Solutions for Practice Test IB, Math 291 Spring 2011

Eric A. Carlen?
Rutgers University

October 16, 2013

1: Let a=(1,1,1)

(a) Find a vector x such that

x xa=(-7,2,5) and x-a=0.
(b) There is no vector x such that

x xa=(1,0,0) and x-a=0.

Show that no such vector exists.

SOLUTION: For any vector x,
ax (axx)=—|al*xy ,
where x| is the component of x orthogonal to a. If x - a = 0, this reduces to

1 1
IIaIIQ(X xa)xa=—g(=7.2,5)x (L,1,1) = (~1,4,-3) .

X =—

For (b), note that (1,0, 0) is not orthogonal to a, and hence no vector can satisfy x xa = (1,0, 0)
since the cross product of rwo vectors is orthogonal to each of them.

2: Let P; denote the plane through the three points a; = (1,2,1) az = (—1,2,—-3) and ag =
(2,—-3,—2). Let P, denote the plane through the three points by = (1,1,0) b = (1,0,1) and
bs = (0,1,1).

(a) Find equations for the planes P; and P.

(b) Parameterize the line given by P; N P», and find the distance between this line and the point

aj.

(c) Consider the line through by and ba. Determine the point of intersection of this line with the
plane P;, and find a parametrization of the line given by reflecting this line off plane P;. That is,
the direction vector of the reflected line is what you get by reflecting the direction vector of the
original line using the unit normal direction u to the plane.
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SOLUTION: We compute
(a2 —az) x (a3 —a) = 10(-2,-1,1) .
Hence the equation is
(-2,-1,1)-(x—1,y—2,2—1)=0

which reduces to
2r4+y—z=3.

In the same way, or by inspection using the symmetry, the equation of the other plane is
r+y+z=2.

For (b), looking for a solution xq of the system 2x +y — 2z =3 and x + y + z = 2 with z = 0,
we find
1
X0 + 5(0, 5, *1) .

The direction vector v is the cross product of the normal vectors to the planes: v = ((—2,—1,1) x
(1,1,1) = (—2,3,—1). Hence the parameterization is

x(t) = %(0,5, C1) £ H(=2,3, 1) .

The equation of the line then is

(=23, 1) x (x _ %(0,5, —1)> —0.

The distance in question therefore is

. H( 2,3,—1) x < 1(0 5 1))” a2 =2 3/7
T 4y9y T ar — $\Y,9,— = = .
H<_2737_1>H 2 ”(_2737_1)“

For (c), the line through by and by has direction vector w := by — by = (0, —1, 1). Hence this
line is parameterized by

x(t) = (1,1,0) + £(0, —1,1) = (1,1 — ¢, ¢) .

Plugging this into the equation 2x +y — z = 3 for P;, we find t = 0; i.e., (1,1,0) is on the line and
on the plane P;. So this is the reflection point.

The reflected line therefore has (1, 1,0) as its base point, and has hy(w) as its direction vector,
when u is the unit normal to the plane P;. Then since

1
u=—(2,1,-1 and h,(w)=w—2(w-u)u,
1) u(w) (w )
we find ]
hy,(w) = g(—4, 1,-1).

Thus, the reflected line is given by

x(t) = (1,1,0) + %(—4, 1,-1) .



3: Let x(t) be the curve given by
x(t) = (e’ cos(t), e’ sin(t), e') .

(a) Compute the arc length s(¢) as a function of ¢, measured from the starting point x(0), and find
an arc length parameterization of this curve

(b) Compute curvature «(t) as a function of t.

(c) Find an equation for the osculating plane at time t = 0

SOLUTION: We compute
v(t) = X'(t) = e’(cost — sint,cost +sint, 1) and hence v(t) = V3el .

Thus,

= /t V3etdu = V3(e! — 1) ;
0

t(s) = ( +1

The arc length parameterization is then given by x(¢(s)), which is

(o) (o (G5 #1)) o (G ) )

Next, to find the curvature, we compute

Solving s = v/3(e! — 1), we find

a(t) =v'(t) = e'(—2sint,2cost, 1)

and
v(t) x a(t) = e*(sint — cost, —sint — cost,2) .

Thus, ||v(t) x a(t)|| = 6e*. The curvature is

v xa®l 2
=00 Sl

Finally, the normal to the osculating plane at t = 0 is
v(0) x a(0) = (—-1,-1,2) .
We take x(0) = (1,0,1)) as the base point. The equation then is
—r—y+2z=1.

4: (a) Let f(x,y) be given by

zy
fla,y) =< el + 1yl (x,y) # (0,0)

0 (z,y) # (0,0) .




Does

lim x,
(z,)—(0,0) f@y)

exist? If so, evaluate the limit. If not, explain why not.

(b) Let g(x,y) be given by

TV () £ 0.0)
glz,y) =4 Val+ytr1-1 ’
0 (z,y) = (0,0) .
Does
lim T,
(z,y)—(0,0) 9(@.y)

exist? If so, evaluate the limit. If not, explain why not.

SOLUTION: For (a),

|| |y| |||y
0< y)| = <
1#(.v)l |z + [y ||

= |yl < [Ix]| -

Hence, by the squeeze principle,

flz,y)=0.

lim
(z,y)—(0,0)
For (b), Note thas as (z,y) approaches (0,0), both the numerator and the denominator tend

to zero. Since y* goes to zero more quickly than y? as x tends to zero, let us look at what happens
as x approaches (0,0) along the y-axis:

y2

Vityt-1

9(0,y) =

Two applications of ’'Hospital’s rule show that

lim ¢(0,y) = o0 .
y—0

The function is not continuous at (0, 0).
5: Let f: R? — R be given by
fla,y) = 2’y +yr —ay® .
(a) Compute the gradient of f, and find all critical points of f.
(b) Find the equation of the tangent plane to the graph f at the point (1,1).

(c) Let x(t) = (1 +t— 13,2 — t +t2). Compute %f(x(t))
t=0
(d) Find all points (z,y) at which the tangent plane to the graph of f is orthogonal to the line

parameterized by ¢(1,0,1).
SOLUTION: For (a), we compute

Vir,y)=(2z-y+1y,(r—2y+ 1)) .



To find the critical points, we solve
2z —y+1ly = 0
(x—2y+1lzx = 0

We can solve the first equation by taking y = 0 or y = 22 + 1. If y = 0, the second equation
becomes (z + 1)z = 0 which is solved by z = —1 and x = 0. Hence (—1,0) and (0,0) are critical
points. If y = 2z + 1, the second equation becomes (3x + 1)x = 0, which is solved by = 0 and
x = —1/2. Thus (0,1) and (—1/3,1/3) are critical points. The four that we have listed above
constitute the complete set of critical points.

For (b), we compute Vf(1,1) = (2,0) and f(1,1) =1 Hence

z=f(r,y) =1+ (2,0)-(r—1l,y—1)=2x—1.
The equation is z = 2x — 1, or equivalently,
20 —z=1.
For (c¢) we compute
x(0) = (1,2) x'(0)=(1,-1) and Vf(1,2)=(2,-2).
Hence

%f(X(t)) = Vf(x(0)) -x'(0) = (2,-2) - (1,-1) = 4.
t=0

For (d) we note that the normal vector to the tangent plane at (z,y, f(x,y)) is

(2z—y+1y,(x—2y+1)x), —1).

Setting this equal to a(1,0, 1), we see we must have a = —1, and hence
2r—-—y+1ly = -1
(x—2y+1l)zx = 0

From the second equation we have that either x = 0 or x = 2y — 1. If x = 0, then the first equation
becomes (—y + 1)y = —1 which has the roots y = (14 /5)/2. Hence we have the points

1-V5 1+V5
(b5F) i (n255).

If z = 2y — 1, the second equation becomes 3y% — 4 = 1, which has no real roots. Hence there

are only two such points, which are listed above.

Extra Credit: Let wi, wo and w3 be three vectors in R3 such that wy x w3 # 0. Consider the
curve
X(t) =twi + t2W2 + t3W3 .

Show that this curve is planar if w; - wo X w3 = 0, and for more extra credit, show that “if” can
be upgraded to “if and only if”.



SOLUTION: We compute
v(t) = wi + 2two + 3t*ws3 and a(t) = 2wy + 6tws .

Now, wi - wg X w3 = 0 if and only if wy lies in the plane spanned by ws and ws. In this case,
we see from the calculation obove that for all ¢, (¢) and a(t) belong to the plane given by

(wog xwg) - x=0.

This means that "
w W
B(t)=+—2>""3

[wa x wsl| -
Hence the torsion is zero, and the curve is planar.

Conversely., if the curve is planar, for all ¢, v(¢) x a(t) is a multiple of v(0) x a(0) = wy X wa.
But then wo X wg and w3 X wi must also be multiples of wy x wy. Therefore,

(wg X w3) - [(W3 X wq) X (W] X wg)] =0
Now recall the identity proved in Exercise 1.37:

(bxc)-[(cxa)x (axb)=]a-(bxc)?.
Applying this inequality, we see that

|W1 . (W2 X W3)|2 = 0.



