5.1.

5.3.

5.5.

5.7.

(a) Vf = (322%y — 3y?, 23 + 2 — 6zy).

The equations Vf = 0 may be written 3y(2? — y) = 0, 23 — 62y + 2 = 0. The first equation gives
y=0ory=22

If y = 0 then 2 = —2'/3; s0 (0, —2'/3) is a critical point.
If y = 22 then x3 = 2/5; so ((2/5)'/2,(2/5)%/3) is a critical point.
In particular there are exactly two critical points.

(b) No. The contour plot shows three critical points, one in the first quadrant, one near the negative
z-axis, and one near the negative y-axis.

(a) Vf = (322 + 3y, 3y* + 3x).
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Critical points occur where y = —22 and = —y2. These equations lead to z = —z*, so 2 = 0 or

—1, and then y = —z2 determines y. The critical points are (0,0) and (-1, —1).

(b) The tangent line is given by Vf(1,1) e (x — (1,1)) = 0, that is, (6,6) e (z — 1,y — 1) = 0, or
T+y=2.

(c) Yes; at least it seems to show critical points at the right places and has the right tangent line
at (1,1) (slope —1).
V=" -y 22y —a).

(a) y? =y gives y = 0 or 1; for either of these, 22y — x = 0 gives z = 0. So there are two critical
points, at (0,0) and (0,1).

(b) Vf(3/2,1/3) e (x — (3/2,1/3)) = 0, that is, (3/4,—1/2) e (z — 3/2,y — 1/3) = 0, that is,
3xr — 2y = 23/6.

(c) No, the contour plot shows a critical point that’s not at (0,0) or (0,1).

The domain D is a closed elliptical disk. The critical points of f occur at Vf = (y,z) = 0, i.e.,
(0,0) is the only critical point. On the boundary, Vg = (2, 8y) is never 0. So the candidate points
on the boundary are those where

Vf

Vg

det [ % 8y

]:0, ie., det[y x} = 8y? — 222 = 0.

Solving this together with the boundary equation 2% 4+4y? = 6 gives 16y> = 12, y = +/3/2, 22 = 3,
x = ++/3. We have 5 candidates:

(0,0), £(v/3/2,V3), £(v/3/2,—V3).
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5.9.

5.11.

These give f(z,y) =0, 3/2, and —3/2, respectively.

Therefore the maximum value is 3/2, achieved at the maximizers +(v/3/2,1/3), and the minimum
value is —3/2, achieved at the minimizers +(v/3/2, —/3).

Again f(z,y) = zy has a unique critical point at (0,0). The boundary is given by g(x,y) =
ot + 2222 +yt — 22 + 4% = 0.

The gradient of g is
Vg = (423 + day® — 22, 42%y + 49 + 29).

Setting Vg = 0 gives (42?2 +4y? — 2)x = 0 = (422 + 4y% +2)y = 0, so y = 0, as 42 + 4y? + 2 never

2

equals 0. Then z = 0 or 422 — 2 = 0. But on the boundary g = 0, 2* = 22, so x = 0 or 22 = 1.

The upshot is that on the boundary there is a unique point where Vg = 0, and that point is (0, 0),
which is already on our list of possibilities.

The remaining possibilities therefore must come from the boundary points where

Vf

det [ Vg

_ : Yy T 4.4 4 2 2y _
]—0, ie., det [4x3+4xy2—2x Loy A+ 2| d” + 4y* + 2(2* +y*) = 0.

Completing the square for the y-terms and z-terms separately, we add and subtract 1/4 and get
(2% +0.5)% — (222 — 0.5)? = 0.

Therefore 2y? + 0.5 = +(22% — 0.5). The minus sign gives 2y? = —2z2, so (z,y) = (0,0), a point
we already have. So consider the + sign:

20% — 2% =1, 2?2 —y? =1/2.

Therefore (22 +y?%)? = 1/2, 22 +y* = 1/2/2. Combining this with 22 —y? = 1/2, 222 = (1+/2)/2,

1/ 1/
xzii V241, y:j:§ V2 —1.

These give four points, one in each quadrant. The maximum value of zy is

%\/\@+1-%\/\/§—1:i

at the points in the first and third quadrant, and the minimum value is —1/4, at the other two
points.
Vf=(2z —y,2y — x) equals 0 only at (0,0).

Here g(z,y) = 22 +y? — 1, and Vg = (2, 2y) is never 0 on the boundary of D. So other than (0,0)
our candidate points are the solutions of

Vf
Vg

20—y 2y—=x
x

det [ } =0, i.e., det [ ] =2(2% —9y?) =0, ie., y = .

2



5.13.

5.15.

On the boundary of D these are the points (£v/2/2,+v/2/2), which together with (0,0) are our
candidates. We compute f(0,0) = 0, f(£(v/2/2,v2/2)) = 1/2, and f(£(v/2/2,—v/2/2)) = 3/2.
So the minimum value of f on D is 0, at the minimizer (0,0). The maximum value of f is 3/2, at

the maximizers (v/2/2, —v/2/2)) and (—v/2/2,v/2/2)).

We have to check (1) the interior of D for critical points of f; (2) the parabola y = 1 — 22 for
—1 < x < 1, using Lagrange’s method; (3) the segment y = 0, —1 < x < 1; and (4) the vertices
(£1,0).

(1) The critical points of f are at Vf =0, i.e., y+2 =12 —2 =0, i.e., the point (2,—2). However,
this point is not in D so it is to be ignored.

(2) On this curve g(z,y) = 22 +y — 1 = 0 and Vg = (2z,—1) is never 0. The Lagrange method
gives

Vf
Vg

y+2 -2

det [ 9 B

}:o, ie., det[ }1:—y—2—2x2+4x=0.

Solving together with y = 1 — 22 gives —222 +4r —2 =y =1—-2% 22 —42+3 =0,z = 1,3.
Neither of these is in the interval (—1, 1), however, so we ignore them in this step.

(3) On the interval y =0, —1 < z < 1, f(z,y) = 2z has no critical point.

(4) All our candidates therefore have to come from this step: they are (0,0) and (1,0). The
minimum value is f(0,0) = 0 and the maximum is f(1,0) = 2.

(This problem is easily solved geometrically by drawing the level lines of f(x,3) = (x —y)?. These
lines are easy to track as they cross the region D.)

Analytically, as in 5.13, we examine (1) the interior of D, (2) the lower boundary y = z2/2,
—2 < x < 2; (3) the upper boundary y = 2, —2 < z < 2, and (4) the vertices (£2,2).

(1) Vf = (2(x — y),2(y — x)) = 0 everywhere on the line y = z, where f(z,y) = (z —y)? = 0.
These are obviously minimizers, since f(z,y) is a square.

(2) Lagrange method, with g(z,y) = (2%/2) — y, points to

det [gg] — 0, ic., det [2(”“’; w2 oy a1 - a) =0,

so y = z (already considered) or z = 1. This gives us the point (1,1/2), where f(1,1/2) = 1/4.
(B)Ony=2,-2<z<2, f(r,y) = f(x,2) = (x — 2)? has no critical point.

(4) In addition to the points (x,z) and (1,1/2) above we have the vertices (—2,2) and (2, 2), giving
f(x,y) = 16 and 0, respectively.



5.17.

5.19.

The maximizer is (—2,2), where f(—2,2) = 16. The minimizers, where f(z,y) = 0, are all the
points on the line y =z, 0 <z < 2.

The set C is the intersection of the vertical cylinder 2 + y? = 1 with the nonvertical plane
x+y+ 2z =3, s0it’s a closed curve. Notice that Vf = (3,1, —1) is never zero. We look at the
points on C' where

Vf 3 1 -1
det [ Vg | =0,ie,det| 1 1 1 |=42—-8y=0
Vh 2 2y O

and satisfying the two constraints. So 2 = 2y. Then 22 + y? = 1 gives (z,y) = (£2/V5,£1/V5).
Since x + y + z = 3 we get the points

(z,y,2) =(1/V5)(2,1,3(v5 - 1)), (1/V5)(=2,1,(1 + 3V5)),
(1/v5)(2, -1, (=14 3V5)), (1/v5)(—2,—1,3(1 + V5)),

so f(z,y,2) = (1/V5)(T+3(1=v5)), (1/V5)(=5+(~1-3V5)), (1/V5)(5+(1+3V5)), (1/V5) (= 7+
3(—1 + /b)), respectively. The largest and smallest of these are the third and second, resp.

We want to maximize f(z,y,z) = d*> = (x — 1)2 + (y — 3)% + (2 — 4)? subject to the constraint
g(z,y,2) = 0, where g(x,y,2) = 2% + y?> — 2. This can only occur at a point where Vf = 0, or
Vg = 0, or the tangent planes to the level surface of f and to the surface g(x,y, z) = 0 are parallel,
i.e., Vf and Vg are parallel.

Vf=2(z—-1,y—3,2—4) and Vg = (2x,2y, —1). Clearly Vg is never 0. We can check the parallel
condition in more than one way. One way is to set Vf x Vg = 0, giving three equations in addition
to the equation g(z,y,z) = 0. Another way (sometimes called the method of Lagrange Multipliers)
is to set V.f = AVg where A is an unknown scalar, giving 3 equations in addition to g(z,y, z) = 0.

Let’s use the cross product. The z-component of Vf x Vg is 4[(z — 1)y — (y — 3)z] so
Az =1y = (y—3)a] =0, y =3
The y-component of Vf x Vg is 4z(z — 4) + 2(x — 1), so

6 — 2z 3
4 —4)+2(x—1)=0 = = — —
x(z ) (z ) , 2 P -

N | —

With y and z expressed in terms of z, the equation z = 22 + 32 then becomes

3 1
% — 5 = CCQ + (3$)2 = 10.’E2

Equivalently, 3 = 2023 + x. By inspection, luck, or Newton’s Method, z = 1/2, so y = 3/2 and
z = 2%+ y?* = 5/2. The point is (0.5,1.5,2.5).



