
Solutions to Odd-Numbered Problems 17-31, Chapter 1

1.17. (a) Use any point on the plane for x0, and any two nonparallel vectors in the plane for v1 and v2.
For instance, x0 = p1 = (−2, 0, 2), v1 = p2 − p1 = (3,−2, 0), v2 = p3 − p1 = (5,−1,−4) gives

x(s, t) = (−2, 0, 2) + s(3,−2, 0) + t(5,−1,−4)

or equivalently
x = −2 + 3s + 5t

y = −2s− t

z = 2 − 4t.

There are many correct parametrizations (as in (b), too).

(b) Most convenient is to use w = z1 − z0 = (−1,−7, 3). This gives

z(u) = (1, 4,−2) + u(−1,−7, 3)

or equivalently
x = 1− u

y = 4− 7u

z = −2 + 3u.

(c) Using v1 and v2 from (a) we compute a normal vector

N = v1 × v2 = (8, 12, 7)

and the equation 8x + 12y + 7z = −2 (the right side obtained as 8x + 12y + 7z

∣∣∣∣
x=p1

).

(d) Many answers are possible here. One approach is to equate the three expressions for u from
(b) to get

1− x = (4− y)/7 = (z + 2)/3.

Another approach is to use the form w × (z − z0) = 0, with w the direction vector in (b) and
z = (x, y, z). This yields

(−1,−7, 3)× (x− 1, y − 4, z + 2) = 0

or equivalently
−3y − 7z = 2

3x + z = 1

7x− y = 3.
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(e) Putting (b) into (c) gives 8(1 − u) + 12(4 − 7u) + 7(−2 + 3u) = −2, u = 44/71. The point of
intersection is

z(44/71) = (1/71)(27,−24,−10).

(f) By (1.64) the distance is D = ‖(p1 − z0)⊥‖ where ⊥ means ⊥ w and w is a direction vector,
as in (b). Here any point on the line could be used in place of z0. Now p1 − z0 = (−3,−4, 4) and
w = (−1,−7, 3). So D is the length of

(−3,−4, 4)− (−3,−4, 4) • (−1,−7, 3)
(−1,−7,−3) • (−1,−7, 3)

(−1,−7, 3) = (−3,−4, 4)− 43
59

(−1,−7, 3).

(g) This distance D is the length of (z0 − x0)‖, where ‖ means ‖N, N being a normal vector. Now
z0 − x0 = (3, 4,−4) and we can use N = (8, 12, 7):

D =
|(z0 − x0) •N|

‖N‖
=

44√
257

.

1.19. (a) Equating the expressions for x in the two parametrizations gives

1 + t = x = 2− s

1− t = y = s

2t = z = 2.

Solving for s and t gives t = 1, s = 0, and we check, as we must, that these values solve all
three equations. The point of intersection is then (2, 0, 2) + 0(−1, 1, 0) = (2, 0, 2) (which equals
(1, 1, 0) + 1(1,−1, 2)).

(b) As a normal vector for P we can use the cross product of the two direction vectors: N =
(1,−1, 2)× (−1, 1, 0) = (−2,−2, 0). Using the point (1, 1, 0) leads to −2x− 2y = −4, or x + y = 2.

1.21. Choose any point q in the plane, say q = (2, 0, 0). Then the distance from p to the plane is

|(p− q) •N|
‖N‖

=
|(−4,−5, 1) • (1,−3, 1)|√

11
=

12√
11

.

1.23. Let the reflected line be `1, and let P be the plane x + 2y − z = 1. First, to get one point p1 on
`1, note that the point of intersection of ` and P lies on `1. This point satisfies the equations for `

and P , i.e., the system
x− 3y + z = 2

2y + z = 3

x + 2y − z = 1.
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This gives x = 16/9, y = 5/9, z = 17/9, so p1 = (1/9)(16, 5, 17).

Next we get a direction vector a for `, and reflect it in P to get a direction vector a1 for `1. The
vector a lies in the two planes corresponding to the first two equations above, so it’s orthogonal to
the normal vectors for both those planes. We can therefore use

a = (1,−3, 1)× (0, 2, 1) = (−5,−1, 2)

We want to reflect this in the plane given by the third equation above, for which a unit normal
vector is u = (1/

√
6)(1, 2,−1). Our desired direction vector is therefore

a1 = hu(a) = a− 2(a • u)u = (2, 5,−1).

We have all the ingredients; the line `1 is parametrized by x = p1 + ta1, or

x = (1/9)(16, 5, 17) + t(2, 5,−1)

1.25. See Example 21 and Theorem 13. A unit vector u orthogonal to both v1 and v2 can be obtained
first:

v1 × v2 = (1, 0,−1)× (2, 1, 1) = (1,−3, 1), so u =
1√
11

(1,−3, 1)

and then the distance between the lines is

|(x1 − x2) • u| = 1√
11
|(0, 3, 1) • (1,−3, 1)| = 8√

11
.

1.27. As on pp. 47-48, the key is to obtain an orthonormal basis {u1,u2,u3} of R3 such that

u1 ⊥ v1, u1 ⊥ v2, and u2 ⊥ v1.

Then we can use formulae (1.68) and (1.69) (where b = x1−x2) to find the values of the parameters
s and t giving the “nearest neighbors” on the two lines. Notice that since v1 will be perpendicular
to u1 and u2, it will be parallel to u3, so we can use

u3 =
1
‖v1‖

v1 =
1√
35

(3,−5,−1).

Next, to get u1,
v1 × v2 = (3,−5,−1)× (−1, 3, 3) = (−12,−8, 4), so

u1 =
1√
224

(−12,−8, 4) =
1√
14

(−3,−2, 1).

Finally

u2 = u3 × u1 =
1√
10

(−1, 0,−3).
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Next, b = x1 − x2 = (2, 1, 2), and we use (1.68) and (1.69) to find the critical values s0 and t0 of s

and t, respectively.

b • u2 = (2, 1, 2) • (1/
√

10)(−1, 0,−3) = −8/
√

10 and v2 • u2 = (−1, 3, 3) • (1/
√

10)(−1, 0,−3) =
−8/
√

10, so by (1.68)

t0 =
b • u2

v2 • u2
= 1 !!

Also we calculate b • u3 = −1/
√

35, v1 • u3 =
√

35, and v2 • u3 = −21/
√

35. So by (1.69)

s0 =
1(v2 • u3)− b • u3

v1 • u3
= −4

7
.

The point on the first line closest to the second line is

x1 + s0v1 = x1 −
4
7
v1 =

(
9
7
,

34
7

,
11
7

)
.

The point on the second line closest to the first is

x2 + t0v2 = x2 + v2 = (0, 4, 2).

The distance between the two lines is the distance between these two points,

‖(1/7)(9, 34, 11)− (0, 4, 2)‖ =
1
7
‖(9, 6,−3)‖ =

3
7

√
14.

This distance is, as a check, equal to |b • u1|, as it must be.

1.29. (a) One checks that u1 • u1 = u2 • u2 = u3 • u3 = 1 and u1 • u2 = u1 • u3 = u2 • u3 = 0, so it is
an orthonormal basis. (Actually it is right-handed, because u1 × u2 = u3.)

(b) Use Lemma 3 and in particular Equation (1.34). Thus, such a vector u is given by

u =
1

‖u1 − e1‖
(u1 − e1) =

1√
3

(−1, 1,−1).

(c) hu(u2) = u2 − 2(u2 • u)u = (0, 1, 0) = e2.

Since Householder reflections preserve dot products, hence lengths and angles, we know in advance
that hu(u1),hu(u2),hu(u3) form an orthonormal basis. At this point, we know that the first
two are e1 and e2, so the third one must be ±e3. A calculation like the one for u2 shows that
hu(u3) = −e3.

(Remark: Thus hu, like all Householder reflections, takes a right-handed ON basis to a left-handed
one.)

1.31. (a) It’s not an orthonormal basis; u1 • u3 6= 0.

(b) Same as 1.29(b).

(c) hu(u2) = u2 because u2 ⊥ u. Also hu(u3) = u3 − 2(u3 • u)u = 1
9
√

2
(8, 7,−7).

4


