3.3. (a) Two (or more) proofs are possible. The case 1 = y; is obvious, so assume that z; # y;. In
fact, assume that y; < x1; if the reverse inequality holds, then a similar argument can be made.
Also, we only prove the first inequality; the second is similarly proved.

(al)

|sin(z1) = sin(y1)| =

xr1 Ty T1
/ costdt'</ ]cost|dt</ ldt =21 —y1 = |z1 — 1)
Y1

Y1 Y1

(a2) By the Mean Value Theorem, there is ¢ such that y; < ¢ < x; and

sin(z1) — sinyy

1 — YN

= COScC.

Therefore the absolute value of the left side is at most 1, which implies the desired ineequality.

(b) Let x = (z1,22) and y = (y1,y2). The key ingredients are the Triangle inequality, (3.21), and
at the end, Cauchy-Schwarz.

[f(x) = F(y)| = (sin(z1) — sin(y1)) cos(z2) + sin(y1)(cos(z2) — cos(yz))|
< |sin(zq) — sin(y1)]|| cos(x2)| + | sin(y1)|| cos(x2) — cos(y2)| (Triangle Inequality)
< |sin(z1) — sin(y1)| + [(cos(z2) — cos(y2))|
<oy —yi| + |22 — o (3.21)
= (lz1 —y1l,|z2 — y2) © (1,1)
< (w1 =yl [z — w211, 1)]|  Cauchy-Schwarz

= V(@1 —y1)? + (22 — 12)2V2 = V2|lx —y[|, Q.E.D.

3.5. Yes, f is continuous. The justification uses the fact that

lim tlnt =0,
t—0+t

a fact from elementary calculus that can be derived, for example, by using L’Ho6pital’s Rule for
00/ 00.

Using Theorem 29 and the continuity of the In function, one sees that f is certainly continuous at
any x # 0. The sticky point is to prove continuity at x = 0, that is, to prove that

(1) ili%(% +y) In(2? +y*) = 0.

We use the Squeeze Principle, first establishing

(2) |(z +y) In(z® + y*)| < 4]}l In(]x])|
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3.7.

3.9.

Namely,
|(z +y) In(z® + y*)| = |z + y|| In(]x]|*)]
< (lzl + [yDI21n ]|
< (Il =+ [l [ 12 In ]|
= 4[| In [|x]]].
This proves (2). By the limiting fact above, the right side of (2) approaches 0 as x — 0 and hence
by the Squeeze Principle, (1) holds. Q.E.D.

f is continuous for any given r > 0. As usual, Theorem 29 implies that f is continuous at any
x = (z,y) as long as x # 0. Note that continuity is in question here at each point of the y-axis,
not just at a single point. We take an arbitrary point (0,yp) on the y-axis.

Suppose that 7 > 0. Then for all (z,y),
| |x|"]sinz| < |z|" ifx#0
Hence |f(z,y)| < |z|" for all (z,y). Since r > 0, lim,_.¢ |z|” = 0 and so by the Squeeze Principle,

X—>(07y0

so f is continuous at (0,y9). As (0,y9) was arbitrary, f is continuous at every point of the y-axis
and hence at every point of R?.

The closed unit ball B is closed and bounded so it’s compact. The function f is continuous, so f
has a maximizer and minimizer on B by Theorem 34.

More specifically, observe that f is a sum of squares, so f(x) > 0 for all x in R". But f(0) =
Y (a; 0)? =0, so x = 0 is a minimizer of f on R", hence on both B and B.

Also, f is homogeneous of degree 2, that is, for any scalar A,

FOx) = X f(x).

This is because

fOx) = Z [a; e ()\x)]2 = Z Aay o X)]2 = Z)ﬁ(ai ex)? = )\? Z(ai e x)? = \?f(x).

Now we can show there’s no maximizer of f on B. Suppose that there were such a maximizer M.
Clearly M # 0. Let ¢ = ||[M]| > 0. Since M € B, ¢ < 1 (strict inequality!). Choose any number b
such that ¢ < b <1 (such as b= (1+¢)/2) and let z = (b/c)M. Then ||z|| = |b/c||M| =b < 1 so
z € B. Moreover

f(z) = f((b/c)M) = (b/c)* f(M) > f(M).

Therefore M is not really a maximizer, a contradiction. So no maximizer exists on B.
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