
Solutions to Odd-Numbered Problems 1-15, Chapter 1

1.1. The equation a = sb + tc is equivalent to the system

2s+ t = 3

s+ 3t = −1

whose solution is s = 2, t = −1. So a = 2b− c.

1.3. ‖x‖ =
√

81 = 9, ‖y‖ =
√

9 = 3. The angle θ between x and y (in the range 0 ≤ θ ≤ π) is

θ = arccos
x • y
‖x‖‖y‖

= arccos
−7
9 · 3

= arccos
−7
27
.

1.5. ‖x‖ = 9, ‖y‖ = 3, θ = arccos 23
27 .

1.7. (a) Since 12 + 42 + 82 = 42 + 72 + 42 = 81 = 92, u1 • u1 = 1
9 ·

1
9 (81) = 1 and similarly u2 • u2 =

1 = u3 • u3. Also

u1 • u2 =
1
81

(1,−4,−8) • (8, 4,−1) =
8− 16 + 8

81
= 0,

u1 • u3 =
1
81

(1,−4,−8) • (4,−7, 4) = 0,

u2 • u3 =
1
81

(8, 4,−1) • (4,−7, 4) = 0,

so {u1,u2,u3} is an orthonormal basis of R3. Therefore u1×u2 = ±u3. Moreover if u1×u2 = +u3,
then it is right-handed, while if u1 × u2 = −u3, it is left-handed (Theorem 9). In fact

u1 × u2 =
1
81
[
(1,−4,−8)× (8, 4,−1)

]
=
(

36
81
, ∗, ∗

)
=

1
9

(4, ∗, ∗),

so the + sign must be correct. Thus, u1 × u2 = +u3 and the basis is right-handed.

(b) Let v = (10, 11,−11). Then since {u1,u2,u3} is an orthonormal basis of R3,

v =
3∑

i=1

(v • ui)ui.

Thus, y1 = v • u1 = 1
9 (10− 44 + 88) = 6, y2 = v • u2 = 15, y3 = v • u3 = −9. As for the lengths,

‖(10, 11,−11)‖ =
√

342 = ‖(6, 15,−9)‖. One knows that the two lengths are equal in advance
because ‖(10, 11,−11)‖2 = y2

1 + y2
2 + y2

3 = ‖(y1, y2, y3)‖2 by by the second equation in Theorem 5.
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1.9. (a) To solve x × a = (−7, 2, 5), first check that a ⊥ (−7, 2, 5): namely, a • (−7, 2, 5) = (1, 1, 1) •
(−7, 2, 5) = 0. Rewriting the equation as a × x = −(−7, 2, 5) = (7,−2,−5), we have a particular
solution

x = − 1
‖a‖2

(a× (7,−2,−5)) = −1
3
[
(1, 1, 1)× (7,−2,−5)

]
= −1

3
(−3, 12,−9) = (1,−4, 3)

See the bottom half of page 37. Since x = a× something, it follows that x ⊥ a, that is, x • a = 0.
So x = (1,−4, 3) satisfies the requirements.

(b) Since a • (1, 0, 0) = 1 6= 0, a is not perpendicular to (1, 0, 0), so the equation x × a = (1, 0, 0)
has no solution.

1.11. (a) The correct assertion to be proved is

b2m = (−1)m‖a‖2mb for all positive integers m.

Proof. The proof is by induction.

Proof for m = 1: b2 = a× b1 = a× (a× b0) = a× (a× b) = −‖a‖2b. (The last equation is valid
only because a ⊥ b by assumption.) Thus the statement holds for m = 1.

Assume the statement is true for some m > 0, and prove it for m+ 1:

b2(m+1) = b2m+2 = a× b2m+1 = a× (a× b2m)

= −‖a‖2b2m

.

The last equation is true because a ⊥ b2m, which in turn is true because b2m = a × b2m−1.
Continuing,

b2(m+1) = −‖a‖2b2m

= −‖a‖2(−1)m‖a‖2mb because the statement is assumed true for m

= (−1)m+1‖a‖2m+2b = (−1)m+1‖a‖2(m+1)b, Q.E.D.

(b) One way to generalize this to the case in which a is not assumed to be orthogonal to b is to
use the fact that a× b = a× b⊥ (because a× b− a× b⊥ = a× (b− b⊥) = a× b‖ = 0). Since a
is orthogonal to b⊥, the result of (a) applies to b⊥ instead of b and so

b2m = (−1)m‖a‖2mb⊥.

1.13. If b×c = 0 then the left side is 0, while the right side is positive as a,b, c are assumed nonzero. So
the statement holds in this case. Assume then that b× c 6= 0. Then b and c are not parallel. Let

2



θ be the angle between b and c, and let φ be the angle between a and b× c. Therefore 0 < θ < π

and 0 ≤ φ ≤ π. Now

|a(̇b× c)| = ‖a‖‖b× c‖|cosφ| = ‖a‖(‖b‖‖c‖ sin θ)|cosφ|
= ‖a‖‖b‖‖c‖|cosφ| sin θ
≤ ‖a‖‖b‖‖c‖.

Clearly equality holds if and only if | cosφ| = sin θ = 1, that is, if and only if φ = 0 or π and
θ = π/2. This is true if and only if a‖b × c and b ⊥ c, which is true if and only if a, b, and c
are mutually orthogonal, which finally is true if and only if {(1/‖a‖)a, (1/‖b‖)b, (1/‖c‖)c} is an
orthonormal basis of R3.

1.15. For our orthonormal basis {u1,u2,u3} we start with

u3 =
1
‖v‖

v =
1√
26

(1, 4, 3).

Then for u1 we first take any nonzero vector w that is orthogonal to v – many choices are possible
here – such as (4,−1, 0). We take

u1 =
1
‖w‖

w =
1√
17

(4,−1, 0).

Finally take

u2 = u3 × u1 =
1√
442

(3, 12,−17)

(Note: because we took u2 = u3 × u1 and not u1 × u3, the basis {u1,u2,u3} is right-handed.)
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