
Solutions to odd problems 1-13, Chapter 2

2.1. (a) v(t) = x′(t) = (1, 2t) and a(t) = v′(t) = (0, 2).

(b) v(t) = ‖v(t)‖ =
√

1 + 4t2 and T(t) = (1/v(t))v(t) = (1/
√

1 + 4t2)(1, 2t).

(c) At t = 1, v(1) = (1, 2) is a direction vector for the tangent line, which passes through x(1) =
(2, 1). The tangent line is x = (2 + t, 1 + 2t). Other parametrizations are possible, as usual.

2.3. We can write x(t) = (x1(t), . . . , xn(t)) and y(t) = (y1(t), . . . , yn(t)). Then

x(t) • y(t) = x1(t)y1(t) + · · ·+ xn(t)yn(t).

Since x(t) and y(t) are assumed continuous, each of the real-valued functions xi(t) and yi(t) is
continuous, by the theorem on page 63, line 4. By elementary calculus the product and sum of
real-valued continuous functions of one variable are continuous. Therefore x(t)•y(t) is continuous.

Suppose that n = 3. Write x(t) × y(t) = (z1(t), z2(t), z3(t)). By the same theorem on page 63 it
suffices to show that z1, z2, and z3 are continuous. But z1(t) = x2(t)y3(t) − x3(t)y2(t). As above,
this product-sum combination of real-valued functions of one variable is continuous, by elementary
calculus. Similarly z2(t) and z3(t) are continuous, so x(t)× y(t) is continuous. Q.E.D.

2.5. (a) s′(t) = v(t) = ‖v(t)‖ = ‖x′(t)‖ = ‖(et(cos t − sin t), et(sin t + cos t), et)‖ =
√

3et. Therefore
taking the reference point at t = 0,

s = s(t)− s(0) =
∫ t

0

√
3et dt =

√
3(et − 1).

Consequently et = 1 + (s/
√

3) and t = t(s) = ln(1 + (s/
√

3)). So

x(s) =
((

1 +
s√
3

)
cos ln

(
1 +

s√
3

)
,

(
1 +

s√
3

)
sin ln

(
1 +

s√
3

)
, 1 +

s√
3

)
.

(b) x′′(t) = a(t) = (−2et sin t, 2et cos t, et). We compute

v × a = e2t(cos t− sin t, sin t+ cos t, 1)× (−2 sin t, 2 cos t, 1)

= e2t(sin t− cos t,− cos t− sin t, 2),

‖v × a‖ =
√

6e2t,

κ = κ(t) =
‖v × a‖
v3

=
√

6e2t

(
√

3et)3
=
√

2
3
e−t,

a′ • (v × a) = (−2et(sin t+ cos t), 2et(cos t− sin t), et) • e2t(sin t− cos t,− cos t− sin t, 2) = 2e3t,

τ =
a′ • (v × a)

v6κ2
=

2e3t

(
√

3et)6(2/9)e−2t
=

1
3
e−t

1



(c) The vector v×a is normal to the osculating plane. At t = 0, v×a = (−1,−1, 2) and the plane
passes through x(0) = (1, 0, 1), giving the equation −x− y + 2z = 1.

2.7. (a) v = x′(t) = (1, t, t2) and a = v′(t) = (0, 1, 2t). At t = 1, v = (1, 1, 1) and a = (0, 1, 2), so
a normal to the osculating plane is v × a = (1,−2, 1). The osc. plane passes through x(0) =
(1, 1/2, 1/3) and so the osc. plane is

x− 2y + z = 1/3.

(b) Using x1 = (0, 0, 0) and and x2 = x(0) = (1, 1/2, 1/3), and n = (1,−2, 1) as normal to the
plane, the distance is

|(x1 − x2) • n|
‖n‖

=
1

3
√

6
.

2.9. (a) First, for any t, if x = a cos t and y = b sin t, then (x/a)2 +(y/b)2 = cos2 t+sin2 t = 1. Therefore
the given parametrization lands on the given ellipse.

Conversely, for any (x, y) on the ellipse, that is, for any x and y such that (x/a)2 + (y/b)2 = 1,
the point (x/a, y/b) is on the unit circle, so there exists t such that x/a = cos t and y/b = sin t.
Therefore for that t, (x, y) = (a cos t, b sin t). This shows that the alleged parametrization indeed
passes through each point of the ellipse, so it is a parametrization of the entire ellipse.

(b) For this calculation x = (a cos t, b sin t, 0), x′ = (−a sin t, b cos t, 0), x′′ = (−a cos t,−b sin t, 0),

v =
√
a2 sin2 t+ b2 cos2 t, x′ × x′′ = (0, 0, ab), so

κ =
ab

(a2 sin2 t+ b2 cos2 t)3/2
.

So κ is minimized (resp. maximized) when A := a2 sin2 t+ b2 cos2 t is maximized (resp. minimized).

Suppose first that a < b. Then

a2 = a2 cos2 t+ a2 sin2 t ≤ A = a2 cos2 t+ b2 sin2 t ≤ b2 cos2 t+ b2 sin2 t = b2.

So the maximum κ occurs for sin2 t = 0, cos2 t = 1, i.e., at t = 0 and π, i.e., (x, y) = (±a, 0); the
maximum value is κ = b/a2. Similarly the minimum κ occurs at (0,±b) and is a/b2.

If a > b, these are still the critical points for κ but the maximum and minimum points are reversed.

Finally if a = b then the ellipse is a circle and κ = 1/a = 1/b is constant.

2.11. Any parametrization may be used; we use x = t + 1, y = t2, and −1 ≤ t ≤ 0 to go from (0, 1) to
(1, 0). Then v =

√
1 + 4t2 and as s′ = v, the desired arc length is

s(0)− s(−1) =
∫ 0

−1

√
1 + 4t2 dt =

1
2

∫ 0

arctan(−2)

sec3 u du =
1
2

∫ arctan 2

0

sec3 u du

=
1
4

[
secu tanu+ ln | secu+ tanu|

]∣∣∣∣∣
arctan 2

0

=
1
4
(
2
√

5 + ln(
√

5 + 2)
)
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2.13. See Example 38; but it is not necessary to make a detailed calculation of x(t). The curve x(t) is a
circle, in a plane orthogonal to b, and traversed with constant angular speed ‖b‖ = 3 rad/unit time.
As t goes from 0 to π, therefore, 3π radians are traversed, so the arc length is 1.5 times the
circumference, and x(π) is the point on the circle opposite the initial point. The vector from
the center of the circle to the initial point x(0) is r = x(0)⊥b, which we calculate to be r =
(1/9)(−1, 4,−1). Thus the radius of the circle is

‖r‖ =
√

2
3
.

(a) x(π) = x(0)− 2r = (1/9)(11, 1, 11), and the arc length is 3π‖r‖ = π
√

2.

(b) Since the path is a circle, the curvature is constant, κ = 1/‖r‖ = 3/
√

2, and since the path is
planar, the torsion is τ = 0.
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