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1: Let f(x, y) = x2 + y2 − 2yx2.

(a) Find all of the critical points of f . Evaluate the Hessian matrix of f at each of these critical

points, and determine where each is a local maximum, a local minimum, a saddle, or undecidable

from the Hessian.

SOLUTION We compute ∇f(x, y) = 2(x(1− 2y), y − x2). Therefore, a critical point (x, y) must

satisfy

x(1− 2y) = 0

y − x2 = 0

From the first equation, either x = 0 or y = 1/2. From the second equation, if x = 0, then y = 0,

and if y = 1/2, then x = ±1/
√

2. Hence there are three critical points:

(0, 0) (1/
√

2, 1/2) and (−1/
√

2, 1/2) .

We next compute

Hessf (x, y) =

[
2− 4y −4x

−4x 2

]
.

Evaluating this at (0, 0), we find

[
2 0

0 2

]
. The two principle curvatures are both 2. Since both

are positive, the surface curves upward from this critical point, which is a local minimum. Since

the two principle curvatures are equal, the contour curves will look circular near this critical point.

Evaluating the Hessian at (±1/
√

2, 1/2), we find ∓

[
0 2

√
2

2
√

2 2

]
. In either case, the principle

curvatures are the roots of

t(t− 2)− 8 = 0

which are 4 and −2. Hence theses two critical points are saddle points: The surface curves upwards

in some directions, and downwards in others.

(b) Sketch a contour plot of f in the vicinity of each of the critical points. Show the computations

that lead to the plots to get credit.
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SOLUTION For the critical point (0, 0), the principle curvatures are 2 and 2, so in an orthogonal

system of coordinates centered on (0, 0), the quadratic approximation takes the from f(0, 0)+2x̃2+

2ỹ2. So the curves are of the quadratic approxmation are of the from 2x̃2 + 2ỹ2 = constant. These

are circles and we do not need the axes to draw them.

For the critical point (1/
√

2, 1/2), the principle curvatures are 4 and −2, and hence in an

orthogonal system of coordinates centered on (0, 0), the quadratic approximation takes the from

f(0, 0) + 2x̃2 − 2ỹ2. To get the direction of the x̃ axis, we form

Hessf (1/
√

2, 1/2)−

[
−2 0

0 −22

]
=

[
2 −2

√
2

−2
√

2 0

]

and take v1 = (2,−2
√

2). That is, we subtract the other principle curvature form the diagonal of

the Hessian, and that the tope row of what is left. This points along the x̃ axis, and the tilde y axis

is orthogonal to that. The remaining critical point is handled the same way. Here is the resulting

sketch:

2: Let f(x, y) = xy. Let D denote the region in the plane consisting of all of the points (x, y) such

that

x2 + 4y2 ≤ 6 .

Find the minimum and maximum values of f in D. Also, find all of the minimizers and maximizers

in D.

SOLUTION We compute ∇f(x, y) = (y, x), and defining g(x, y) = x2 + 4y2 = 6, the constraint

is g(x, y) = 0. We compute ∇g(x, y) = 2(x, 4y), and so Lagrange’s equation yields

x2 = 4y2 ,

so that x = ±2y. Elimonating x from the constraint eqaution we have 8y2 = 6, so that y = ±
√

3/2

and x =
√

3. The maximum value is 3/2, which is achieved at (
√

3,
√

3/2) and (−
√

3,−
√

3/2). The

minimum value is −3/2, which is achieved at (−
√

3,
√

3/2) and (
√

3,−
√

3/2).

3: Let f(x) = (f(x), g(x)) where f(x, y) = xy − x3 − 1/4, and g(x, y) = 1− 4y2 − x2.
(a) How many solutions to the system f(x) = 0 are there? Draw a plot showing their approximate

location.
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(b) In the previous part, you should have found that there is one solution not too far from

x0 = (−1, 1/2) .

Compute [Df (x)], and then use x0 as a starting point for Newton’s method, and compute the

next approximate solution x1.

(c) Evaluate f(x1), and compare this with f(x0).

SOLUTION The equation g(x, y) = 0 describes an ellipse centered at the origin whose major axis

has length 2 and runs along the x-axis, and whose minor axis has length 1 and runs along the y

axis. This is easily sketched. The solution of f(x, y) = 0 is the graph of

y = x2 +
1

4x
.

To understand the graph, we solve

y(x) = 0 , y′(x) = 0 and y′′(x) = 0 .

Each has a unique solution: y(x) = 0 only at x = −2−2/3, y′(x) = 0 only at x = 1/2, and y′′(x) = 0

only at x = −2−2/3.

There is evidently a vertical asymptote at x = 0. For x > 0, y′′(x) > 0, and so so the curve

is convex, with a minimum at x = 1/2. Since y(1/2) = 3/4, the branch of the curve f(x, y) = 0

in the right half plane lies on or above the ;line y = 3/4, and therefore strictly above the ellipse.

There is no intersection with the ellipse in the right half plane.

The branch of the curve f(x, y) = 0 in the left half plane crosses the x axis at x = −2−2/3,

which is inside the ellipse, and has an inflection point there, and the slope is strictly negative for

all x < 0. Hence the curve f(x, y) = 0 crosses the ellipse exactly twice: In the upper left quadrant

it does so a bit to the left of x = −22/3, and in the lower left quadrant it does so a bit to the right

of x = −22/3. Here is a plot:

As you see, there is one solution not to far from (−1, 12/). It would be better to take, say

(−3/4, 1/3), but to make the number come out nicely we will take x0 = (−1, 1/2).
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(b) We compute

[Df (x)] =

[
y − 3x2 x

−2x −8y

]
,

and then

[Df (x0)] = −1

2

[
5 2

−4 8

]
, and f)x0) = (1/4,−1) .

Then

x1 = x0 − [Df (x0)]
−1 f)x0) = (−5/6, 1/3) .

(c) We now compute

f(x1) =

(
11

216
,− 5

36

)
≈ (0.051,−0.139) .

This is already not bad.

4: Let D be the set in R2 given by

2x2 + 2xy + 2y2 ≤ 1 .

Let f(x, y) = x2 + y2. Compute
∫
D f(x, y)dA. (Hint: Find a change of coordinate (u(x, y), v(x, y)

under which 2x2 + 2xy + 2y2 = 1 becomes u2 + v2 = 1. )

SOLUTION Let us write g(x, y) = 2x2 + 2xy + 2y2. This is a quadratic, and we know how to

choose new coordinates to simplify it: We write

g(x, y) = x ·Ax

where x = (x, y) and

A =

[
2 1

1 2

]
.

This is a doubly symmetric 2× 2 matrix, and so eigenvectors are

u1 =
1√
2

(1, 1) and u2 =
1√
2

(1,−1) ,

and the corresponding eigenvalues are 3 and 1. Then with

u(x, y) = u1 · x and v(x, y) = u2 · x , (0.1)

the equation g(x, y) = 1 becomes

3u2 + v2 = 1 .

Finally, if we introduce w :=
√

3u, the equation becomes

w2 + v2 = 1 ,

which is the equation for the unit circle in the w, v plane. Combining (0.1) with w :=
√

3u, we have

(w, v) =
1√
2

[ √
3

√
3

1 −1

]
(x, y) .
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Inverting,

x =
1√
6
w +

1√
2
v and y =

1√
6
w − 1√

2
v ,

and hence

f(x, y) =
1

6
w2 +

1

2
v2 .

Also, ∣∣∣∣ ∂(x, y)

∂(w, v)

∣∣∣∣ =
1√
3
.

Thus, with D̂ denoting the unit disk in the w, v plane,∫
D
f(x, y)dA =

1√
3

∫
D̂

(
1

6
w2 +

1

2
v2
)

dA .

The last integral is easily done in polar coordinates: Let r2 = w2 + v2, w = r cos θ and v = r sin θ.

Then

1√
3

∫
D̂

(
1

6
w2 +

1

2
v2
)

dA =
1√
3

∫ 2π

0

(
1

6
cos2 θ +

1

2
sin2 θ

)
dθ

∫ 1

0
r3dr

=
1√
3

2π

3

1

4
=

π

6
√

3
.

5: (a) Let V be the region in R3 that lies below the graph of z = 1− x2 , and above the graph of

z = y2. Compute the volume of V.

(b) Let S be the part of the paraboloid z = 1 − x2 − y2 that lies above the plane x + z = 1.

Compute
∫
S f(x, y, z)dS where f(x, y, z) = y/

√
x2 + y2. To get full credit, carry the computations

through to the point that only an integral over a single variable remains to be evaluated.

SOLUTION The two surfaces meet where

1− x2 = z = y2

which is at x2 + y2 = 1. It is easy to express the limits of integration in Cylindrical coordinates:

r2 sin2 θ < z < 1− r2 cos2 θ

0 < θ < 2π

0 < r < 1 .

Thus,

vol(V) =

∫
V

1dV =

∫ 2π

0

(∫ 1

0

(∫ 1−r2 cos2 θ

r2 sin2 θ
dz

)
rdr

)
dθ

=

∫ 2π

0

(∫ 1

0
(1− r2)rdr

)
dθ =

π

2
.

(b)
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The key to solving both parts is coming up with a good parameterization. To find the intersec-

tion of the plane and paraboloid, we equate their z values and find

1− x2 − y2 = 1− x

which is the same as

x2 + y2 = x or (x− 1/2)2 + y2 = 1/4 .

This is the circle bounding the disk in the x, y plane centered on (1/2, 0) with radius 1/2. This is

what we would see in a top view diagram. Our surface S is the part of the paraboloid that lies

above this disk. Let us use cylindrical coordinates:

(x, y, z) = (r cos θ, r sin θ, z) .

The equation for the paraboloid is x = 1− r2, and so we have our parameterization

x(r, θ) = (r cos θ, r sin θ, 1− r2) .

The equation x2 + y2 = x translates to r2 = r cos θ, so the limits on our parameters are

0 ≤ r ≤ cos θ and − π/2 ≤ θ ≤ π/2 .

We next compute
∂x

∂r
× ∂x

∂θ
= (2r2 cos θ, 2r2 sin θ, r) . (0.2)

Now we are ready to do part (b). Translating f(x, y, z) into cylindrical coordinates, we find

f(x, y, z) = sin θ. From (refsurel), we find

dS = r
√

4r2 + 1drdθ .

Hence ∫
S
f(x, y, z)dS =

∫ π/2

−π/2

(∫ cos θ

0
r
√

4r2 + 1dr

)
sin θdθ .

The inner integral is easily done by substitution:∫ cos θ

0
r
√

4r2 + 1dr =
1

8

2

3
u3/2

∣∣∣∣4 cos2 θ+1

1

=
1

12
((4 cos2 θ + 1)3/2 − 1) .

We finally have ∫
S
f(x, y, z)dS =

1

12

∫ π/2

−π/2
((4 cos2 θ + 1)3/2 − 1) sin θdθ ,

which is easily evaluated, but this is all we are asked for.

Extra Credit: S be upper hemisphere of the unit sphere in R3. Let f(x, y, z) = xyz. Find the

minimum and maximum values of f on S, and all of the points at which f takes on these values.

Explain how you are taking into account both of the constraints x2 + y2 + z2 = 1 and z ≥ 0.

SOLUTION The functions whose maximum and minimum we seek is pretty symmetric, so let us

find the maximum and minimum on the whole sphere, and see if they occur in the upper hemisphere.
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To do this we write the constrain in the form g(x, y, z) = 1 with

g(x, y, z) = x2 + y2 + z2 .

The Lagrange condition then gives us

∇f(x, y, z) = λ∇g(x, y, z) .

This means

∇f(x, y, z)×∇g(x, y, z) = 0 .

Computing the gradients and cross product, we get the equations

x(y2 − z2) = 0

y(x2 − z2) = 0

z(y2 − x2) = 0

We also have the equation

x2 + y2 + z2 = 1 .

We see that if any two coordinates are zero, the third must be ±1. This give the points

(±1, 0, 0) (0,±1, 0) (0, 0, ,±1) .

Now suppose that only one coordinate, say x is zero. Since y and z are non zero, we can divide by

them and conclude

x2 − z2 = 0

y2 − x2 = 0

Thus we have x2 = y2 = z2, and all coordinates would be zero ,which is impossible. So the only

other choice is all coordinates non-zero. Then we still have x2 = y2 = z2. From the constraint

equation we have that the remaining candidates are

(±1/
√

3,±1/
√

3,±1/
√

3) .

Since the sphere is compact, and f is continuous, there will be a minimum and a maximum. The

maximum is 33/2, and is attained at the points (±1/
√

3,±1/
√

3,±1/
√

3) with an even number of

minus signs. There are such points, namely (−1/
√

3,−1/
√

3, 1/
√

3) and (1/
√

3, 1/
√

3, 1/
√

3) in the

upper hemisphere. Since these are maximizers on the whole sphere, they are certainly maximizers

on the hemisphere. The minimum 3−3/2, and is attained at the points (±1/
√

3,±1/
√

3,±1/
√

3)

with an odd number of minus signs. There are such points, namely (−1/
√

3, 1/
√

3, 1/
√

3) and

(1/
√

3,−1/
√

3, 1/
√

3) in the upper hemisphere. Since these are minimizers on the whole sphere,

they are certainly maximizers on the hemisphere.


