f(x, 2) = (x− 2)2 has no critical point.

(4) In addition to the points (x, x) and (1, 1/2) above we have the vertices (−2, 2) and (2, 2), giving
f(x, y) = 16 and 0, respectively.
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The maximizer is (−2, 2), where f(−2, 2) = 16. The minimizers, where f(x, y) = 0, are all the
points on the line y = x, 0 ≤ x ≤ 2.

5.17. The set C is the intersection of the vertical cylinder x2 + y2 = 1 with the nonvertical plane
x + y + z = 3, so it’s a closed curve. Notice that ∇f = (3, 1,−1) is never zero. We look at the
points on C where

det

∇f∇g
∇h

 = 0, i.e., det

 3 1 −1
1 1 1

2x 2y 0

 = 4x− 8y = 0

and satisfying the two constraints. So x = 2y. Then x2 + y2 = 1 gives (x, y) = (±2/
√

5,±1/
√

5).
Since x+ y + z = 3 we get the points

(x, y, z) =(1/
√

5)(2, 1, 3(
√

5− 1)), (1/
√

5)(−2, 1, (1 + 3
√

5)),

(1/
√

5)(2,−1, (−1 + 3
√

5)), (1/
√

5)(−2,−1, 3(1 +
√

5)),

so f(x, y, z) = (1/
√

5)(7+3(1−
√

5)), (1/
√

5)(−5+(−1−3
√

5)), (1/
√

5)(5+(1+3
√

5)), (1/
√

5)(−7+
3(−1 +

√
5)), respectively. The largest and smallest of these are the third and second, resp.

5.19. We want to maximize f(x, y, z) = d2 = (x − 1)2 + (y − 3)2 + (z − 4)2 subject to the constraint
g(x, y, z) = 0, where g(x, y, z) = x2 + y2 − z. This can only occur at a point where ∇f = 0, or
∇g = 0, or the tangent planes to the level surface of f and to the surface g(x, y, z) = 0 are parallel,
i.e., ∇f and ∇g are parallel.

∇f = 2(x−1, y−3, z−4) and ∇g = (2x, 2y,−1). Clearly ∇g is never 0. We can check the parallel
condition in more than one way. One way is to set ∇f ×∇g = 0, giving three equations in addition
to the equation g(x, y, z) = 0. Another way (sometimes called the method of Lagrange Multipliers)
is to set ∇f = λ∇g where λ is an unknown scalar, giving 3 equations in addition to g(x, y, z) = 0.

Let’s use the cross product. The z-component of ∇f ×∇g is 4[(x− 1)y − (y − 3)x] so

4[(x− 1)y − (y − 3)x] = 0, y = 3x.

The y-component of ∇f ×∇g is 4x(z − 4) + 2(x− 1), so

4x(z − 4) + 2(x− 1) = 0, z =
6− 2x

4x
=

3
2x
− 1

2

With y and z expressed in terms of x, the equation z = x2 + y2 then becomes

3
2x
− 1

2
= x2 + (3x)2 = 10x2.

Equivalently, 3 = 20x3 + x. By inspection, luck, or Newton’s Method, x = 1/2, so y = 3/2 and
z = x2 + y2 = 5/2. The point is (0.5, 1.5, 2.5).
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