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4.3.

4.5.

First express v = svy + tvy, which gives s = 2, t = —5. Then

veVf(xg) =(2vi —5va) @ Vf(xg) =2vy e Vf(x0) — 5va @ Vf(xg) = 2(2) — 5(—2) = 14.

First express v = svy + tvy 4+ uvs, which gives s =t =u = 1. Then

veVf(xg) = (vi+va+vs)eVf(xg) =vieVf(xg)+vaeVf(xg)+vseVf(xg)=5+3+2=10.

(a) First,
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and by symmetsy, 5 =

Theng‘f:Oifandonlyify:00r3x2—y2:1; andg‘f:Oifandonlyifa::OOr?)yz—:UZ:1.
x Yy

There are four combinations:

x =y = 0: critical point (0,0), f(0,0) =0

3y? — 22 =1, y = 0: no solution

322 —y?> = 1,2 = 0: no solution

3z2 —y? =1=3y? — 2% 2% = y? = 1/2, four critical points (i\/m, :t\/W)

/AT A/TT2) = 1S = F(—/TT,—/T73) and f(—/ T2, \/T]2) = —1/8 = (/12 —/T]2).

(b) The 5 critical points in (a) are the only possible maximizers and minimizers. (0, 0) is obviously
out as a maximizer or minimizer, so the only possible maximizers are +(1/1/2,4/1/2), and the
maximum value of f, if it exists, is 1/8.

Here is an argument why the points P = (1/1/2,4/1/2) and @ = (—+/1/2,—+/1/2) are both
actually maximizers. Consider first the region A defined by z2? + y? > 9, the closed exterior of a
circle of radius 3. Using the inequality |zy| < 2|ry| < 22 + y?, we find that on A4,

—_

oyl @4y 1 11
(T+22+92)? ~ (a2 +y?)? 22+y2~ 9 8

|f(z,y)| =

So f(P) and f(Q) “beat” f(z,y) for any (x,y) € A.

On the set B defined by 22 +y? < 9, f has maximizers because f is continuous and B is compact.
The maximizers can’t be on the boundary of B, because we have already seen that P and () beat
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4.7.

4.9.

such boundary points. Therefore the maximizers must occur at critical points. Therefore P and
() are maximizers of f with respect to B. Since they also beat every point outside B, they are
genuine maximizers.

(c) A simlar argument shows that (—/1/2,4/1/2) and (/1/2,—+/1/2) are minimizers, and the

minimum value of f is —1/8.
. of
A normal vector to the tangent plane of f at x¢ is given by n(xg) = a—(x()), a—(xo), —1). At
Y

an arbitrary point xo = (z,y),
n=(3y— 3:):2,3x — 3y2, —1).

For this normal vector to be parallel to (3,3,1), n must equal (—3,—3,—1). This leads to the
equations
3y — 3z = -3

3z —3y? = -3

Thusy =22 -1, 2 =9y>—1= (22 -1)2 -1 = 2* — 222, 2* — 222 — 2 = 0. One solution is z = 0,
corresponding to y = —1; another is x = —1, corresponding to y = 0. Thus z(x + 1) is a factor of
xz* — 222 — 2, and we find

1++5

xt —22% — 2 = 2(x + 1)(2® — 2 — 1), with roots z =0, —1, 5

The corresponding values of y are given by y = 22 — 1, and we have four points in all:

(0,-1), (—1,0), ( 5 5 5

1+v5 1+V5 1-v5 1-+5
2 Y Y Y *
Let V f(x0) = (a,b,c). We first find a, b, and c. The three given equations are
a+b+c=5 b+c=3,c=2, so (a,b,c)=(2,1,2).

We take uy = (1/3)(2,1,2). There are many choices for ug, which need only be a unit vector orthog-
onal to uy; then ug must be u; x uy. For example, us = (1/3)(1,2, —2) and uz = (1/3)(-2,2,1).



