Solutions for Practice Test I, Math 291 Fall 2012

October 16, 2012

1: (a) Find a right handed orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ such that \mathbf{u}_1 is a positive multiple of (2,2,1) and \mathbf{u}_2 is orthogonal to (1,1,0).

In the rest of this problem, $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ refers to this orthonormal basis.

(b) Let $\mathbf{x}_1 = (1, 2, 3)$ and $\mathbf{x}_2 = (3, 2, 1)$. Consider the two lines $\mathbf{x}_1(s) = \mathbf{x}_1 + s\mathbf{u}_1$ and $\mathbf{x}_2(t) = s\mathbf{u}_1 + s\mathbf{u}_1$ $\mathbf{x}_2 + t\mathbf{u}_2$. Compute numbers y_1 , y_2 and y_3 such that

$$\mathbf{x}_1 - \mathbf{x}_2 = y_1 \mathbf{u}_1 + y_2 \mathbf{u}_2 + y_3 \mathbf{u}_3 ,$$

and compute

$$\|\mathbf{x}_1(s) - \mathbf{x}_2(t)\|^2$$

as a function of s and t.

(c) Find the point on the line parameterized by $\mathbf{x}_1(s)$ that is closest to the line parameterized by $\mathbf{x}_2(t)$, and find point on the line parameterized by $\mathbf{x}_2(t)$ that is closest to the line parameterized by $\mathbf{x}_1(t)$.

SOLUTION: For (a) we normalize (2,2,1) to get $\mathbf{u}_1 = \frac{1}{3}(2,2,1)$. We compute $(2,2,1) \times (1,1,0) = (-1,1,0)$.

This vector is orthogonal to both (2,2,1) and (1,1,0), and so we take $\mathbf{u}_1 = \frac{1}{\sqrt{2}}(-1,1,0)$. (You could also use $\mathbf{u}_1 = -\frac{1}{\sqrt{2}}(-1, 1, 0)$ which you would get taking the cross product in the other order.)

Finally, continuing with the first choice for \mathbf{u}_2 made above, we take

$$\mathbf{u}_3 = \mathbf{u}_1 \times \mathbf{u}_2 = \frac{1}{3\sqrt{2}}(-1, -1, 4)$$
.

For (b), we compute $x_1 - x_2 = (-2, 0, 2)$, and then

$$(\mathbf{x}_1 - \mathbf{x}_2) \cdot \mathbf{u}_1 = -\frac{2}{3}$$
$$(\mathbf{x}_1 - \mathbf{x}_2) \cdot \mathbf{u}_2 = \sqrt{2}$$
$$(\mathbf{x}_1 - \mathbf{x}_2) \cdot \mathbf{u}_3 = \frac{5}{3}\sqrt{2}$$

Therefore,

$$(y_1, y_2, y_3) = \left(-\frac{2}{3}, \sqrt{2}, \frac{5}{3}\sqrt{2}\right)$$
.

It then follows that the coordinates of $\mathbf{x}_1(s) - \mathbf{x}_2(t)$ with respect to the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ are

$$(y_1 + s, y_2 - t, y_3) = \left(s - \frac{2}{3}, \sqrt{2} - t, \frac{5}{3}\sqrt{2}\right)$$

.

Therefore,

$$\|\mathbf{x}_1(s) - \mathbf{x}_2(t)\|^2 = \left(s - \frac{2}{3}\right)^2 + \left(\sqrt{2} - t\right)^2 + \left(\frac{5}{3}\sqrt{2}\right)^2$$

(Do not expand this; completed squares are a good thing; leave them be.)

For (c), it is evident from our computation above that $\|\mathbf{x}_1(s) - \mathbf{x}_2(t)\|$ is minimized by choosing s = 2/3 and $t = \sqrt{2}$. We then compute

$$\mathbf{x}_1(2/3) = (1, 2, 3) + \frac{2}{9}(2, 2, 1) = \frac{1}{9}(13, 22, 29)$$

and

$$\mathbf{x}_2(\sqrt{2}) = (3,2,1) + (-1,1,0) = (2,3,1)$$

These are the two closest points.

2: For t > 0, let $\mathbf{x}(t)$ be the curve given by

$$\mathbf{x}(t) = \left(2t^2 + 2t^3/3, -t^2 - 4t^3/3, 2t^2 - 4t^3/3\right)$$

(a) Compute the arc length along the curve between $\mathbf{x}(0)$ and $\mathbf{x}(t)$ as a function of t.

(b) Compute curvature $\kappa(t)$ as a function of t, and the binormal vector $\mathbf{B}(t)$.

(c) Find the torsion $\tau(t)$ as a function of t, justifying your answer.

SOLUTION: For (a), we compute

$$\mathbf{v}(t) = \mathbf{x}'(t) = (4t + 2t^2, -2t - 4t^2, 4t - 4t^2),$$

and hence

$$v(t) = ||\mathbf{v}(t)| = 6t\sqrt{1+t^2}$$
.

Hence the arc length is

$$\int_0^t 6r\sqrt{1+r^2} dr = 2[(1+t^2)^{3/2} - 1]$$

For (b), we compute

$$\mathbf{a}(t) = (4 + 4t , -2 - 8t , 4 - 8t) ,$$

and then

$$\mathbf{v}(t) \times \mathbf{a}(t) = 12t^2(2, 2, -1)$$
.

Therefore $\|\mathbf{v}(t) \times \mathbf{a}(t)\| = 36t^2$, and so

$$\kappa(t) = \frac{\|\mathbf{v}(t) \times \mathbf{a}(t)\|}{v^3(t)} = \frac{36t^2}{(6t(1+t^2)^{1/2})^3} = \frac{1}{6t(1+t^2)^{3/2}} \ .$$

Finally

$$\mathbf{B}(t) = \frac{1}{\|\mathbf{v}(t) \times \mathbf{a}(t)\|} \mathbf{v}(t) \times \mathbf{a}(t) = \frac{1}{3}(2, 2, -1) \ .$$

For (c), since $\mathbf{B}(t)$ is constant, $\tau(t) = 0$.

Extra Credit: Let $\mathbf{x}(t)$ be the curve from Problem 2. Find the distance from $\mathbf{x}(t)$ to to the plane 2x + 2y - z = 3 as a function of t, as well as the volume of the tetrahedron with vertices $\mathbf{x}(0)$, $\mathbf{x}(1)$, $\mathbf{x}(3)$, and $\mathbf{x}(4)$. Justify your answers.

SOLUTION: Since the torsion is zero, the curve is planar, and the equation of the plane of motion is $\mathbf{B} \cdot (\mathbf{x} - \mathbf{x}(0)) = 0$, which is

$$\frac{1}{3}(2,2,-1)\cdot(x,y,z) = 0 \; .$$

This plane is parallel to the plane 2x + 2y - z = 3, and hence the distance to this plane is constant. Since (0, 0, -3) lies in the plane 2x + 2y - z = 3, the distance between the two planes, and hence between the curve and the plane, is

$$|\mathbf{B} \cdot ((0,0,-2) - \mathbf{x}(0))| = \frac{1}{3} |(2,2,-1) \cdot (0,0,-3)| = 1$$
.

Next, since $\mathbf{x}(0)$, $\mathbf{x}(1)$, $\mathbf{x}(3)$, and $\mathbf{x}(4)$ lie in a plane, the tetrahedron spanned by them is degenerate and contains zero volume.

3: Let f(x, y) and g(x, y) be given by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases} \quad \text{and} \quad g(x,y) = \begin{cases} \frac{x^2y^2}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(a) Is the function f continuous at (0,0)? Is is bounded on the closed unit disc $\{(x,y) : x^2 + y^2 \le 1\}$? Justify your answers.

(b) Is the function g continuous at (0,0)? Is is bounded on the closed unit disc $\{(x,y) : x^2 + y^2 \le 1\}$? Justify your answer.

SOLUTION: For (a), we note that since $|x^2y| \le (x^4 + y^2)/2$, with equality if any only if $y = \pm x^2$, we have that for all $(x, y) \ne (0, 0)$,

$$-\frac{1}{2} \le \frac{x^2 y}{x^4 + y^2} \le \frac{1}{2} \; .$$

Hence this function is bounded on all of \mathbb{R}^2 . However, we see that all along the curve $y = x^2$, $x \neq 0$, we have $f(x, y) = f(x, x^2) = 1/2 \neq 0$. Thus, f takes on the value 1/2 at points that are arbitrarily close to (0, 0) where it takes on the value 0. Thus f is not continuous. Alternately,

$$\frac{1}{2} = \lim_{n \to \infty} f(1/n, 1/n^2) \neq 0 = f(0, 0)$$

while

$$\lim_{n \to \infty} (1/n, 1/n^2) = (0, 0) \; .$$

Thus, f is not continuous.

For (b), by the above, for $\mathbf{x} \neq (0,0)$,

$$|g(\mathbf{x})| \le \frac{1}{2}|y| \le \frac{1}{2}||\mathbf{x}||$$
 (1)

Then since

$$\lim_{t \to 0} \frac{1}{2}t = 0$$

g is continuous by the squeeze principle. Then since continuous functions are always bounded on closed bounded sets, g is bounded on the unit disk. Alternately, from (1) we see that $|g(\mathbf{x})| \leq 1/2$ for $||\mathbf{x}|| \leq 1$.

4: Let f(x, y) be given by

$$f(x,y) = x^2y^2 - xy^2 + x$$
.

(a) Compute the gradient of f, and find all of the critical points, if any, of f.

(b) Find the equation of the tangent plane to the graph of f at the point (-1, 1).

(c) Think of f(x, y) as the altitude on a landscape at the point with horizontal coordinates x, y. Identify the direction of the positive y-axis with due North, and the direction of the positive x-axis with due East.

Find all, points, if any, at which the direction of steepest descent is due West.

SOLUTION: For (a), we compute

$$\nabla f(x,y) = (2xy^2 - y^2 + 1, 2xy(x-1))$$

Thus, (x, y) is a critical pony if and only if (x, y) satisfies

$$2xy^2 - y^2 = -1 2xy(x-1)) = 0.$$

The second equation is satisfied if and only if x = 0, y = 0 or x = 1. Suppose x = 0. The first equation becomes $y^2 = 1$, so $y = \pm 1$. Thus, (0, 1) and (0, -1) are critical points. Suppose y = 0. The first equation becomes 0 = -1, and so there are no critical points with y = 0. Suppose x = 1. The first equation becomes $y^2 = -1$, so there are no critical points with x = 1. Thus, (0, 1) and (0, -1) are the only critical points.

For (b), we evaluate

$$\nabla f(-1,1) = (-2,4)$$
 and $f(-,1) = 1$.

The equation of the tangent plane is

$$z = 1 + (-2, 4) \cdot (x + 1, y - 1) = -2x + 4y - 5$$
.

For (c), since the direction of steepest descent is opposite the direction of the gradient, we seek the set of points (x, y) at which $\nabla f(x, y) = (a, 0)$ with a > 0. In particular,

$$\frac{\partial}{\partial y}f(x,y) = 0$$
 which is $2xy(x-1) = 0$.

This is the set of all points at which either x = 0, y = 0 or x = 1. But we also need

$$\frac{\partial}{\partial x}f(x,y)>0\qquad\text{which is}\qquad 2xy^2-y^2+1>0\ .$$

Thus, for x = 0, we require -1 < y < 1. For y = 0, there is no restriction on x, and for x = 1, there is no restriction on y. Therefore, the set consists of all points (0, y) with -1 < y < 1, and all points (x, 0) and all points (y, 1).

5: Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = x^2y - 4y + x^3$$
.

(a) Find the equation of the tangent plane to the graph of f at the point (1, 2).

(b) Let $\mathbf{x}(t) := (t + t^2, t - t^3)$. Compute

$$\left.\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{x}(t))\right|_{t=1}\,.$$

SOLUTION: For (a), we compute

$$\nabla f(x,y) = (2xy + 3x^2, x^2 - 4)$$
, $\nabla f(1,2) = (7,-3)$ and $f(1,2) = -5$.

Then the equation of the tangent plane is

$$z = -5 + (7, -3) \cdot (x - 1, y - 2)7x - 3y - 6 .$$

For (a), we compute

$$\mathbf{x}(1) = (2,0)$$
, $\mathbf{x}'(1) = (3,-2)$ and $\nabla f(2,0) = (12,0)$.

By the Chain Rule, the answer is

$$\nabla f(\mathbf{x}(1)) \cdot \mathbf{x}'(2) = (12,0) \cdot (3,-2) = 36$$
.