
3.3. (a) Two (or more) proofs are possible. The case x1 = y1 is obvious, so assume that x1 6= y1. In
fact, assume that y1 < x1; if the reverse inequality holds, then a similar argument can be made.
Also, we only prove the first inequality; the second is similarly proved.

(a1)

| sin(x1)− sin(y1)| =
∣∣∣∣∫ x1

y1

cos t dt
∣∣∣∣ ≤ ∫ x1

y1

| cos t| dt ≤
∫ x1

y1

1 dt = x1 − y1 = |x1 − y1|.

(a2) By the Mean Value Theorem, there is c such that y1 < c < x1 and

sin(x1)− sin y1
x1 − y1

= cos c.

Therefore the absolute value of the left side is at most 1, which implies the desired ineequality.

(b) Let x = (x1, x2) and y = (y1, y2). The key ingredients are the Triangle inequality, (3.21), and
at the end, Cauchy-Schwarz.

|f(x)− f(y)| = |(sin(x1)− sin(y1)) cos(x2) + sin(y1)(cos(x2)− cos(y2))|
≤ | sin(x1)− sin(y1)|| cos(x2)|+ | sin(y1)|| cos(x2)− cos(y2)| (Triangle Inequality)

≤ | sin(x1)− sin(y1)|+ |(cos(x2)− cos(y2))|
≤ |x1 − y1|+ |x2 − y2| (3.21)

= (|x1 − y1|, |x2 − y2|) • (1, 1)

≤ ‖(|x1 − y1|, |x2 − y2|)‖‖(1, 1)‖ Cauchy-Schwarz

=
√

(x1 − y1)2 + (x2 − y2)2
√

2 =
√

2‖x− y‖, Q.E.D.

3.5. Yes, f is continuous. The justification uses the fact that

lim
t→0+

t ln t = 0,

a fact from elementary calculus that can be derived, for example, by using L’Hôpital’s Rule for
∞/∞.

Using Theorem 29 and the continuity of the ln function, one sees that f is certainly continuous at
any x 6= 0. The sticky point is to prove continuity at x = 0, that is, to prove that

(1) lim
x→0

(x+ y) ln(x2 + y2) = 0.

We use the Squeeze Principle, first establishing

(2) |(x+ y) ln(x2 + y2)| ≤ 4‖x‖| ln(‖x‖)|
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Namely,
|(x+ y) ln(x2 + y2)| = |x+ y|| ln(‖x‖2)|

≤ (|x|+ |y|)|2 ln ‖x‖|
≤ (‖x‖+ ‖x‖)|2 ln ‖x‖|
= 4‖x‖| ln ‖x‖|.

This proves (2). By the limiting fact above, the right side of (2) approaches 0 as x→ 0 and hence
by the Squeeze Principle, (1) holds. Q.E.D.

3.7. f is continuous for any given r > 0. As usual, Theorem 29 implies that f is continuous at any
x = (x, y) as long as x 6= 0. Note that continuity is in question here at each point of the y-axis,
not just at a single point. We take an arbitrary point (0, y0) on the y-axis.

Suppose that r > 0. Then for all (x, y),

|f(x, y)| =
{
|x|r| sinx| ≤ |x|r if x 6= 0
0 = |x|r if x = 0

Hence |f(x, y)| ≤ |x|r for all (x, y). Since r > 0, limx→0 |x|r = 0 and so by the Squeeze Principle,

lim
x→(0,y0)

f(x, y) = 0 = f(0, y0)

so f is continuous at (0, y0). As (0, y0) was arbitrary, f is continuous at every point of the y-axis
and hence at every point of R2.

3.9. The closed unit ball B is closed and bounded so it’s compact. The function f is continuous, so f
has a maximizer and minimizer on B by Theorem 34.

More specifically, observe that f is a sum of squares, so f(x) ≥ 0 for all x in Rn. But f(0) =∑
(ai • 0)2 = 0, so x = 0 is a minimizer of f on Rn, hence on both B and B.

Also, f is homogeneous of degree 2, that is, for any scalar λ,

f(λx) = λ2f(x).

This is because

f(λx) =
∑[

ai • (λx)
]2 =

∑[
λ(ai • x)

]2 =
∑

λ2(ai • x)2 = λ2
∑

(ai • x)2 = λ2f(x).

Now we can show there’s no maximizer of f on B. Suppose that there were such a maximizer M.
Clearly M 6= 0. Let c = ‖M‖ > 0. Since M ∈ B, c < 1 (strict inequality!). Choose any number b
such that c < b < 1 (such as b = (1 + c)/2) and let z = (b/c)M. Then ‖z‖ = |b/c|‖M‖ = b < 1 so
z ∈ B. Moreover

f(z) = f((b/c)M) = (b/c)2f(M) > f(M).

Therefore M is not really a maximizer, a contradiction. So no maximizer exists on B.
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