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1: Let a = (1, 1, 1)

(a) Find a vector x such that

x× a = (−7, 2, 5) and x · a = 0 .

(b) There is no vector x such that

x× a = (1, 0, 0) and x · a = 0 .

Show that no such vector exists.

SOLUTION: For any vector x,

a× (a× x) = −‖a‖2x⊥ ,

where x⊥ is the component of x orthogonal to a. If x · a = 0, this reduces to

x = − 1

‖a‖2
(x× a)× a = −1

3
(−7, 2, 5)× (1, 1, 1) = (−1, 4,−3) .

For (b), note that (1, 0, 0) is not orthogonal to a, and hence no vector can satisfy x×a = (1, 0, 0)

since the cross product of rwo vectors is orthogonal to each of them.

2: Let P1 denote the plane through the three points a1 = (1, 2, 1) a2 = (−1, 2,−3) and a3 =

(2,−3,−2). Let P2 denote the plane through the three points b1 = (1, 1, 0) b2 = (1, 0, 1) and

b3 = (0, 1, 1).

(a) Find equations for the planes P1 and P2.

(b) Parameterize the line given by P1 ∩ P2, and find the distance between this line and the point

a1.

(c) Consider the line through b1 and b2. Determine the point of intersection of this line with the

plane P1, and find a parametrization of the line given by reflecting this line off plane P1. That is,

the direction vector of the reflected line is what you get by reflecting the direction vector of the

original line using the unit normal direction u to the plane.
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SOLUTION: We compute

(a2 − a2)× (a3 − a1) = 10(−2,−1, 1) .

Hence the equation is

(−2,−1, 1) · (x− 1, y − 2, z − 1) = 0

which reduces to

2x+ y − z = 3 .

In the same way, or by inspection using the symmetry, the equation of the other plane is

x+ y + z = 2 .

For (b), looking for a solution x0 of the system 2x+ y − z = 3 and x+ y + z = 2 with x = 0,

we find

x0 +
1

2
(0, 5,−1) .

The direction vector v is the cross product of the normal vectors to the planes: v = ((−2,−1, 1)×
(1, 1, 1) = (−2, 3,−1). Hence the parameterization is

x(t) =
1

2
(0, 5,−1) + t(−2, 3,−1) .

The equation of the line then is

(−2, 3,−1)×
(
x− 1

2
(0, 5,−1)

)
= 0 .

The distance in question therefore is

1

‖(−2, 3,−1)‖

∥∥∥∥(−2, 3,−1)×
(
a1 −

1

2
(0, 5,−1)

)∥∥∥∥ =
‖4, 2,−2‖
‖(−2, 3,−1)‖

= 2
√

3/7 .

For (c), the line through b1 and b2 has direction vector w := b2 − b1 = (0,−1, 1). Hence this

line is parameterized by

x(t) = (1, 1, 0) + t(0,−1, 1) = (1, 1− t, t) .

Plugging this into the equation 2x+ y − z = 3 for P1, we find t = 0; i.e., (1, 1, 0) is on the line and

on the plane P1. So this is the reflection point.

The reflected line therefore has (1, 1, 0) as its base point, and has hu(w) as its direction vector,

when u is the unit normal to the plane P1. Then since

u =
1√
6

(2, 1,−1) and hu(w) = w − 2(w · u)u ,

we find

hu(w) =
1

3
(−4, 1,−1) .

Thus, the reflected line is given by

x(t) = (1, 1, 0) +
1

3
(−4, 1,−1) .
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3: Let x(t) be the curve given by

x(t) = (et cos(t), et sin(t), et) .

(a) Compute the arc length s(t) as a function of t, measured from the starting point x(0), and find

an arc length parameterization of this curve

(b) Compute curvature κ(t) as a function of t.

(c) Find an equation for the osculating plane at time t = 0

SOLUTION: We compute

v(t) = x′(t) = et(cos t− sin t, cos t+ sin t, 1) and hence v(t) =
√

3et .

Thus,

s(t) =

∫ t

0

√
3eudu =

√
3(et − 1) ;

Solving s =
√

3(et − 1), we find

t(s) = ln

(
s√
3

+ 1

)
.

The arc length parameterization is then given by x(t(s)), which is(
s√
3

+ 1

)(
cos

(
ln

(
s√
3

+ 1

))
, sin

(
ln

(
s√
3

+ 1

))
, 1

)
.

Next, to find the curvature, we compute

a(t) = v′(t) = et(−2 sin t, 2 cos t, 1)

and

v(t)× a(t) = e2t(sin t− cos t,− sin t− cos t, 2) .

Thus, ‖v(t)× a(t)‖ = 6e2t. The curvature is

κ(t) =
‖v(t)× a(t)‖

v3(t)
=

2√
3
e−t .

Finally, the normal to the osculating plane at t = 0 is

v(0)× a(0) = (−1,−1, 2) .

We take x(0) = (1, 0, 1)) as the base point. The equation then is

−x− y + 2z = 1 .

4: (a) Let f(x, y) be given by

f(x, y) =


xy

|x|+ |y|
(x, y) 6= (0, 0)

0 (x, y) 6= (0, 0) .
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Does

lim
(x,y)→(0,0)

f(x, y)

exist? If so, evaluate the limit. If not, explain why not.

(b) Let g(x, y) be given by

g(x, y) =


x2 + y2√

x2 + y4 + 1− 1
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

Does

lim
(x,y)→(0,0)

g(x, y)

exist? If so, evaluate the limit. If not, explain why not.

SOLUTION: For (a),

0 ≤ |f(x, y)| = |x||y|
|x|+ |y|

≤ |x||y|
|x|

= |y| ≤ ‖x‖ .

Hence, by the squeeze principle,

lim
(x,y)→(0,0)

f(x, y) = 0 .

For (b), Note thas as (x, y) approaches (0, 0), both the numerator and the denominator tend

to zero. Since y4 goes to zero more quickly than y2 as x tends to zero, let us look at what happens

as x approaches (0, 0) along the y-axis:

g(0, y) =
y2√

1 + y4 − 1
.

Two applications of l’Hospital’s rule show that

lim
y→0

g(0, y) =∞ .

The function is not continuous at (0, 0).

5: Let f : R2 → R be given by

f(x, y) = x2y + yx− xy2 .

(a) Compute the gradient of f , and find all critical points of f .

(b) Find the equation of the tangent plane to the graph f at the point (1, 1).

(c) Let x(t) = (1 + t− t3, 2− t+ t2). Compute
d

dt
f(x(t))

∣∣∣∣
t=0

.

(d) Find all points (x, y) at which the tangent plane to the graph of f is orthogonal to the line

parameterized by t(1, 0, 1).

SOLUTION: For (a), we compute

∇f(x, y) = ((2x− y + 1)y , (x− 2y + 1)x) .
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To find the critical points, we solve

(2x− y + 1)y = 0

(x− 2y + 1)x = 0

We can solve the first equation by taking y = 0 or y = 2x + 1. If y = 0, the second equation

becomes (x + 1)x = 0 which is solved by x = −1 and x = 0. Hence (−1, 0) and (0, 0) are critical

points. If y = 2x + 1, the second equation becomes (3x + 1)x = 0, which is solved by x = 0 and

x = −1/2. Thus (0, 1) and (−1/3, 1/3) are critical points. The four that we have listed above

constitute the complete set of critical points.

For (b), we compute ∇f(1, 1) = (2, 0) and f(1, 1) = 1 Hence

z = f(x, y) ≈ 1 + (2, 0) · (x− 1, y − 1) = 2x− 1 .

The equation is z = 2x− 1, or equivalently,

2x− z = 1 .

For (c) we compute

x(0) = (1, 2) x′(0) = (1,−1) and ∇f(1, 2) = (2,−2) .

Hence
d

dt
f(x(t))

∣∣∣∣
t=0

= ∇f(x(0)) · x′(0) = (2,−2) · (1,−1) = 4 .

For (d) we note that the normal vector to the tangent plane at (x, y, f(x, y)) is

((2x− y + 1)y , (x− 2y + 1)x) , −1) .

Setting this equal to a(1, 0, 1), we see we must have a = −1, and hence

(2x− y + 1)y = −1

(x− 2y + 1)x = 0

From the second equation we have that either x = 0 or x = 2y−1. If x = 0, then the first equation

becomes (−y + 1)y = −1 which has the roots y = (1±
√

5)/2. Hence we have the points(
0,

1−
√

5

2

)
and

(
0,

1 +
√

5

2

)
.

If x = 2y − 1, the second equation becomes 3y2 − y = 1, which has no real roots. Hence there

are only two such points, which are listed above.

Extra Credit: Let w1, w2 and w3 be three vectors in R3 such that w2 ×w3 6= 0. Consider the

curve

x(t) = tw1 + t2w2 + t3w3 .

Show that this curve is planar if w1 ·w2 ×w3 = 0, and for more extra credit, show that “if” can

be upgraded to “if and only if”.
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SOLUTION: We compute

v(t) = w1 + 2tw2 + 3t2w3 and a(t) = 2w2 + 6tw3 .

Now, w1 ·w2 ×w3 = 0 if and only if w1 lies in the plane spanned by w2 and w3. In this case,

we see from the calculation obove that for all t, (
¯
t) and a(t) belong to the plane given by

(w2 ×w3) · x = 0 .

This means that

B(t) = ± w2 ×w3

‖w2 ×w3‖
.

Hence the torsion is zero, and the curve is planar.

Conversely., if the curve is planar, for all t, v(t)× a(t) is a multiple of v(0)× a(0) = w1 ×w2.

But then w2 ×w3 and w3 ×w1 must also be multiples of w1 ×w2. Therefore,

(w2 ×w3) · [(w3 ×w1)× (w1 ×w2)] = 0 .

Now recall the identity proved in Exercise 1.37:

(b× c) · [(c× a)× (a× b)] = |a · (b× c)|2 .

Applying this inequality, we see that

|w1 · (w2 ×w3)|2 = 0.


