
4.1. First express v = sv1 + tv2, which gives s = 2, t = −5. Then

v • ∇f(x0) = (2v1 − 5v2) • ∇f(x0) = 2v1 • ∇f(x0)− 5v2 • ∇f(x0) = 2(2)− 5(−2) = 14.

4.3. First express v = sv1 + tv2 + uv3, which gives s = t = u = 1. Then

v •∇f(x0) = (v1 +v2 +v3) •∇f(x0) = v1 •∇f(x0) +v2 •∇f(x0) +v3 •∇f(x0) = 5 + 3 + 2 = 10.

4.5. (a) First,

∂f

∂x
=

y(1 + x2 + y2)2 − xy · 2(1 + x2 + y2) · 2x

(1 + x2 + y2)4
=

y(1 + x2 + y2 − 4x2)
(1 + x2 + y2)3

=
y(1− 3x2 + y2)
(1 + x2 + y2)3

,

and by symmetry,
∂f

∂y
=

x(1 + x2 − 3y2)
(1 + x2 + y2)3

.

Then
∂f

∂x
= 0 if and only if y = 0 or 3x2− y2 = 1; and

∂f

∂y
= 0 if and only if x = 0 or 3y2−x2 = 1.

There are four combinations:

x = y = 0: critical point (0, 0), f(0, 0) = 0

3y2 − x2 = 1, y = 0: no solution

3x2 − y2 = 1, x = 0: no solution

3x2 − y2 = 1 = 3y2 − x2: x2 = y2 = 1/2, four critical points (±
√

1/2,±
√

1/2).

f(
√

1/2,
√

1/2) = 1/8 = f(−
√

1/2,−
√

1/2) and f(−
√

1/2,
√

1/2) = −1/8 = f(
√

1/2,−
√

1/2).

(b) The 5 critical points in (a) are the only possible maximizers and minimizers. (0, 0) is obviously
out as a maximizer or minimizer, so the only possible maximizers are ±(

√
1/2,

√
1/2), and the

maximum value of f , if it exists, is 1/8.

Here is an argument why the points P = (
√

1/2,
√

1/2) and Q = (−
√

1/2,−
√

1/2) are both
actually maximizers. Consider first the region A defined by x2 + y2 ≥ 9, the closed exterior of a
circle of radius 3. Using the inequality |xy| ≤ 2|xy| ≤ x2 + y2, we find that on A,

|f(x, y)| = |xy|
(1 + x2 + y2)2

≤ (x2 + y2)
(x2 + y2)2

=
1

x2 + y2
≤ 1

9
<

1
8

So f(P ) and f(Q) “beat” f(x, y) for any (x, y) ∈ A.

On the set B defined by x2 + y2 ≤ 9, f has maximizers because f is continuous and B is compact.
The maximizers can’t be on the boundary of B, because we have already seen that P and Q beat
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such boundary points. Therefore the maximizers must occur at critical points. Therefore P and
Q are maximizers of f with respect to B. Since they also beat every point outside B, they are
genuine maximizers.

(c) A simlar argument shows that (−
√

1/2,
√

1/2) and (
√

1/2,−
√

1/2) are minimizers, and the
minimum value of f is −1/8.

4.7. A normal vector to the tangent plane of f at x0 is given by n(x0) =
(

∂f

∂x
(x0),

∂f

∂y
(x0),−1

)
. At

an arbitrary point x0 = (x, y),

n = (3y − 3x2, 3x− 3y2,−1).

For this normal vector to be parallel to (3, 3, 1), n must equal (−3,−3,−1). This leads to the
equations

3y − 3x2 = −3

3x− 3y2 = −3

Thus y = x2 − 1, x = y2 − 1 = (x2 − 1)2 − 1 = x4 − 2x2, x4 − 2x2 − x = 0. One solution is x = 0,
corresponding to y = −1; another is x = −1, corresponding to y = 0. Thus x(x + 1) is a factor of
x4 − 2x2 − x, and we find

x4 − 2x2 − x = x(x + 1)(x2 − x− 1), with roots x = 0,−1,
1±
√

5
2

.

The corresponding values of y are given by y = x2 − 1, and we have four points in all:

(0,−1), (−1, 0),

(
1 +
√

5
2

,
1 +
√

5
2

)
,

(
1−
√

5
2

,
1−
√

5
2

)
.

4.9. Let ∇f(x0) = (a, b, c). We first find a, b, and c. The three given equations are

a + b + c = 5, b + c = 3, c = 2, so (a, b, c) = (2, 1, 2).

We take u1 = (1/3)(2, 1, 2). There are many choices for u2, which need only be a unit vector orthog-
onal to u1; then u3 must be u1 × u2. For example, u2 = (1/3)(1, 2,−2) and u3 = (1/3)(−2, 2, 1).
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