
Chapter 8

PERMUTATIONS,

DETERMINANTS, AND THE

GEOMETRY OF LINEAR

TRANSFORMATIONS

8.1 Permuations

8.1.1 The permutation group

The concept of a transformation group is fundamentally important to modern mathematics, and to

geometry in particular. In this section we introduce a basic example of a transformation group:

the Permutation Group. As we shall explain, the permutation group plays an essential role in the

computations of area, volumes and their higher dimensional generalizations.

Definition 78 (Permutation). A permutation of {1, 2, . . . , n} is a function σ from this set onto

itself.

Recall that “onto” means that for every j in {1, 2, . . . , n}, there is an i with σ(i) = j. We can

specify a permutation σ of {1, 2, . . . , n} by listing the assignments it makes:

1 2 3 · · · n

↓ ↓ ↓ · · · ↓
σ(1) σ(2) σ(3) · · · σ(n)

For example, if n = 3, and σ(1) = 2, σ(2) = 3 and σ(3) = 1,

σ =

1 2 3

↓ ↓ ↓
2 3 1

.
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The arrows do not really tell us much; we can remember that the top row is inputs, and the bottom

row is outputs. Let’s shorten the notation to

σ =
1 2 3

2 3 1

The generalization of this way of writing permutations to higher values of n is plain, and we use it

freely.

There are exactly n! permutations of {1, 2, . . . , n}: Consider any permutation σ of {1, 2, . . . , n}.
There are n choices for the value of σ(1). Make this choice, and then, σ(1) being taken, there are

n − 1 choices remaining for value of σ(2). Next, there are n − 2 choices for σ(3), the value to be

assigned to 3. Continuing in this way, there are n(n− 1)(n− 2) · · · 1 = n! choices to make, and each

one leads to a distinct permutation.

Example 118 (Permutations of {1, 2, 3}). There are six permutations of {1, 2, 3}:

σa =
1 2 3

1 2 3
σb =

1 2 3

2 1 3

σc =
1 2 3

1 3 2
σd =

1 2 3

2 3 1

σe =
1 2 3

3 1 2
σf =

1 2 3

3 2 1
(8.1)

Since permutations of {1, 2, . . . , n} are functions from this set into itself, we can compose them:

If σ1 and σ2 are two permutations of {1, 2, . . . , n}, then σ2 ◦ σ1 is defined by

σ2 ◦ σ1(i) = σ2(σ1(i)) , for each i = 1, . . . , n . (8.2)

Example 119 (Composing permutations). Let us compute σd ◦ σb where σd and σb are the permu-

tations given in (8.1). From (8.1) we see that

σd ◦ σb(1) = σd(σb(1)) = σd(2) = 3

σd ◦ σb(2) = σd(σb(2)) = σd(1) = 2

σd ◦ σb(3) = σd(σb(3)) = σd(3) = 1

Thus,

σd ◦ σb =
1 2 3

3 2 1
= σf .
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In this example, the composition product of two permutations was another permutation. In fact,

the composition of two permutations is always a permutation: Consider any two permutations σ2

and σ1 of {1, 2, . . . , n}. To see that σ2 ◦ σ1 is also a permutation, we just need to check that for

each j in {1, 2, . . . , n}, there is an i such that σ2 ◦ σ1(i) = j. But since σ2 is a permutation, there

is a k so that σ2(k) = j. And since σ1 is a permutation, there is an i so that σ1(i) = k. Then

σ2 ◦ σ1(i) = σ2(σ1(i)) = σ2(k) = j. We have found the i for which σ2 ◦ σ1(i) = j, so σ2 ◦ σ1 is a

permutation.

The permutation σa at the upper left of the list in (8.1) is called the identity permutation since

it just sends each element of {1, 2, 3} to itself. This has an obvious generalization to other values

of n. Moreover, every permutation σ has an inverse, σ−1, which simply sends any j in back to the

integer i in {1, 2, . . . , n} from whence it came. (Since {1, 2, . . . , n} is a finite set, and since σ is onto,

it is also one–to–one. Indeed, if σ(i) = σ(j) for i 6= j, it would have spent two of n “shots” at hitting

a single target, which would preclude hitting all n. So σ is necessarily one–to–one from {1, 2, . . . , n}
onto itself, and hence invertible.)

The inverse too is a map of {1, 2, . . . , n} onto itself, and hence a permutation. (It is just the

original map “in reverse”).

Definition 79 (Pemutation group). Let Sn denote the set of all n! permutations of {1, . . . , n},
equipped with the composition product σ1 ◦ σ2. This is the permutation group on {1, . . . , n}.

The term “group” has a precise technical meaning in mathematics; It is a generalization of

the more concrete notion of a “transformation group” which is what the permutations group is: A

transformation group on a set X is a set G of invertible functions from X to X such that whenever

g ∈ G, then g−1 ∈ G, and such that whenever g1, g2 ∈ G, then g1◦g2 ∈ G. Note that, as a consequence

of the definition, G constains the identity transformation i(x) = x for all x ∈ X. Since Sn contains

all invertible transformations form {1, . . . , n} into itself, it is the largest transformation group on

{1, . . . , n}.

8.1.2 The character of a permutation

In this subsection, we define a function χ on Sn with values in {−1, 1}, called the character, that

is essential to the theory of determinants. The definition of χ depends on another function which

measures the “degree of mixing” of a permutation σ, or in other words, “how far σ is from the identity

permutation”.

Consider once more the list (8.1) of permutations. Except for the identity permutation, σa, all

of these permutations “mix things up” to some extent. In fact, we have arranged these permutations

in an order that reflects a measure of “how much mixing” is involved in each one, starting from

no mixing in the identity transformation
1 2 3

1 2 3
at the upper left, to the most mixing in the

“order reversing” permutation
1 2 3

3 2 1
at the lower right. Now, you may well ask: In what sense

is the order reversing permutation “farthest from the identity’? After all, it does send 2 to 2, and
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other permutations have no such fixed points. To answer this question, we must explain how we

quantitatively measure “the degree of mixing” .

We shall quantify the the degree of mixing of a permutation σ by counting “the number of pairs

it puts out of order”: Consider the set P := {(i, j) : 1 ≤ i, j ≤ n} of all distinct ordered pairs chosen

from {1, . . . , n}, which is a set of n(n− 1) elements. Define the disjoints sets

Pup = {(i, j) : 1 ≤ i < j ≤ n} and Pdown = {(i, j) : 1 ≤ j < i ≤ n} .

Pup is the set of all “increasing” pairs and Pdown is the set of all “decreasing” pairs. Note that both

of these sets consist of n(n− 1)/2 ordered pairs, and P = Pup ∪ Pdown.

For any σ ∈ Sn, the function fσ from P into itself defined by

fσ(i, j) = (σ(i), σ(j))

is invertible. In fact, it is a permutation of the elements of P .

Since fσ is one-to-one and onto, each pair that fσ moves out of Pup into Pdown must be replaced

by a pair that fσ moves out of Pdown into Pup so that the number of pairs that fσ moves out of Pup

into Pdown coincides with the number of pairs it moves out of Pdown into Pup: It is simply the number

of pairs that fσ “swaps” between Pdown and Pup.

Definition 80 (Definition (Degree of mixing). The degree of mixing of a permutation σ of {1, 2, . . . , n}
is the number of pairs of integers (i, j) in {1, 2, . . . , n} with

i < j and σ(i) > σ(j) . (8.3)

This number is denoted D(σ). In terms of the notation introduced in the preceding paragraph, D(σ)

is the number of pairs that fσ swaps between Pdown and Pup. The more “reversed” pairs, the more

mixing there is.

Example 120 (Computing the degree of mixing). Let us compute D(σ) for each of the six permu-

tations of {1, 2, 3}. There are exactly three pairs (i, j) with i < j, namely

(1, 2) (1, 3) (2, 3) .

To compute the degree of mixing of σ, we look at

(σ(1), σ(2)) (σ(1), σ(3)) (σ(2), σ(3)) ,

and count the number of these pairs that are “out of order”. You can easily check that

D(σa) = 0 D(σb) = 1 D(σc) = 1 D(σd) = 2 D(σe) = 2 D(σf ) = 3 .

Thus, with this definition of the degree of mixing, the order reversing permutation
1 2 3

3 2 1
has the

highest degree of mixing among all permutations of {1, 2, 3}.

Lemma 18 (Degree of mixing and inverses). For each σ ∈ Sn,

D(σ−1) = D(σ) .
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Proof: Let fσ be the invertible function on pairs induced by σ, as explained above. Then evidently

(fσ)
−1 = fσ−1 . However many pairs fσ swaps between Pup and Pdown, fσ−1 swaps the same same

number back again in undoing the effects of fσ.

Example 121 (A graphical view of the degree of mixing). There is a very good graphical way to

compute D(σ) that I have learned from Roe Goodman: For example, start from

1 2 3

1 2 3

which denotes the identity permutation. Now, to represent any other permutation σ on {1, 2, 3},
simply draw in arrow running from i in the top row to σ(i) in the bottom row for i = 1, 2, 3. Do

this for each of the permutations in the previous example, and note that D(σ) is exactly the number

of intersection points of the three arrows. With a bit of thought, you will be able to see that this

generalizes to any value of n, and that the number of intersection points always counts the number

of out-of-order pairs.

The definition of D(σ) is useful because of the way it interacts with the composition product:

Consider the following question:

• Given two permutations σ1 and σ2 of {1, 2, . . . , n}, what can we say about D(σ2 ◦ σ1)?

Lemma 19 (Degree of mixing and composition). For any σ1, σ2 ∈ Sn,

D(σ2 ◦ σ1) = D(σ2) +D(σ1)− 2c (8.4)

where c is a non-negative integer.

Proof: First, in applying σ1, we reverse the order of D(σ1) pairs. Then, applying σ2 after that, we

reverse the order of D(σ2) pairs. So the number of pairs that are reversed by σ2 ◦σ1 is no more than

D(σ1) +D(σ2).

However, some of the pairs that σ2 reverses may have already been put out of order by σ1. In

this case, σ2 puts them back in order. An extreme case is when σ2 = (σ1)
−1. Then σ2 undoes all of

the mixing done by σ1, and D(σ2 ◦ σ1) = 0.

So we conclude that 0 ≤ D(σ2 ◦ σ1) ≤ D(σ1) +D(σ2). We can say more: Suppose that when

σ2 is applied, c pairs that had been put out of order by σ1 are “reordered” when we apply σ2. Then,

• Of the D(σ1) pairs reversed by σ1, exactly D(σ1)− c are still reversed after applying σ2.

• Of the D(σ2) pair reversals created by σ2, c are “used up” undoing reversals created by σ1, and so

exactly D(σ2)− c new reversals are created.

Adding things up, D(σ2 ◦ σ1) = (D(σ1)− c) + (D(σ2)− c) = D(σ1) +D(σ2)− 2c, which proves

(8.4).

We now come to our first application of Lemma 19. Note that that whatever c is in (8.4), 2c is

always an even integer, and so (−1)2c = 1, and

(−1)D(σ2◦σ1) = (−1)D(σ1)(−1)D(σ1) . (8.5)
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Definition 81 (Character of a Permutation). The character χ(σ) of a permutation σ is defined by

χ(σ) = (−1)D(σ) . (8.6)

where D(σ) is given by (1.7). A permutation σ is called an even permutation if χ(σ) = 1, and an

odd permutation if χ(σ) = −1.

The key property of the character function is that χ(σ2◦σ1) = χ(σ2)χ(σ1). That is, the character

of a product equals the product of the characters. This follows directly from (8.5). In Example 121

σa, σd and σe are even permutations whereas σb, σc and σf are odd permutations.

If you want to determine χ(σ) for a given permutation σ you need not compute D(σ) first, and

then apply the definition (8.6). There are some general rules for particular kinds of permutations.

Definition 82 (Pair Permutations). For each i < j in {1, 2, . . . , n} the pair permutation σi,j is

defined by

σi,j(i) = j , σi,j(j) = i and σi,j(k) = k for k 6= i, j . (8.7)

It is called an adjacent pair permutation in case j = i + 1 for i < n, or if (i, j) = (n, 1); i.e., if j

follows i in the cyclic order on {1, . . . , n}.

Example 122. For n = 4, σ2,4 =
1 2 3 4

1 4 3 2
.

Notice that each pair permutation is its own inverse – applying it twice swaps the reversed pair

back into place.

Next notice that for each adjacent pair permutation σi,i+1, D(σi,i+1) = 1, and hence χ(σi,i+1) =

−1. What about general pair permutations?

• For any i < j, σi,j can be written as the product of 2k−1 adjacent pair permutations where k = j−i.

Therefore, since the character of a product is the product of the characters,

χ(σi,j) = (−1)2k−1 = −1

for every pair permutation, adjacent or not.

To justify the claim about σij with i < j , write j = i+ k. Then one can “move” i to the right

of j using k adjacent pair permutations. One can then move j back to the ith spot with k − 1 pair

permutations. Only k − 1 are required, because the last pair permutation used to move i into the

jth place already moved j one place to the left.

We summarize the discussion in the following theorem:

Theorem 73 (Properties of the character). For any two permutations σ1 and σ2 of {1, 2, . . . , n},

χ(σ2 ◦ σ1) = χ(σ2)χ(σ1) . (8.8)

Moreover, for any pair permutation σi,j,

χ(σi,j) = −1 . (8.9)
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The theorem gives us a convenient way to compute χ(σ): Bring the sequence (1, 2, . . . , n) into

the order (σ(1), σ(2), . . . , σ(n)) by swapping pairs; that is, by pair permutations. Then χ(σ) is the

product of the characters of these pairs permutations, so it is (−1)ℓ, where ℓ is the number of pair

permutations you used.

Example 123 (Computing χ(σ) counting pair permutations). Consider σ =
1 2 3 4

4 1 3 2
. We can

transform (1, 2, 3, 4) to (4, 1, 3, 2) using pair permutations as follows:

(1, 2, 3, 4)→ (4, 2, 3, 1)→ (4, 1, 3, 2)

or as well by

(1, 2, 3, 4)→ (1, 2, 4, 3)→ (1, 4, 2, 3)→ (4, 1, 2, 3)→ (4, 1, 3, 2)

In the first case we used 2 pair permutations, and in the second case we used 4. Either way, we see

χ(σ) = (−1)2 = (−1)4 = 1, so σ is even.

You might wonder why we did not define χ(σ) to be (−1)ℓ where ℓ is the number of “pair

swaps” required to produce σ. The point is this: Suppose you could write some σ as a product of 7

pair permutations, and also 242 pair permutations. Then you would have χ(σ) = (−1)7 = −1 and

χ(σ) = (−1)242 = 1, and both cannot be right. If this happened, χ(σ) = (−1)ℓ would not be a well

defined function.

Evidently, our analysis above implies that for any given permutation σ, if there is a way to write

σ as a product of an odd number of pair permutations, then every way of writing σ as a product of

pair permutations uses an odd number of them. This fact is not obvious! We know it is true because

we have proved Lemma 19.

At this point we have covered as much of the theory of the permutation group as we shall use

in explaining the theory of determinants. However, the permutation group is such a fundamental

example of a transformation group, and the notion of a transformation group is so essential to modern

analysis and geometry, that it is worthwhile to go somewhat further with the theory of permutations,

and to study Sn as a metric space. We do this in the next subsection.

8.1.3 The permutation group as a metric space

Definition 83 (Distance in Sn). Let ̺ be the function on Sn × Sn given by

̺(σ1, σ2) = D(σ−1
1 ◦ σ2) .

This function is called the length function or distance function on Sn.

It is not hard to see that the length function we have just defined is a metric on Sn. That is, it
satisfies the three requirements of a metric:

(1) For all σ1, σ2 ∈ Sn, ̺(σ1, σ2) ≥ 0, and ̺(σ1, σ2) = 0 ⇐⇒ σ1 = σ2.
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(2) For all σ1, σ2 ∈ Sn, ̺(σ1, σ2) = ̺(σ2, σ1).

(3) For all σ1, σ2, σ3 ∈ Sn, ̺(σ1, σ3) ≤ ̺(σ1, σ2) + ̺(σ2, σ3).

To see that this is the case, note for (1) that ̺ is defined to be a non-negative integer, and

D(σ−1
1 ◦ σ2) = 0 if and only if there are “no crossings” in σ−1

1 ◦ σ2, which is the case if and only if

σ−1
1 ◦ σ2 is the identity, which is the case if and only if σ1 = σ2. For (2), Note that

(σ−1
1 ◦ σ2)−1 = σ−1

2 ◦ σ1

and since, by Lemma 18, D is unaffected by taking inverses,

̺(σ1, σ2) = D(σ−1
1 ◦ σ2) = D((σ−1

1 ◦ σ2)−1) = D(σ−1
2 ◦ σ1) = ̺(σ2, σ1) .

Finally, for (3) we use (8.4) and the fact that, due the to associative nature of composition,

σ−1
1 ◦ σ3 = (σ−1

1 ◦ σ2) ◦ (σ−1
2 ◦ σ3) .

Thus, by (8.4), since 2c ≥ 0 for all non-negative integers c,

̺(σ1, σ3) = D(σ−1
1 ◦σ3) = D((σ−1

1 ◦σ2)◦(σ−1
2 ◦σ3)) ≤ D(σ−1

1 ◦σ2)+D(σ−1
2 ◦σ3) = ̺(σ1, σ2)+̺(σ2, σ3) .

We now explain how one can think of ̺(σ1, σ2) as the length of the shortest path in Sn from σ1

to σ2. Given any σ ∈ Sn, consider the set of permutations

{σ ◦ τ : τ is an adjacent pair parmuation}

We call this set the set of the nearest neighbors of σ in Sn. In terms of the graphical representation

discussed in Example 121, the diagram representing σ differs from the diagram representing any of

its nearest neighbors only in having the tails of two adjacent arrows swapped. (We use the cyclic

order on {1, . . . , n} in which 1 and n are adjacent; 1 follows n.)

Now think of “moving” from σ to σ ◦ τ , where τ is an adjacent pair transposition, as a “step”

from σ to one of its nearest neighbors. By a path in Sn from σ1 to σ2, we mean a sequences of such

steps starting at σ1 and ending at σ2.

Definition 84 (Paths in Sn). For any σ1 and σ2 in Sn, a path from σ1 to σ2 is a sequence {τ1, . . . , τℓ}
of adjacent pair permutations such that

σ2 = σ1 ◦ τ1 · · · ◦ τℓ .

For example, if {τ1, τ2, τ3} is a path from σ1 to σ2, then the sequences of steps

σ1 −→ σ1 ◦ τ1 −→ σ1 ◦ τ1 ◦ τ2 −→ σ1 ◦ τ1 ◦ τ2 ◦ τ3 = σ2

is a sequence of “one step moves between nearest neighbors” that starts at σ1 and ends at σ2.

Theorem 74 (The metric in Sn as a minimal path length). For each σ1, σ2 ∈ Sn, there is a path

from σ1 to σ2, and

̺(σ1, σ2) = min{ ℓ : there exists a path {τ1, . . . , τℓ} from σ1 to σ2} .
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Theorem 74 says that for each σ1, σ2 ∈ Sn, there is a way to get from σ1 to σ2 by making a finite

number of steps from one nearest neighbor to another, and that ̺(σ1, σ2) is the least number of such

steps in which this can be done. The following lemma is the key to the proof.

Lemma 20 (Reduction lemma). For all σ ∈ Sn except the indentity, there is some k with 1 ≤ k ≤
n− 1 such that σ(k) > σ(k + 1). For any such k, let τ be the adjacent pair permutation τ = σk,k+1.

Then

D(σ ◦ τ) = D(σ)− 1 .

Proof: Suppose for each i = 1, . . . , n− 1, σ(i+ 1) > σ(i). Then

σ(1) < σ(2) < · · · < σ(n) .

The only order preserving permutation is the identity, and since σ is not the identity, there is some

k ∈ {1, . . . , n− 1} such that σ(k) > σ(k+1). Let τ denote any adjacent pair permutation σk,k+1 for

some such value of k.

Define the following sets of ordered pair (i, j):

A := { (i, j) : i < k , j > k + 1}
B := { (i, j) : j = k or k + 1 , j > k + 1}
C := { (i, j) : i < k , j = k or k + 1} .

The sets A,B,C are disjoint from each other and from {(k, k + 1)}, and A ∪B ∪ C ∪ {(k, k + 1)} is

the set of all ordered pairs (i, j) with i < j.

Note that for (i, j) ∈ A, (σ(i), σ(j)) = (σ ◦ τ(i), σ ◦ τ(j)). Hence the image of A under fσ is the

same as the image of A under fσ◦τ , and so σ and σ ◦ τ reverse the same number of pairs in A.

Note that for (i, j) ∈ B,

(σ(i), σ(k)) = (σ ◦ τ(i), σ ◦ τ(k + 1)) and (σ(i), σ(k + 1)) = (σ ◦ τ(i), σ ◦ τ(k)) .

Hence the image of B under fσ is the same as the image of B under fσ◦τ , and so σ and σ ◦ τ reverse

the same number of pairs in B.

Note that for (i, j) ∈ C,

(σ(k), σ(j)) = (σ ◦ τ(k + 1), σ ◦ τ(j)) and (σ(k + 1), σ(j)) = (σ ◦ τ(k), σ ◦ τ(j)) .

Hence the image of C under fσ is the same as the image of C under fσ◦τ , and so σ and σ ◦ τ reverse

the same number of pairs in C.

Finally, by the choice of k, σ reverses (k, k + 1), but then by the definition of τ , σ ◦ τ does not.

Hence σ ◦ τ reverses exactly one fewer pair than does σ.

Proof of Theorem 74: First, suppose that {τi, . . . , τℓ} is a path of length ℓ from σ1 to σ2, Then

σ2 = σ1 ◦ τ1 ◦ · ◦ τℓ. Therefore, σ−1
1 σ2 = τ1 ◦ · · · ◦ τℓ and so

D(σ−1
1 σ2) = D(τ1 ◦ · · · ◦ τℓ) .
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Then by Lemma 19

D(τ1 ◦ · · · ◦ τℓ) ≤ D(τ1) +D(τ2 ◦ · · · ◦ τℓ)
= 1 +D(τ2 ◦ · · · ◦ τℓ)

since D(τ) = 1 for any adjacent pair permutation. Proceeding inductively, we find

D(τ1 ◦ · · · ◦ τℓ) ≤ ℓ .

Hence, any path from σ1 to σ2 takes at least D(σ−1
1 σ2) steps.

On the other hand, by Lemma 20, as long as σ1 6= σ2, or what is the same, D(σ−1
2 ◦ σ1) 6= 0,

there exists an adjacent pair permutation τ1 such that

D(σ−1
2 ◦ σ1 ◦ τ1) = D(σ−1

2 ◦ σ1)− 1 .

Next as long as D(σ−1
2 ◦ σ1 ◦ τ1) 6= 0, there exists an adjacent pair permutation τ2 such that

D(σ−1
2 ◦ σ1 ◦ τ1 ◦ τ2) = D(σ−1

2 ◦ σ1 ◦ τ1)− 1

= D(σ−1
2 ◦ σ1)− 2 .

Continuing this way, we find a sequence {τ1, . . . , τD(σ−1

2
◦σ1)

} adjacent pair permutations such that

D(σ−1
2 ◦ σ1 ◦ τ1 ◦ · · · ◦ τD(σ−1

2
◦σ1)

) = 0 .

But this means that σ−1
2 ◦ σ1 ◦ τ1 ◦ · · · ◦ τD(σ−1

1
◦σ2)

is the identity, and therefore,

σ2 = σ1 ◦ τ1 ◦ · · · ◦ τD(σ−1

2
◦σ1)

.

Hence, there exists a path from σ1 to σ2 of length D(σ−1
2 ◦ σ1). Note that (σ−1

2 ◦ σ1)−1 = σ−1
1 ◦ σ2,

and then by Lemma 18,

D(σ−1
2 ◦ σ1) = D(σ−1

1 ◦ σ2) .

Therefore, there exists a path from σ1 to σ2 consisting of D(σ−1
1 ◦ σ2) steps.

By what we have proved above, this is the least number of steps taken in any path from σ1 to

σ2.

8.2 Algebraic properties of the determinant

8.2.1 The determinant formula

We are going to break down the formula for the determinant into “building blocks”. The building

blocks will be two simple functions that we will combine to form the determinant function. The first

one is the character function on the permutations. Here is the second one:

Definition 85 (The function A 7→ σ(A)). For any n × n matrix A, and any permutation σ on

{1, . . . , n}, define the number σ(A) by

σ(A) := Aσ(1),1Aσ(2),2 · · ·Aσ(n),n =

n∏

j=1

Aσ(j),j . (8.10)
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Definition 86 (The determinant function). The determinant function det(A) on the set of n × n

matrices is defined by

det(A) =
∑

σ∈Sn

χ(σ)σ(A) . (8.11)

Let us first check that this definition gives us what we expect for n = 2 and n = 3.

Example 124 (2 × 2 determinants). Consider the general 2 × 2 matrix A =

[
a b

c d

]
. There are

only two permutations of {1, 2} to consider, namely

σ1 =
1 2

1 2
and σ2 =

1 2

2 1
.

Clearly χ(σ1) = 1 and χ(σ2) = −1. Hence det(A) = A1,1A2,2 − A2,1A1,2 = ad − bc, which is the

usual formula.

Example 125 (3×3 determinants). Consider a general 3×3 matrix A. We have already worked out

a list of the six permutations of {1, 2, 3} in (8.1) of the previous section, and computed the characters

of each of them. In the 3× 3 case then, the definition (8.11) leads to

det(A) = A1,1A2,2A3,3 +A2,1A3,2A1,3 +A3,1A1,2A2,3

− A2,1A1,2A3,3 −A1,1A3,2A2,3 −A3,1A2,2A1,3 .

This too is reassuring – the formula (8.11) leads us to the usual formula for 3× 3 determinants.

Theorem 75 (Characteristic properties of the determinant). Let det be the numerically valued

function on the n× n matrices defined by (8.11). Then:

(1) det(A) changes sign when any two rows of A are interchanged.

(2) det(A) is linear in each row of A.

(3) det(In×n) = 1, where In×n denotes the n× n identity matrix.

Moreover, these three properties characterize the determinant: the function A 7→ det(A) is the

only function on the n× n matrices with the three properties (1), (2) and (3).

Proof: To prove (1), suppose that B is obtained from A by interchanging the kth and ℓth rows of

A. Then we have to show that det(B) = − det(A).

To see this, note that Bi,j = Aσk,ℓ(i),j , and hence, for any permutation σ,

σ(B) = (σ ◦ σk,ℓ)(A)

Since σk,ℓ is a pair permutation,

χ(σ ◦ σk,ℓ) = −χ(σ) .

Therefore,

det(B) =
∑

σ

χ(σ)σ(B) = −
∑

σ

χ(σ ◦ σk,ℓ)(σ ◦ σk,ℓ)(A) . (8.12)
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Let τ denote the permutation τ := σ ◦ σk,ℓ. Since σk,ℓ is its own inverse, σ = τ ◦ σk,ℓ. That is,

the map σ 7→ τ := σ ◦ σk,ℓ is a one-to-one map of the set of permutations on {1, . . . , n}. Hence
∑

σ

χ(σ ◦ σk,ℓ)(σ ◦ σk,ℓ)(A) =
∑

τ

χ(τ)τ(A) = det(A) . (8.13)

(In the sum on the middle, we are summing over τ instead of σ, but τ is just a “dummy” variable;

we are summing over all permutations of on {1, . . . , n}. Hence
∑

τ

χ(τ)τ(A) = det(A)). Combining

(8.12) and (8.13) we have det(B) = − det(A), and this proves (1).

To prove (2), we have to show that if

ri = αv + βw

then

det







r1

r2
...

αv + βw
...

rn







= α det







r1

r2
...

v
...

rn







+ β det







r1

r2
...

w
...

rn







. (8.14)

This is true since each product σ(A) = Aσ(1),1Aσ(2),2 · · ·Aσ(n),n contains exactly one factor coming

from the ith row, and hence is a linear function of the entries of the ith row. By definition, det(A)

is a linear combination of the σ(A). A linear combination of linear functions is linear, and so the

determinant is a linear function of the entries of the ith row.

To prove (3), note that by the definition of σ(I), σ(I) = 1 if σ is the identity permutation, and

σ(I) = 0 otherwise. Hence (3) follows from the formula the determinant.

To prove the uniqueness, let f be any function on the n × n matrices that has properties (1),

(2) and (3). Let A be any n × n matrix. Recall that by subtracting multiples of one row from

another, and perhaps swapping rows, in a finite number of steps we can transform A into a matrix

B that is in row echelon form. Since f has properties (1) and (2), by what we have proved so far,

det(B) = (−1)ℓ det(A) where ℓ is the number of row swaps used in transforming A into B.

Since B is a square matrix in row echelon form, either all of its diagonal entries are non-zero, or

else the bottom row (at least) of B is 0. Then, since f has property (2), multiplying the bottom row

of B by 2 doubles f(B). But since the bottom row of B is 0, multiplying the bottom row of B by 2

does not change B, and therefore does not change f(B). The only number that is its own double is

0, and so f(B) = 0 whenever any of its diagonal entries is zero.

If none of the diagonal entries of B is zero, we can do further row operations to “clean out” the

part of B above the diagonal, leaving us with a diagonal matrix D. Since f has properties (1) and

(2), This does not change the value of f , and so

f(A) = (−1)ℓf(B) = (−1)ℓf(D)

where D is the diagonal matrix whose jtth diagonal entry id Bj,j . But then by the linearity of f in
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each row, we can pull out these factors from each row, leaving us with

f(A) = (−1)ℓ
n∏

j=1

Bj,jf(In×n) . (8.15)

Therefore, given that f(In×n) = 1, we have f(A) = (−1)ℓ∏n
j=1Bj,j under the assumption that none

of the diagonal entires of B is zero. However, when any of the diagonal entries is zero, the product

of the diagonal entries is zero, and also as we have explained above, f(A) = 0. Hence (8.15) is valid

without any restrictions.

This gives us a formula for f(A), showing how to compute it in terms of a reduction of A to

row-echelon form. Since for any function f with properties (1), (2) and (3) this formula gives the

value of f , there is at most one such function. Since det(A) is such a function, f(A) = det(A).

Example 126 (Computing determinants using row operations). The formula (8.15) that we have

encountered in the proof of Theorem 75 is very useful for computing determinants, especially for

larger values of n. All one has to do is to reduce A to row echelon form with a finite sequence of row

operations, keeping track of the number of row swaps that is used. For example, consider the matrix

A =




1 2 4

1 3 9

1 4 16


 .

Then subtracting multiples of one row from another, we transform

A→




1 2 4

0 1 5

0 2 12


→




1 2 4

0 1 5

0 0 2




Bu (3), the determinant of the upper triangular matrix on the right is 2. But since our row operations

did not change the value of the determinant, this is also the value of det(A). Hence det(A) = 2. You

can readily check that this is what the usual formula gives as well.

8.2.2 Algebraic properties of the determinant function

Theorem 76 (Determinants and invertibility). Let A be any n× n matrix. Then A is invertible if

and only if det(A) 6= 0.

Proof: This follows immediately from the formula (8.15) that we have derived in the proof of

Theorem 75. As we have seen, the rank of A is n if and only if all of the diagonal entries of B are

non zero. Thus, by (8.15), the rank of A is n if and only if det(A) 6= 0. But the rank of A is n if and

only if A is invertible.

The uniqueness part of Theorem 75 has an important consequence:

Theorem 77 (Product property of the determinant). Let A and B be any n× n matrices. Then

det(AB) = det(A) det(B) .
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Proof: If det(B) = 0, then B is not invertible. When linear transformations are not invertible, they

are neither one to one nor onto, so the transformation generated by B is not one to one, and hence

neither is AB. So AB is not invertible, and thus det(AB) = 0.

It remains to consider the case det(B) 6= 0. Fix such a matrix B, and define a function fB on

the n× n matrices by

fB(A) =
det(AB)

det(B)
.

It is easy to see that swapping two rows of A swaps the same two rows of AB, and subtracting a

mutiiple of one row of A from another results in and subtracting the same multiiple of one row of

AB from another – the same rows also. So fB has properties (1) and (2).

Next, by the previous theorem, if A is not invertible, so that neither is AB, det(AB) = 0, and

hence by the definition of fB , fB(A) = 0. Also by the definition of fB , fB(In×n) = 1. Thus, fB

has the property (3’). By uniqueness part of Theorem 76, this means fB(A) = det(A). But by the

definition of fB , this means det(AB) = det(A) det(B),

It may seem that we have focused on the rows as opposed to the columns in our definition, but

this is not the case:

Theorem 78 (Invariance of the determinant under the transpose). Let A be an n × n matrix and

AT its transpose. Then

det(AT ) = det(A) .

In particular, since the transpose operation swaps rows and columns, det(A) is linear in the columns

of A, and changes sign when two columns of A are swapped.

Proof: Let τ be any permutation on {1, . . . , n}. For any n numbers a1, . . . , an,

n∏

j=1

aj =

n∏

j=1

aτ(j) :

The only difference between the products on the left and the right is that we are doing the multipli-

cation in a different order, but since multiplication is commutative, the order does not matter.

Therefore, for any two permutations σ, τ be any permutation on {1, . . . , n}, and any n×n matrix

A,

σ(A) =

n∏

j=1

Aσ(j),j =

n∏

j=1

Aσ(τ(j)),τ(j) .

Now taking τ = σ−1, we have

σ(A) =
n∏

j=1

Aj,τ(j) =
n∏

j=1

AT
τ(j),j = τ(AT ) .

since the character of the identity permutation is 1, for τ = σ−1, χ(σ ◦ τ) = 1 and so χ(τ) = χ(σ).

Therefore,

det(A) =
∑

σ

χ(σ)σ(A) =
∑

τ

χ(τ)τ(AT ) = det(AT ) .

This proves the theorem.



8.3. GEOMETRIC PROPERTIES OF THE DETERMINANT 341

8.3 Geometric properties of the determinant

In our study of integration in R
2 and R

3, we have seen that the determinant of a 2×2 matrix A gives

the area magnification factor of the linear transformation associated to A, and that the determinant

of a 3× 3 matrix A given the volume magnification factor of the linear transformation associated to

A.

In this section, we present another proof of these results that makes use of the algebraic properties

of the determinant that we have proved in the previous section. This approach has the advantage

that it yields analogous results n×n matrices. The key to all of this is a factorization result for m×n
matrices called the singular value decomposition.

The Singular Value Decomposition Theorem allows us to express anym×n matrix as the product

of three simple matrices: One will be an m × n diagonal matrix; i.e, a matrix whose i, jth entry is

zero when i 6= j. Moreover, the diagonal entries will be non-negative. Such matrices describe very

simple transformations!

The other two factors in the decomposition will be orthogonal matrices. These too are very

simple once one is familiar with their basic properties. However, these bsic properties do require an

introduction. That is provided in the next subsection.

8.3.1 Orthogonal matrices

Definition 87 (Orthogonal matrix). An n × n matrix U = [u1, . . . ,un] is an orthogonal matrix if

and only if {u1, . . . ,un} is an orthonormal basis of Rn.

Theorem 79 (Characteristic properties of orthogonal matrices). Let U be an n × n matrix. Then

the following are equivalent:

(1) U is orthogonal.

(2) ‖Ux‖ = ‖x‖ for all x ∈ R
n.

(3) x · y = (Ux) · (Uy) for all x,y ∈ R
n,

(4) U is invertible, and the inverse of U is the transpose of U ; i.e., U−1 = UT .

(5) The rows of U , {r1, . . . , rn}, are an orthonormal basis of Rn.

Proof: Suppose that (1) is true so that {u1, . . . ,un} is an orthonormal basis of Rn. Then for any

x ∈ R
n, Ux =

∑n
j=1 xjuj and

‖Ux‖2 =

∥∥∥∥∥∥

n∑

j=1

xjuj

∥∥∥∥∥∥

2

=

n∑

j=1

x2j = ‖x‖2 .

Therefore, (1) ⇒ (2).

Now assume that (2 ) is true.

‖U(x+y)‖2 = (Ux+Uy) ·(Ux+Uy) = ‖Ux‖2+2(Ux) ·(Uy)+‖Uy‖2 = ‖x‖2+2(Ux) ·(Uy)+‖y‖2 .
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Also by assumption, ‖U(x + y)‖2 = ‖x + y‖2 = ‖x‖2 + 2x · y + ‖y‖2. Comparing calculations, we

see ‖x‖2 + 2(Ux) · (Uy) + ‖y‖2 = ‖x‖2 + 2x · y + ‖y‖2 for all x,y ∈ R
n. Cancelling ‖x‖2 and ‖y‖2

off both sides, we see that (2) ⇒ (3).

On the other hand, when (3) is true,

ui · uj = (Uei) · (Uej) = ei · ej =




1 i = j

0 i 6= j
.

Thus (3) ⇒ (1). At this point we have proved that (1), (2) and (3) are equivalent.

Now assume that U is orthogonal, and hence (2), is true. To show that U is invertible, suppose

that Ux = Uy, and so 0 = ‖U(x − y)‖ = ‖x − y‖, using (2). This implies that x = y, and so the

linear transformation described by U is one-to-one. By the Fundamental Theorem of Linear algebra,

it is also onto, and hence U is invertible.

Moreover, combining (3) with the fundamental property of the transpose, for all x,y

x · y = Ux · Uy = x · UTUy .

Therefore,

x · (I − UTU)y = 0

for all x,y. Taking x = (I −UTU)y, we see ‖(I −UTU)y‖ = 0 for all y, and hence (I −UTU)y = 0

for all y. This mean that UTUy = y, and since U is invertible, this means that U−1 = UT . Thus

when U is orthogonal, (4) is true.

Next, suppose that (4) is true. Then, by the fundamental property of the transpose, for all x,y

Ux · Uy = x · UTUy = xU−1Uy = x · y

so that (4) ⇒ (3), and hence that U is orthogonal. Hence, (4) is equivalent to U being orthogonal.

Finally, suppose that U is orthogonal. Then since (2) is true, for all x,

‖x‖ = ‖UU−1x‖ = ‖U(U−1x)‖ = ‖U−1x‖ .

This shows that U−1 has the property in (2), and by what we have proved above this means that U

is orthogonal. But since U is orthogonal, U−1 = UT , and so UT is orthogonal. Hence the columns of

UT are orthonormal. But the columns of UT are the rows of U , and so (5) is true for all ortogonal

matrices U .

Conversely, suppose that (5) is true. Then UT has orthonormal columns and is therefore or-

thogonal. But by what we just proved, every orthogonal matrix also has orthonormal rows. Hence

the rows of UT are orthonormal, and this means that the columns of U are orthonormal. Hence U is

orthogonal whenever (5) is true.

One consequence of Theorem 79 is that the set of n × n orthogonal matrices, regarded as a set

of transformations of Rn is a transformation group. Indeed, whenever U is an orthogonal matrix, its

inverse UT is also an orthogonal matrix by Theorem 79: Since both the columns and rows of U are

orthonormal, and since the inverse of U is UT , both the columns and rows of U−1 are orthonormal,



8.3. GEOMETRIC PROPERTIES OF THE DETERMINANT 343

and hence U−1 is orthogonal. Furthermore, if U and V are any two n× n orthogonal matrices, then

for all x ∈ R
n,

‖(V U)x‖ = ‖V (Ux)‖ = ‖Ux‖ = ‖x‖ .

Hence the product V U has property (2) and by Theorem 79 is orthogonal. Thus, the product of

any two orthogonal matrices is again an orthogonal matrix. Since the matrix product corresponds

to the composition of the corresponding linear transformation of Rn, this shows that the set of all

orthogonal matrices, regarded as a set of transformations of Rn is a transformation group.

Definition 88 (The orthogonal group on R
n). The set of all n× n orthogonal matrices is called the

orthogonal group on R
n, and is denoted by O(n).

Theorem 80 (Determinants of orthogonal matrices). Let U ∈ O(n). Then

det(U) = ±1 .

The set of matrices U ∈ O(n) such that det(U) = 1, regarded as a set of transformations of Rn,

forms a transformation group on Rn.

Proof: For all U ∈ O(n), I = UTU . This

1 = det(I) = det(UTU) = det(UT ) det(U) = (det(U))2 ,

where we have used Theorems 77 and 78. The only solutions of the equation x2 = 1 are ±1, and so

det(U) = ±1.
Now suppose det(U) = 1. Then by Theorem 79 and Theorem 78,

det(U−1) = det(UT ) = det(U) = 1 .

Hence the inverse of U has the same property. Next, let V,U ∈ O(n) be such that det(V ) = det(U) =

1. Then by Theorem 77,

det(V U) = det(V ) det(U) = 1 .

Hence the subset of O(n) consisting of matrices with unit determinant is closed under taking inverses

and products. It is therefore a transformation group, and, as such, a subgroup of O(n).

Definition 89 (The special orthogonal group on R
n). The subset of O(n) consisting of orthogonal

matrices U with det(U) = 1 is called the special orthogonal group on R
n, and is denoted by SO(n).

Example 127 (Two dimensional orthogonal matrices). Let U = [u1,u2] ∈ O(2). Then u1 is a unit

vector. Hence

u1 = (cos θ, sin θ)

for some θ. Since u2 must be a unit vector orthogonal to u1, there are only two choices for u2:

u2 = (− sin θ, cos θ) or else u2 = (sin θ,− cos θ) .

Thus either we have

U =

[
cos θ − sin θ

sin θ cos θ

]
or else U =

[
cos θ sin θ

sin θ − cos θ

]
. (8.16)



344CHAPTER 8. PERMUTATIONS, DETERMINANTS, AND THEGEOMETRYOF LINEAR TRANSFORMATIONS

Note that

det

([
cos θ − sin θ

sin θ cos θ

])
= 1 and det

([
cos θ sin θ

sin θ − cos θ

])
= −1 .

Thus, the matrices in SO(2) are precisely the matrices on the left in (8.16), and we recognize

these as the two dimensional rotation matrices.

The matrices on the right in (8.16) reflection matrices. Indeed, let u = (cos(θ/2), sin(/2)θ).

Then the Householder reflection in R
2 given by u has the matrix

[
1 0

0 1

]
− 2

[
cos2(θ/2) cos(θ/2) sin(θ/2)

cos(θ/2) sin(θ/2) sin2(θ/2)

]
=

[
cos θ sin θ

sin θ − cos θ

]
,

by the double-angle formulas. Thus the matrices in O(n) that are not in SO(n) are precisely the

reflection matrices.

Example 128 (Three dimensional orthogonal matrices). Let U = [u1,u2,u3] ∈ O(3), so that, by

definition, {u1,u2,u3} is an orthonormal basis of R3.

We have seen in Chapter One that there is a linear transformation f from R
3 to R

3 that is the

composition of at most 3 Householder reflections such that (ej) = uj for j = 1, 2, 3. This means

that the matrix representing f is the matrix U , and hence U is the product of at most three matrices

representing Householder reflections. We have seen that whenever hu is a Householder reflection,

and Hu := [hu(e1),hu(e2),hu(e3)] is the 3× 3 matrix representing hu,

det(Hu) = det([hu(e1),hu(e2),hu(e3)]) = hu(e1) · hu(e2)× hu(e3)] = −1 .

Now suppose U is not the identity matrix. Then U is the product of either 1, 2 or 3 Householder

reflection matrices. Since the determinant of each of these is −1, by Theorem 77, det(U) = 1 if and

only if U is the product of exactly 2 Householder reflection matrices.

As we have seen in Chapter Two, the product of any two Householder reflections is a rotation:

Each Householder reflection leaves a plane through the origin - the plane of reflection - unchanged.

The two planes of reflection meet in a line through the origin which is left unchanged by the composi-

tion of the two reflections. This line is the axis of rotation. Thus, SO(3) consists of the 3×3 rotation

matrices. Every matrix U ∈ O(3) that is not in SO(3) is the product of some matrix in SO(3) and

a Householder reflection matrix.

8.3.2 Orthogonal matrices, area, volume and shape

If U ∈ O(2), the action of U on R
2 preserves the area of of subsets of R2: We have proved that the

area magnification factor of of the linear transformation given by any 2 × 2 matrix A is | det(A)|.
Since | det(U)| = 1 for all U ∈ O(2), the area magnification factor associated to U is 1.

However, the action of a matrix in O(2) preserves much more than the area of of subsets of R2;

it preserve the distances between each pair of points in the set – there is no distortion of the shape of

the set; all that changes is the way it is situated in the plane. For example, Consider the cat-shaped

set in the unit square in R2 shown below:
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Consider the matrix U ∈ O(2) given by U =

[
0 −1
1 0

]
. This matrix U acts on R

2 be counter-

clockwise rotation through the angle π/2. The image of the out cat shaped set under the action of

U is therefore

The orthogonal transformation has changed the orientation of the set in the plane but has not

distorted it in any way.

Next consider the 2 × 2 matrix A given by A =

[
1 1

1 2

]
. Note that det(A) = 1, and so the

action of A on R
2 preserves the area of subsets of R2, but it strongly distorts the shapes of subsets

of R2. Here is picture showing the original cat shaped set, and also its image under the action of A:

While this transformation preserves area, it does not preserve distances: Notice that after the

transformation, the distance between the tips of the cat’s ears is greater than is was before, while

the distance from the tip of the left ear to the center of the cat’s face is less than it was. Also, the

transformation changes angles: After the transformation, the angle in the lower left corner of the
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bounding box is much less than it was, while the angle in the lower right corner of the bounding box

is much greater than it was.

We now show that transformations of Rn that preserve distances automatically preserve angles,

areas and volumes as well. This brings an important definition, and an important characterization

of orthogonal matrices:

Definition 90 (Euclidean transformation). Let f be a function from R
n to R

n with the property that

for all x,y ∈ R
n,

‖f(x)− f(y)‖ = ‖x− y‖ . (8.17)

Then f is a Euclidean transformation.

That is, Euclidean transformations preserve the distances between points; there is no “stretching”

or “compression” associated to a Euclidean transformation.

Theorem 81 (Euclidean transformation and orthogonal matrices). A function f from R
n to R

n is

a Euclidean transformation if and only if there is an x0 ∈ R
n and a U ∈ O(n) so that for all x ∈ R

n,

f(x) = x0 + Ux . (8.18)

Proof: Let f be a Euclidean transformation. Define the transformation g by

g(x) = f(x)− f(0)

and note that since for all x,y ∈ R
n, g(x)−g(y) = f(x)− f(y), g is also a Euclidean transformation,

and g(0) = (0). Thus, for all x ∈ R
n,

‖x‖ = ‖x− 0‖ = ‖g(x)− g(0)‖ = ‖g(x)‖

so that the transformation g preserves the lengths of vectors. But then for any x,y ∈ R
n.

2x · y = ‖x‖2 + ‖y‖2 − ‖x− y‖2

= ‖g(x)‖2 + ‖g(y)‖2 − ‖g(x)− g(y)‖2

= 2g(x) · g(y) . (8.19)

Thus,

x · y = g(x) · g(y) ,

and the transformation g preserves dot products. Therefore, if we define uj = g(ej) for j = 1, . . . , n,

{u1, . . . ,un} is an orthonormal basis of Rn.

Now, for any x ∈ R
n,

g(x) =

n∑

j=1

(g(x) · uj)uj =

n∑

j=1

(g(x) · g(ej))uj

=

n∑

j=1

(x · ej)uj =

n∑

j=1

xjuj
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However, if we define the orthogonal matrix U by U = [u1, . . . ,un], then by the rules of matrix

multiplication,

Ux =
n∑

j=1

xjuj .

Therefore, g(x) = Ux for all x. But then by the definition of g, if we define x0 := f(0), it follows

that for all x, f(x) = x0 + Ux.

Conversely, suppose that the transformation f is given by f(x) = x0+Ux where U ∈ O(n), Then

‖f(x)− f(y)‖ = ‖Ux− Uy‖ = ‖U(x− y)‖ = ‖x− y‖

since the final equality is true since U ∈ O(n). Thus, f is a Euclidean transformation.

We now claim that Euclidean transformations of Rn preserve n-dimensional volume. At least in

2 dimensions, this is intuitively clear: By the previous theorem, a Euclidean transformation is either

a reflection of a rotation, followed by a translation. None of these operations affects area, which is

what we mean by 2-dimensional volume.

The main difficulty in justifying our claim is to make precise sense of what we mean by volume

in R
n. To discuss the notion of the volume of sets in R

n in full generality would take us into a study

of Lebesgue measure, and that is beyond the scope of our discussion. However, there is a well defined

notion of the n-dimensional volume of sets in R
n that is valid for all closed bounded sets in R

n. The

n-dimensional volume function is additive, meaning that if A = B ∪C is a union of two disjoint sets

for which the volume is defined, then

volume(A) = volume(B) + volume(C) .

Suppose that A is any cube of side length h in R
n; i.e., any set of the form

x0 +

n∑

j=1

sjuj where 0 ≤ sj ≤ h for all j = 1, . . . , n ,

where x0 is one corner of the cube. Then the n-dimensional volume function is defined so that

volume(A) = hn .

Then by the additivity that we have just discussed, any set A that can be decomposed as a

disjoint union of N cubes of side length h satisfies

volume(A) = Nhn .

Now let U ∈ O(n), Then the image of any cube of side length h in R
n under the transformation

given by U is again a cube of side length h: The transformation preserves dot products, and so it

preserves the lengths and orthogonality of the edges. Hence if A is any disjoint union of N cubes of

side length h, so is its image under the transformation U ; i.e., the set U(A) := { Ux : x ∈ A }.
That is,

volume(U(A)) = Nh3 = volume(A) .

In the theory of the Lebesgue measure, one proves that every subset A of R
n for which the

volume can be defined and is finite, A can be approximated up to a small error in the volume by



348CHAPTER 8. PERMUTATIONS, DETERMINANTS, AND THEGEOMETRYOF LINEAR TRANSFORMATIONS

a finite disjoint union of cubes of some small side length h. Because of this, roughly speaking, the

volume of A is the limit as h tends to 0 of hn times the number of disjoint cubes of side length h

that can be packed into A. Therefore, one has that:

• Whenever U ∈ O(n), and whenever A ⊂ R
n has a well defined volume, the image of A under the

transformation U ; i.e., U(A), has the same volume as A.

8.3.3 The Spectral Theorem as a factorization theorem

Before introducing the singular value decomposition, we explain how a theorem with which we are al-

ready familiar, namely the Spectral Theorem, provides a factorization of an arbitrary n×n symmetric

matrix A into the product of three factors,

A = UΛUT ,

where U = [u1, . . . ,un] is a matrix whose columns are an orthonormal basis for R
n consisting of

eigenvectors of A – the Spectral Theorem assures us that such a basis exists – and Λ is an n × n

diagonal matrix whose jth diagonal entry is the eigenvalue λj corresponding to the eigenvector uj .

Finally, UT is the transpose of U .

As we shall see, each of these factors, U , Λ and U t, has a simple geometric interpretation that

helps us understand the geometric nature of the linear transformation associated to A.

Theorem 82 (Diagonalization of symmetric matrices). Let A be a symmetric n × n matrix. Let

{u1, . . . ,un} be an orthonormal basis of Rn consisting of eigenvectors of A, recalling that such a basis

always exists. Let Λ be the n× n diagonal matrix whose jth diagonal entry of Λ is the eigenvalue of

A corresponding to uj. Then

A = UΛUT .

Conversely, given any n× n diagonal matrix Λ, and any U = [u1, . . . ,un] ∈ O(n), UΛUT is an

n×n symmetric matrix such that for each each j, uj is an eigenvector of UΛUT with eigenvalue λj,

where λj is the jth diagonal entry in Λ.

Proof: We claim that UTAU = Λ. Once this is shown, we shall have our factorization of A since

multiplying both sides on the left by U and and on the right by UT and using UTU = UUT = I, we

get A = UΛUT .

To justify the claim, recall that for any matrix B, the i, jth entry is given by Bi,j = ei · Bej ,

Hence, using the fundamental propert of the transpose and the fact that Uek = uk for all k,

(UTAU)i,j = ei · UTAUej = (Uei) ·A(Uej) = ui ·Auj = λjui · uj =




λj i = j

0 i 6= j
.

This shows that UTAU equals the diagonal matrix Λ.

For the converse, since UTuj = ej ,

(UΛUT )uj = U(Λ(UTuj)) = U(Λej)) = λjUej = λjuj .
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This proves that each uj is an eigenvector of UΛUT with eigenvalue λj . Note that

(UΛUT )T = (UT )TΛTUT = UΛUT

so UΛUT is symmetric.

8.3.4 The Singular Value Decomposition

The following theorem generalizes the factorization of symmetric matrices that is provided by Theo-

rem 82 to general matrices.

Theorem 83 (The Singular Value Decomposition Theorem). Let A be an m×n matrix. Then there

exist matrices U , V and Σ such that

A = UΣV T

and

(1) U ∈ O(m)

(3) V ∈ O(m)

(3) Σ is an m× n diagonal matrix whose jth diagonal entry is σj where where σj ≥ σj+1 ≥ 0 for all

j = 1, . . . ,min{m,n} − 1.

In any such factorization of A, the matrix Σ is always the same. In particular, the numbers

{σ1, . . . , σmin{m,n}} are uniquely determined by A. We call these numbers the singular values of A.

For example, if m = 3 and n = 4, the matrix σ has the form

Σ =




σ1 0 0 0

0 σ2 0 0

0 0 σ3 0


 .

If m = 4 and n = 3, the matrix σ has the form

Σ =




σ1 0 0

0 σ2 0

0 0 σ3

0 0 0



.

In both cases,

σ1 ≥ σ2 ≥ σ3 ≥ 0 .

Before we prove this theorem, let us see what it tells us about the geometry of the general

invertible linear transformation from R
n to R

n. Let A be any invertible n×n matrix. Let A = UΣV T

be the factorization of it provided by the singular value decomposition. Then Σ is a diagonal matrix

whose jth diagonal entry is σj . Since U and V are invertible, the fact that A is invertible implies

that Σ is invertible. This in turn implies that σj > 0 for each j = 1, . . . , n.

In particular, if n = 2, and A is invertible, then

Σ =

[
σ1 0

0 σ2

]
,
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where σ1 ≥ σ2 > 0.

The transformation given by Σ is very easy to understand geometrically: Let D ⊂ R
2 be the

closed unit disc; i.e., the set of points (x, y) such that x2 + y2 ≤ 1. Let D̂ denote the image of D

under the transformation given by Σ, and regard D̂ as a set in the u, v plane. Since

(u, v) = Σ(x, y) = (σ1x, σ2y) ,

u2

σ2
1

+
v2

σ2
2

≤ 1 ⇐⇒ x2 + y2 ≤ 1 .

This tells us that D̂ is an ellipse centered on the origin whose majors axis has length σ1, and whose

minor axis has length 2σ2.

Now that we know what the image of the unit disc is under Σ, we ask:

• What is the image of the unit disc under a general invertible linear tranformation from R
2 to R

2?

To answer this question, let A = UΣV T be a singular value decomposition of A. The matrices

U and V are both 2× 2 orthogonal matrices, and hence by what we have seen in Example 127, they

are either 2× 2 rotations or 2× 2 reflections. Since by Theorem 79, V T is also an orthogonal matrix,

it too is either a rotation or a reflection.

Now, the image of the unit disc under either a rotation or a reflection is again the unit disc,

though points in it will generally get moved around. Here is a picture showing the original unit disc

with the vectors e1 and r2 drawn in.

The next picture shows the image under V T of the unit disk: The image is still the unit disc,

but the vectors e1 and e2 have been rotated or reflected into new positions – in the picture it is a

rotation.

Now apply Σ: This distorts he unit disc into an ellipse whose major axis lies along the first

coordinate axis and has length 2σ1, and whose minor axis lies along the second coordinate axis and
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has length 2σ2. Here is a picture showing the action of Σ on the unit disk:

Now apply U : Since U is either a rotation or reflection, it either rotates or reflects the ellipse,

changing only the orientation of the major and minor axes, and not their lengths. Here is a picture

showing the action of U on the ellipse Σ(D) where D is the unit disc.

Again, in this picture, U is a rotation, and the lengths of the major and minor axes of the ellipse

are 2σ1 and 2σ2. This reasoning applies to any invertible 2 × 2 matrix A, and hence we conclude,

that:

• The image of the unit disc in R
2 under the action of any 2 × 2 invertible matrix A is an ellipse,

and from the major and minor axes of this elipse, one can read off the singular values of A.

These conclusions are readily extended to general n× n matrices. In fact, we have: .

Theorem 84 (Geometric consequences of the singular value decomposition). Let A be any m × n

matrix. Then the image of the unit ball in R
n under the action of A is an m-dimensional ellipsoid

in R
m. The directions of the principle axes of the ellipsoid are the columns of U , and the length of

the axis with direction uj is 2σj.

Finally, when A = UΣV T is a singular value decomposition of an n× n matrix, by Theorems 77

and 78,

| det(A)| = | det(UΣV T )| = | det(U)|| det(Σ)|| det(V )| = det(Σ)

since U, V ∈ O(n) so that their determinants are ±1, and since Σ is diagonal with all of its entries

non-negative

detΣ =

n∏

j=1

σj .

Now, consider an n-dimensional cube in R
n whose edges are parallel to the coordinate axes, and

whose sides have length h, Since the action of Σ on R
n is simply stretch or compress distances along

lines parallel to the cooridinate axes, the image of such a cube under Σ is a rectangular box with

edges parallel to the axes and side lengths σ1h, . . . , σnh. The transformation associates to Σ is often

called a scale transformation since its action effectively changes the scale along the coordinate axes.
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It is easy to understand the effect of the scale transformation Σ on volume. By what we have

explained about volume in R
n, the volume of such a box is the product of the edge lengths; i.e., it is

hn
n∏

j=1

σj = hn| det(A)| .

Thus, the transformation Σ has the volume magnification factor | det(A)|, But since A = UΣV T and

neither U nor V T affect volume, this is also the volume magnification factor of A. We summarize:

• For any invertible n × n matrix A, whenever E ⊂ R
n has a well defined volume, the image of E

under the transformation A; i.e., A(E), has the volume

volume(A(E)) = | det(A)|volume(A) .

Proof of Theorem 83: To prove the existence of the singular value decomposition A = UΣV T , it

suffices to find an orthonormal bases {u1, . . . ,um} of Rm and an orthonormal bases {v1, . . . ,vm} of

R
m and numbers σ1 ≥ · · · ≥ σr > 0, t ≤ min{m,n}, such that

ui ·Avj =




σi i = j ≤ r

0 otherwise
. (8.20)

To see this, suppose we have (8.20). Define U = [u1, . . . ,um] and V − [v1, . . . ,vn]. Then

U inO(m) and V ∈ O(mn). Let us compute the i, jth entry of UTAV . This is given by

(UTAV )i,j = ei · UTAV ej = (Uei) ·A(V e− j) = ui · vj . (8.21)

Define Sigma to be the m× n matrix with

Σi,j =




σi i = j ≤ r

0 otherwise
.

Comparing this with (??) and using the assumption (8.20) we conclude that for all i and j, (UTAV )i,j =

Σi,j . This of course means that

UTAV = Σ .

Now, multiplying both sides on the left by U and on the right by V T and using the fact that

UUT = Im×m and V V T = In×n, we have that A = UΣV T , as desired.

To complete the proof, we now construct the orthonormal bases and the numbers σj that figure

in (??)

Let A be any m× n matrix. Form the (m+ n)× (m+ n) matrices

B :=

[
0 A

AT 0

]
and M :=

[
−Im×m 0

0 In×n

]
.

More explicitly, the 0 entry in the upper left of B denotes the m ×m zero matrix, and the 0 entry

in the lower right of B denotes the n× n zero matrix. Likewise, the 0 entry in the upper right of M
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denotes the m×n zero matrix, and the 0 entry in the lower left of M denotes the n×m zero matrix.

A little though about the rules of matrix multiplication shows that

MB =

[
0 −A
AT 0

]
and BM =

[
0 A

−AT 0

]
.

That is,

BM = −MB .

This has the following consequence: If w ∈ R
m+n is an eigenvector of B with eigenvalue λ, then

B(Mw) = −M(Bw) = −M(λw) = −λMw .

Since M is orthogonal, Mw 6= 0, and so Mw is an eigenvector of B with eigenvalue −λ.
Thus, again using the fact that M ∈ O(m + n), if {w1, . . . ,wm+n} is any orthonormal basis of

R
m+n consisting of eigenvectors of B, so is {Mw1, . . . ,Mwm+n}.

Moreover, the eigenvalue associated to the jth vector in the first basis is minus the eigenvalue

associated to the jth vector in the second basis. Since the set of eigenvectors of B is the set of

roots of the characteristic polynomial pB(t) := det(B− tI), it must be that the non-zero eigenvalues

come in pairs, one positive and one negative, so that for some r ≤ min{m,n}, there are exactly r

strictly positive eigenvalues, and r strictly negative eigenvalues in the spectrum of B, together with

n+m− 2r zero eigenvalues.

Let

σ1 ≥ · · · ≥ σr > 0

be the r strictly positive eigenvalues arranged in non-decreasing order. Let {w1, . . . ,wr} be an

orthonormal set of of eigenvectors of B with Bwj = σj for each j = 1, . . . , r. We could obtain such a

set by selecting the appropriate vectors from the first orthonormal basis introduced above, and then

adjusting the indexing as needed.

Next define the vector wr+1, . . . ,w2r by

{wr+j , . . . ,w2r} = {Mw1, . . . ,Mwr} .

Since M is orthogonal, this set is orthonormal. Since B is symmetric, eigenvectors with distinct

eigenvalues are orthogonal. Since every vector in the first set has a posotive eigenvalue, and every

vector in the second set has a negative eigenvalue, the combined set

{w1, . . . ,wr,wr+1, . . . ,w2r}

is orthonormal.

Next, for each j = 1, . . . , r, define the vectors uj ∈ R
m and vj ∈ R

n by

wj =
1√
2
(uj ,vj) .

That is, uj consists of the first m entries of
√
2wj , while vj consists of the last n entries of

√
2wj .
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We now claim that {u1, . . . ,ur} is an orthonormal subset of Rm, and that {v1, . . . ,vr} is an

orthonormal subset of Rn. To see this, we note that, by construction,

wr + jj =
1√
2
(−uj ,vj) .

Since wj and wr+j are orthogonal.

0 = (uj ,vj) · (−uj ,vj) = ‖vj‖2 − ‖uj‖2 .

Since

1 = ‖wj‖2 =
1

2
(uj ,vj) · (uj ,vj) =

1

2
(‖uj‖2 + ‖vj‖2) ,

we see that ‖uj‖ = ‖vj‖ = 1 for j = 1, . . . , r.

Next, for i 6= j, wi is orthogonal to both wj and wr+j . Then means

0 = (ui,vi) · (uj ,vj) = ui · uj + vi · vj and 0 = (ui,vi) · (−uj ,vj) = −ui · uj + vi · vj .

Adding and subtracting, we obtain that ui · uj = 0 and vi · vj = 0. This proves that these sets are

orthonormal.

Next, in case r < m, we take any extension of {u1, . . . ,ur} to an orthonormal basis {u1, . . . ,um}
of Rm, and we define

{w2r+1, . . . ,wr+m} = {(ur+1,0), . . . , (um,0)} ,

where 0 denotes the zero vector in R
n so that each of the vectors in {w2r+1, . . . ,wr+m} is in R

m+n.

Each of these vectors is orthogonal to every eigenvector of B with a non-zero eigenvalue, and hence

it must be in the zero eigenspace of B; i.e., the null space of B.

Likewise, in r < n, we take any extension of {v1, . . . ,vr} to an orthonormal basis {v1, . . . ,vn}
of Rn, and we define

{wm+r+1, . . . ,wm+n} = {(0,vm+r+1), . . . , (0,um+n)} ,

where 0 denotes the zero vector in R
m so that each of the vectors in {wm+r+1, . . . ,wm+n} is in

R
m+n. Each of these vectors is orthogonal to every eigenvector of B with a non-zero eigenvalue, and

hence it must be in the zero eigenspace of B; i.e., the null space of B.

We now claim that the orthonormal bases {u1, . . . ,um} and {v1, . . . ,vn} that we have just

constructed, together with the numbers {σ1, . . . , σr}, satisfy (8.20). As explained at the beginning

of the proof, this completes the proof of the existence of the singular value decomposition.

To do this, we compute

Bwj =
1√
2
B(uj ,vj) =

1√
2
(Avj , A

tuj) and Bwr+j =
1√
2
B(−uj ,vj) =

1√
2
(Avj ,−Atuj) .

We also have that for j ≤ r.

Bwj = σjwj = σj
1√
2
(uj ,vj) and Bwr+j = −σjwr+j = σj

1√
2
(uj ,−vj) .

Therefore,

σj = wj ·Bwj =
1

2
(uj ,vj) · (Avj , A

tuj) =
1

2
uj ·Avj +

1

2
vj ·ATuj = uj ·Avj ,
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where we have used the fundamental property of the transpose. An even easier computation shows

ui · vj = 0 if either i > r or j > r.

Next, by similar computations

0 = wi ·Bwj =
1

2
ui ·Avj +

1

2
uj ·Avi ,

and

0 = wi ·Bwr+j =
1

2
ui ·Avj −

1

2
uj ·Avi ,

Combining these equations, we conclude ui ·Avj = 0 whenever i 6= j. This proves (8.20).

8.4 Exercises

1 Consider the following permutations

σ1 =
1 2 3 4 5 6

3 1 4 5 6 2
σ2 =

1 2 3 4 5 6

4 3 6 5 2 1
σ3 =

1 2 3 4 5 6

4 5 6 1 2 3

(a) Compute D(σj) and χ(σj) for j = 1, 2, 3.

(b) For each j = 1, 2, 3, find a way to write σj as a product of pair permutations.

(c) Compute the value of χ(σ1 ◦ (σ2 ◦ σ3)−1).

2 Consider the following permutations

σ1 =
1 2 3 4 5 6

2 4 6 1 3 5
σ2 =

1 2 3 4 5 6

5 1 6 4 2 3
σ3 =

1 2 3 4 5 6

4 1 5 2 6 3

(a) Compute D(σj) and χ(σj) for j = 1, 2, 3.

(b) For each j = 1, 2, 3, find a way to write σj as a product of pair permutations.

(c) Compute the value of χ(σ1 ◦ (σ2 ◦ σ3)−1).

3 Let σ1, σ2 and σ3 be the permutations defined in Exercise 1. Compute the distances ̺(σ1, σ2),

̺(σ2, σ3) and ̺(σ3, σ1). Also, find geodesics from σ1 to σ2, from σ2 to σ3, and from σ3 to σ1.

4 Let σ1, σ2 and σ3 be the permutations defined in Exercise 2. Compute the distances ̺(σ1, σ2),

̺(σ2, σ3) and ̺(σ3, σ1). Also, find geodesics from σ1 to σ2, from σ2 to σ3, and from σ3 to σ1.

5 The order reversing permuation σ∗ in Sn is the permutation defined by

σ∗ :=
1 2 . . . n− 1 n

n n− 1 . . . 2 1
.

In other words,

σ∗(k) = n− k + 1 for all k = 1, . . . , n .

(a) Show that D(σ∗) = n(n− 1)/2, and that for all σ ∈ Sn, D(σ) < n(n− 1)/2 unless σ = σ∗.

(b) Prove that

max{ ̺(σ1, σ2) : σ1, σ2 ∈ Sn } = n(n− 1)/2 .
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In other words, and two permutations in Sn are connected by a path of at most n(n−1)/2 steps, and

there exist pairs of permutations such that the shortest path connecting them has this many steps.

This is often expressed by saying that the diameter of Sn is n(n− 1)/2.

6 Show that the set An consisting of all even permutations in Sn is a transformation group on

{1, . . . , n}. An is called the alternating group of order n. Show that there are exactly n!/2 permuta-

tions in An, and show that the set of all odd permutations is not a transformation group.

7 For each σ ∈ Sn, define the n× n matrix Pσ by

Pσ := [eσ(1), eσ(2), ..., eσ(n)] ; (8.22)

that is, the jth column of Pσ is eσ(j). The n! matrices Pσ with σ ∈ Sn are called the permutation

matrices. Prove that for all σ ∈ Sn, det(Pσ) = χ(σ).



Chapter 9

FLUX AND CIRCULATION,

DIVERGENCE AND CURL

9.1 Flows and flux

9.1.1 Vector fields and motion

Let F(x) = (f1(x), . . . , fn(x)) be a function from R
n to R

n. We have studied such functions already,

but now our point of view will be slightly different. To go along with this new point of view, we

introduce some new terminology:

Definition 91 (Vector field). A vector field on an open set U ⊂ R
n, possibly R

n itself, is a function

F defined on U with values in R
n. The vector field is said to continuous, differentiable or continuously

differentiable if the function F is continuous, differentiable or continuously differentiable.

We can represent vector fields on R
2 in an informative graphical manner, and so our first examples

concern the case n = 2. Let us look at the specific vector field

F(x, y) = (x(1− y) , y(x− 1)) .

Here is a plot of this vector field for 0 ≤ x, y ≤ 3:
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The arrows at each point show the direction of the vector field at each point on a grid, and color

is used to indicate the length of these vectors: As the colors range from blue to red, the length of the

vectors ranges from shortest to longest.

Think of the arrows as describing motion. A point particle at x will move to x + F(x)dt in an

infinitesimal time step dt, and then move on from there following the arrow at that point, and so on.

To make this more precise, take a starting point x0 = (x0, y0) and fix a small time step h. Define

a sequence of points {x(h)
n } by x

(h)
n = x0 and for n ≥ 1,

x(h)
n = x

(h)
n−1 + hF(x

(h)
n−1) . (9.1)

Run this sequence until the point leaves the region where the vector field F is defined, or forever if

F is defined everywhere, or the sequence never leaves the the region where F is defined.

Given the sequence x
(h)
n , define the continuous function x(h)(t) by “connecting the dots”; that

is,

x(h)(t) = x
(h)
n−1 + (t/h− (n− 1))(x(h)

n − x
(h)
n−1) for (n− 1)h ≤ t ≤ nh .

The resulting curve x(h)(t) moves along by following the arrows provided by the vector field,

updating the information from the vector field every time-step h. As h tends to zero, it follows the

arrows provided by the vector field more and more accurately. Indeed, since (9.1) can be written

x
(h)
n − x

(h)
n−1

h
= F(x

(h)
n−1) ,

one would expect a limiting curve x(t) := limh→0 x
(h)(t) to exist and satisfy

x′(t) = F(x(t)) . (9.2)

When F is continuously differentiable, this is indeed the case. Let us take this for granted for the

moment – after all, it is quite intuitive – and focus instead on what we can learn from the curves

satisfying (9.2).
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Definition 92 (Flow lines). Curves x(t) satisfying (9.2) on any open interval t0 < t < t1 are called

flow curves of the vector field F; they describe the motion of a point particle that is “going with the

flow” described by the vector field F.

In some cases, it is possible to explicitly solve (9.2) to find the flow lines. We begin with the

simplest (but important) example:

Example 129 (Solving for flow lines). Consider the constant vector field defined on all of R2 by

F(x, y) = (a, b)

where a, b ∈ R are constant. Then x(t) is a flow curve for F if and only if x′(t) = (a, b). By the

Fundamental Theorem of Calculus, this means

x(t) = x0 + t(a, b) .

The flow curves are simply straight lines with direction vector given by (a, b).

The next example is less simple, but also important:

Example 130 (Solving for flow curves). Consider the vector field F on R
2 given by F(x, y) = (−y, x).

Note that F(x) is a linear function of x; if we define the matrix A :=

[
0 −1
1 0

]
, we have

F(x) = Ax .

If x(t) is any flow curve for F, then x′(t) = Ax(t). Differentiating again, we get

x′′(t) = A2x(t) = −x(t)

since A2 = −I. Thus, whenever x(t) = (x(t), y(t)) is a flow curve of F, we have

x′′(t) = −x(t) and y′′(t) = −y(t) .

One way to solve these equations is to take x(t) = α cos(t) + β sin(t). Then x(0) = α and

x′(0) = β. But x′(t) = Ax(t) says that x′(t) = −y(t). Hence β = x′(0) = −y(0). That is,

x(t) = x0 cos(t)− y0 sin(t). Then since y(t) = −x′(t), y(t) = x0 sin(t) + y0 cos(t). Thus,

x(t) = (x0 cos(t)− y0 sin(t) , x0 sin(t) + y0 cos(t)) (9.3)

is a flow curve for F through x0, and it is defined for all t.

In fact, it is the unique flow curve for F through x0. To see this, suppose that y(t) is any other,

and define z(t) = x(t)− y(t). Note that z(0) = x(0)− y(0) = x0 − x0 = 0, since by hypothesis both

curves are initially at x0. Also,

z′(t) = x′(t)− y′(t) = A(x(t)− y(t)) = Az(t) .

Next, a simple calculation shows that (a, b) ·A(a, b) = 0 for all (a, b). Hence

d

dt
‖z(t)‖2 = 2z(t) ·Az(t) = 0 .
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Thus, since ‖z(0)‖ = 0, ‖z(t)‖ = 0 for all t, and this means that y(t) = x(t) for all t. The two flow

curves are in fact the same, which proves the uniqueness of the flow curves for F.

There is still more to be learned from this example if we write (9.3) another way. Define the

t-dependent matrix

[R(t)] :=

[
cos t − sin t

sin t cos t

]
. (9.4)

Then (9.3) is equivalent to

x(t) = [R(t)]x0 . (9.5)

You recognize [R(t)] as a rotation matrix. The vector field describes circular motion about the origin

at a constant speed that is equal to the distance from the origin. The flow exists for all times t. Here

is a plot of the vector field:

Example 131 (Solving for flow lines). Consider the vector field F(x, y) = (x2, 1). Then (9.2) gives

us the system

x′(t) = x2(t)

y′(t) = 1 .

This system may also be solved by single variable calculus methods since the rate of change of

x(t) depends only on x(t) and the rate of change of y(t) is even constant. Indeed, by the Fundamental

Theorem of Calculus, y(t) = y(0) +
∫ t

0
y′(s)ds = y0 + t. Likewise, we have 1 =

x′(t)

x2(t)
= − d

dt

1

x(t)
.

Therefore, by the Fundamental Theorem of Calculus,

1

x(0)
− 1

x(t)
=

∫ t

0

1ds = t ,

and so

x(t) =
x0

1− tx0
.
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For t = 1/x0, we would be dividing by zero. Indeed, notice x(t) is well defined for |t| < 1/|x0|, but
that lim t→ 1/x0x(t) = ∞. This is an example where, although the vector field is very simple, the

flow only exists a finite time before it “explodes” to infinity.

For positive x, the vector field pushes point particles further off to the right, faster and faster, so

that although the vector field itself is finite everywhere, it accelerates a point particle to infinite speed

in a finite time.

Example 132 (Solving for flow lines). Consider the vector field F(x, y) = (x1/3, 1). Then (9.2)

gives us the system

x′(t) = x1/3(t)

y′(t) = 1 .

Let x0 = (0, 0). Then since F(0, t) = (0, 1) for all t, the curve x(t) = (0, t) is a flow curve

of F with x(0) = x0. But there is another flow curve of F through x0. For x(t) > 0, the equation

x′(t) = x1/3(t) is equivalent to

1 =
x′(t)

x1/3(t)
=

3

2

d

dt
x2/3(t) .

Hence, by the Fundamental Theorem of Calculus, t = 3
2x

2/3(t), so that

x(t) =

(
2

3
t

)3/2

.

Hence the curve x̃(t) given by x̃(t) = (0, t) for t ≤ 0, and by

x̃(t) =

((
2

3
t

)3/2

, t

)

for t > 0 is another flow curve of F passing through x0.
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9.1.2 Flow transformations

To understand the flow described by a vector field, it is best to look at the set of flow curves as a

whole instead of individually. The basic idea is that a “nice” vector field F describes a one parameter

set {Φt : t ∈ R } of transformations of Rn through the following simple rule: for each t, and each

x0, Φt(x0) is the point one gets to by following the flow lines described by F for a time t. It is useful

to picture this for n = 2 in terms an actual flow of liquid across the plane in which at each time t,

a particle being carried along with the flowing liquid has the velocity F(x) is it passes through the

point x. As the particle moves, it traces out a flow curve. Other particles, placed elsewhere, would

trace out other flow curves. The flow transformation tells where the flowing liquid takes any particle,

started anywhere, in time t. It is a fundamental object of study in fluid mechanics, aerodynamics,

and many other fields of science, including electrodynamics, for less obvious reasons.

In our applications of the flow curve concept, we need to know something not only about the

existence, but also the uniqueness of flow curves. We have given a “recipe” for constructing flow curves

through a limiting process. But maybe a different “recipe” would yield different curves. Indeed, we

have seen in Example 132 that this can happen: Our recipe would yield the flow curve x(t) = (0, t),

but as we have seen, there is another flow curve for this vector field F that passes through (0, 0) at

time t = 0. If flow curves are not unique, our simple recipe for the flow transformation Φt does not

define a function: Which flow curve do you follow?

Also, we have seen in Example 131 that flow curves might “blow up” in a finite time. So for

some vector fields F, it may not be possible to follow a flow curve for time t if t is too large.

On the other hand, in our first two example, the vector field was “nice” and had unique flow

curves through each point that existed for all times t. How do we recognize “nice” vector fields?

As we shall see, a vector filed F behaves nicely whenever it is continuously differentiable and has

a Jacobian matrix [DF(x)] that has a bounded Frobenius norm, meaning that there is some finite

number L such that

‖[DF(x)]‖F ≤ L for all x ∈ R
2 . (9.6)

The condition (9.6) has the following consequence:

Lemma 21. Let F be a vector field that satisfies (9.6). Then for all x,y ∈ R
n,

‖F(x)− F(y)‖ ≤ L‖x− y‖ .

Proof: Consider the parameterized line segment z(t) defined by z(t) = (1 − t)x + ty for which

z(0) = x, z(1) = y and z′(t) = y − vx for all t. Then by the Fundamental Theorem of Calculus and

the Chain Rule,

F(y)− F(x) =

∫ 1

0

d

dt
F(z(t)) =

∫ 1

0

[DF(z(t))](y − x)dt .

Then by the triangle inequality for integrals,

‖F(y)− F(x)‖ ≤
∫ 1

0

‖[DF(z(t))](y − x)‖dt ≤
∫ 1

0

L‖y − x‖dt = L‖y − x‖ .
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Theorem 85 (Uniqueness of flow curves). Let F be a vector field that satisfies (9.6). Let x(t) and

y(t) be flow curves for F defined for −a < t < a for some a > 0. Let x0 denote x(0), and let y0

denote y(0). Then for all −a < t < a,

e−|t|L‖x0 − y0‖ ≤ ‖x(t)− y(t)‖ ≤ e|t|L‖x0 − y0‖ . (9.7)

Both inequalities in (9.7) tells us something important about flow lines: From the inequality on

the right, we see that if x0 = y0, then x(t) = y(t) for all −a < t < a, so that the two flow curves are

the same. In other words, when F satisfies (9.6), there is at most one flow curve through each point

x0 ∈ R
n.

But that is not all: fix any ǫ > 0, and define δ(ǫ) = e|t|Lǫ. Then

‖y0 − x0‖ < δ(ǫ) := e|t|Lǫ ⇒ ‖x(t)− y(t)‖ < ǫ . (9.8)

In other words, if the initial points x0 and y0 are sufficiently close, then the flow curves through

them will be close at time t.

The inequality on the left in (9.7) tells the flow curves never cross: If x(0) 6= y(0), then it is

impossible to have x(t) = y(t) for any t.

Proof of Theorem 85: We compute:

d

dt
‖x(t)− y(t)‖2 = 2(x(t)− y(t)) · (x′(t)− y′(t)) = 2(x(t)− y(t)) · (F(x(t))− F(y(t))) .

Then by the Cauchy-Schwarz inequality and Lemma 21,

± d

dt
‖x(t)− y(t)‖2 ≤ 2‖x(t)− y(t)‖‖F(x(t))− F(y(t))‖

≤ 2L‖x(t)− y(t)‖2 , (9.9)

where we have taken advantage of the fact that we can multiply through by −1 before applying the

Cauchy-Schwarz inequality since, after all, we are going to take absolute values. In other words,

−2L‖x(t)− y(t)‖2 ≤ d

dt
‖x(t)− y(t)‖2 ≤ 2L‖x(t)− y(t)‖2 . (9.10)

The inequality on the right in (9.10) says that

d

dt
‖x(t)− y(t)‖2 − 2L‖x(t)− y(t)‖2 ≤ 0 .

Multiplying through by e−tL, we obtain
d

dt

(
e−2Lt‖x(t)− y(t)‖2

)
≤ 0. It follows that

ϕ(t) :=
(
e−2Lt‖x(t)− y(t)‖2

)

is a non-increasing function of t.

Likewise, the inequality on the left in (9.10) says that

d

dt
‖x(t)− y(t)‖2 + 2L‖x(t)− y(t)‖2 ≥ 0 .

Multiplying through by etL, we obtain
d

dt

(
e2Lt‖x(t)− y(t)‖2

)
≥ 0. It follows that

ψ(t) :=
(
e2Lt‖x(t)− y(t)‖2

)
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is a non-decreasing function of t. Since ϕ(0) = ψ(0) = ‖x(0) − y(0)‖2, we have that for t > 0

ϕ(t) ≤ ‖x(0)− y(0)‖2 ≤ ψ(t), while for t < 0, ψ(t) ≤ ‖x(0)− y(0)‖2 ≤ ϕ(t). Form the definitions of

ϕ and ψ, either way we have

e−2L|t|‖x(t)− y(t)‖2 ≤ ‖x(0)− y(0)‖2 ≤ e2L|t|‖x(t)− y(t)‖2 .

Taking squares roots and rearranging terms gives us (9.7).

We now state a theorem whose proof we postpone until later. This theorem guarantees the

existence of flow curves under the conditions we have showed guarantee uniqueness.

Theorem 86 (Existence of flow curves). Let F be a vector field on R
n that satisfies (9.6). Then for

all x0 ∈ R
n, there exists a flow curve x(t) for F that is defined for all −∞ < t < ∞ and such that

x(0) = x0.

We may use the flow curves of a vector field F that satisfies (9.6) to define a one-parameter

family Φt of continuous one-to-one transformations transformations of R2 onto R
2:

Definition 93 (Flow transformations). Let F be a vector field on R
n that satisfies (9.6). Then for

each t ∈ R, the functions Φt from R
n to R

n is defined as follows: For any x0 ∈ R
n,

Φt(x0) = x(t)

where x(t) is the point at time t along the unique flow curve through x0. The transformations

{ Φt : t ∈ R } are called the flow transformations generated by F. Note that Φ0 is the identity

transformation.

Example 133 (Rotational flow). Let us once more consider our rotational vector field

F(x, y) = (− y, x) .

Then as we saw in Example 130, the solution of x′(t) = F(x(t)) is

x(t) = [R(t)]x0 where [R(t)] :=

[
cos t − sin t

sin t cos t

]
.

Hence, in this case, Φt(x) is the linear transformation

Φt(x) = [R(t)]x ,

which is rotation of the plane R
2 counterclockwise through the angle t.

Now notice that for any t1 and t2, a simple calculation using the angle addition formulas shows

that

[R(t1)][R(t2)] = [R(t1 + t2)] .

Therefore,

Φt1 ◦ Φt2 = Φt1+t2 .

Furthermore, since rotations are invertible, and in fact [R(t)]−1 = [R(−t)], each Φt is invertible, and

Φ−1
t = Φ−t. That is, the inverse transformation is obtained by running the flow backwards in time.
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Here is one more simple, but important, example:

Example 134 (Constant flow). Consider the constant vector field F(x, y) = (a, b) from Example 129.

As we have seen there, The the flow curves are given by x(t) = x0 + t(a, b). Thus,

Φt(x0) = x0 + t(a, b) = (x0 + ta, y0 + tb) ,

Since this is true for any x0, we may now frop the subscript 0, and simply write

Φt(x) = (x+ ta, y + tb) .

It is easy to check from this formula that for any t1 and t2, Φt1 ◦ Φt2 = Φt1+t2 and that each Φt

is invertible with Φ−1
t = Φ−t. That is, as in the previous example, the inverse transformation is

obtained by running the flow backwards in time.

The reason the last example is important is that for any differentiable, and hence continuous,

vector field F defined on a neighborhood of some point x0, as long a F(x0) 6= 0, if you “zoom in” on

the vector field in a small neighborhood of x0, you will have

F(x) ≈ F(x0) ,

and so locally, the vector field will look like a constant vector field, and thus, locally, the flow lines

will be nearly straight parallel lines.

This is not necessarily true as a point x0 where F(x0) = 0. Consider the rotational vector field

F(x, y) = (− y, x). Then F(0, 0) = (0, 0), but the vector field takes on every direction in any small

neighborhood of (0, 0), and the flow lines are concentric circles, not straight lines.

The next theorem tells us that some of what we saw in the last two examples always happens

for flows generated by nice vector fields F. We shall prove all of it here except the last part, which

we postpose until later.

Theorem 87 (Fundamental properties of the flow transformations). Let F be a continuously differen-

tiable vector field on R
n that satisfies (9.6), and let { Φt : t ∈ R } be the set of flow transformations

generated by f . Then:

(1) For each t, Φt is a continuous, one-to-one transformation of Rn onto R
n, and therefore invertible.

(2) For each t1, t2,

Φt1 ◦ Φt2 = Φt1+t2 .

(3) For each t, the inverse of Φt is Φ−t.

(4) For each t, Φt is is not only continuous; it is continuously differentiable.

Proof: For (1), fix any t. Since by definition ‖Φt(x0)− Φt(y0)‖ = ‖x(t)− y(t)‖, (9.8) says that for
any ǫ > 0, with δ(ǫ) := e|t|Lǫ,

‖y0 − x0‖ < δ(ǫ) ⇒ ‖Φt(x0)− Φt(y0)‖ < ǫ .
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This shows that Φt is continuous at x0, and since x0 was an arbitrary point in R
n, Φt is continuous

on R
n.

To see that Φt transforms R
n onto R

n, consider any x ∈ R
n, and let x(s) be the flow curve

passing through x at time s = 0. (We used s as the parameter now since t is already in use and

fixed.) consider the curve x̃(s) defined by

x̃(s) = x̃(s− t) .

Differentiating, we find
d

ds
x̃(s) = x′(s− t) = F(x(s− t)) = F(x̃(s)). Thus, x̃(s) is a flow curve. De-

fine

x̃0 := x̃(0) = x(−t) .

Then, by the definition of Φt,

Φt(x̃0) = x̃(t) = x(t− t) = x(0) = x .

Thus Φt transforms x̃0 onto x, and since x is an arbitrary point in R
2, we have shown that Φt

transforms R
n onto R

n. Finally, if Φt were not one-to-one, there would be some x0,y0 ∈ R
n with

x0 6= y0 but with Φt(x0) = Φt(y0). But this is impossible, since flow lines never cross when F satisfies

(9.6), as we have explained after Theorem 85. Altogether, we have proved that Φt is a continuous

invertible transformation from R
n onto R

n.

We next prove (2), Fix any x0 ∈ R
n. Let x(t) be the flow curve of F with x(0) = x0, Let

x̃(t) = x(t+ t1). Differentiating as above, we see that x̃ is a flow curve of F, and x̃(0) = x(t1).

By definition, Φt1(x0) = x(t1) = x̃(0), and so

Φt2 ◦ Φt1(x0) = Φt2(Φt1(x0)) = Φt2(x̃(0)) = x̃(t2) = x(t1 + t2) = Φt1+t2(x0) .

Finally since Φ0 is the identity transformation, (3) follows directly from (2).

The theorem we have just proved says that the set {Φt : t ∈ R} of transformations of Rn

generated by F is a transformation group. As we work with these transformations, we shall see why

the group property is important.

Let us close this subsection by going back and considering our two “badly behaved” vector fields

from Examples 131 and 132, starting with the latter.

When F(x) is given by F(x, y) = (x1/3, 1), we compute that for x 6= 0,

[DF(x, y)] =

[
|x|−2/3/3 0

0 0

]
.

Hence

‖[DF(x, y)]‖F =
1

3
|x|−2/3

which tends to infinity as x tends to zero. Thus (9.6) cannot be satisfied for any finite L, and even

worse, F is not even differentiable at any point (0, y). Vector fields with such irregular behavior

evidently can be badly behaved, and must be treated with care.
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Things are somewhat better with the vector field in Example 131. This vector field F(x, y) =

(x2, 1) is clearly continuously differentiable, and

[DF(x, y)] =

[
2x 0

0 0

]
.

Hence ‖[DF(x, y)]‖F = 4x2 . Note (9.6) cannot be satisfied for any finite L, but only because of what

happens for very large values of ‖x‖.
Very often in what follows, we will be interested only in what the flow transformation is doing

to points in some bounded set for a short interval of time. In this case, the following localization

procedure is often useful.

We begin with some preliminary calculations. Note that the function (x− 1)(x− 2) is negative

for 1 < x < 2 and equals zero for x = 1 and x = 2. Hence the function φ(y) defined by

φ(y) =

∫ y

1

(x− 1)(x− 2)dx =
1

6
(2y3 − 9y2 + 12y − 5)

is monotone decreasing on the interval (1, 2) with φ(1) = φ′(1) = φ′(2) = 0.

Now define the function χ(r) on [0,∞) by

χ(r) =





1 r ≤ 1

1 + φ(r)/φ(2) 1 < r < 2

0 r > 2

.

By what we have proved above about φ, this function is continuously differentiable. Hence by

the Chain Rule, for any R > 0, the function χ(‖x‖/R) is continuously differentiable on R
n. and

equals 1 for ‖x‖ ≤ R, and equals 0 for ‖x‖ ≥ 2R, and

∇χ(‖x‖/R) = χ′(R‖x‖) x

R‖x‖ .

A simple calculation shows that χ′(r)| ≤ |χ′(3/2)| = 3/2, and so

‖∇χ(‖x‖/R)‖ ≤ 3

2R
.

Now, given any continuously differentiable vector field F on R
2, suppose we are only interested

in what the flow is doing inside BR(0), the ball of radius R centered at the origin. Then let us define

the localized vector filed F̃ by

F̃(x) = χ(‖x‖/R)F(x) .

Then, by construction, F̃(x) = F(x) everywhere in BR(0). Hence the flow curves of F̃ and F

coincide as long as they remain inside BR(0). Next, using the product rule, one sees that the Jacobian

of F̃(x) is continuous and every entry is identically zero outside of B2R(0). Hence ‖[D
F̃
(x)]‖F is a

continuous function of x, and is zero outside of B2R(0). Let L be its maximum value in B2R(0).

Then we have

‖[D
F̃
(x)]‖F ≤ L

for all x ∈ R
n. Hence the localized vector field F̃ is a nice vector field satisfying the hypotheses of

all of the theorems of this subsection.
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Example 135 (Localizing a flow with explosion). Consider the vector field F(x, y) = (x2, 1). from

Example 131.

Then as we saw in Example 131, the flow curve of F through (x0, y0) is given by

x(t) = (x0/(1− tx0) , y0 + t) for tx0 < 1 .

Now fix any R > 0. For all x ∈ BR(0), ‖F(x)‖ ≤
√
R4 + 1, and hence if x(t) is any flow curve of

F or of F̃, as long as this curve is in BR(0), its speed is bounded above by
√
R4 + 1. Evidently any

flow curve starting in BR/2(0) at time t = 0 must travel a distance of at least R/2 to exit BR(0),

and since its speed is limited by
√
R2 + 1,

|t| < R

2
√
R4 + 1

⇒ x(t) ∈ BR(0) .

Hence, if we only look at times t with |t| < R/
√
R4 + 1 and points c with ‖x‖ < R, we do not

see the difference between the“explosive” vector field F̃ and the “nice” vector field F. In particular,

for such t and x, Φt(x) is the same for F̃ and for F, and may be computed using the flow curves we

have found in Example 131:

Φt(x, y) = (x/(1− tx) , y + t) .

However, for larger times explosion may have occurred for some points in BR/2(0), and so for such

t, the transformation cannot be defined on BR(0).

9.2 Flux integrals in R
2

Let F be a continuously differentiable vector field defined on R
2, and suppose that for some a > 0,

the corresponding flow transformation Φt is well defined for |t| < a. Let C be a parameterized curve

in R
2 given by x(u) for 0 ≤ u ≤ b, some b > 0. The curve C may be open or closed.

For 0 < t < a, consider the set of points At that get “swept across C” by time t. To be concrete,

let us take F to be the rotational vector field

F(x, y) = (− y, x)

from Example 130, and let us take C to be the line segment running from (0, 1) to (0, 3). We may

parameterize C as

x(u) = (0, 1 + 2u) for 0 ≤ u ≤ 1 .

Now it is easy to see that Φt(x) =

[
cos t − sin t

sin t cos t

]
x crosses C by time t if and only if x

belongs to the keystone-shaped region given in polar coordinates by

1 ≤ r ≤ 3 and
π

2
− t ≤ θ ≤ π . (9.11)

Thus, the region At is the part of the plane given by (9.11). We then compute

area(At) =
1

2
(32 − 12)t = 4t .
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Thus, area is being swept across the segment C, form right to left, at a steady rate of 4 units of

area per unit of time. We express this by saying that the flux across C, from right to left, produced

by F is 4.

In this example, all of the area that got swept across the curve at by time t got swept across from

right to left. For other curves, this need not be the case. For example, replace C by the line segment

running from (0,−1) to (0, 1). Then there is a region in the upper half plane that gets swept right

to left across the curve by time t, but there is a region of equal area in the lower half plane the swept

left to right across the curve by time t. In this case, there is no net area flowing across the curve

from right ot left (or from left ot right), and so in this case we say the flux is zero. Flux refers to the

net rate of flow of area from one side of a curve to the other.

Now that we have in mind a picture of what we mean by flux, let us proceed to precise mathe-

matical definitions.

Definition 94 (Oriented curve). Consider a differentiable curve C, and let curve x(s), 0 ≤ s ≤ s∗ be

its arc length parameterization. The curve is simple in case for s1 < s2, x(s1) 6= x(s2), except possibly

if s1 = 0 and s2 = s∗, in which case it is a simple closed curve. At each point x(s), 0 ≤ s ≤ s∗, there
are two unit vectors that are orthogonal to T(s), namely ±T(s)⊥. An orientation of such a curve C

is a specification of either T(s)⊥ or −T(s)⊥, making the same sign choice for all s, as the preferred

normal N(s). We think of N(s) as pointing to the “positive side” of C. We call such a curve with

an orientation an oriented curve.

For a simple closed curve in R
2, there are always an inside and an outside. To orient a simple

closed is to specify whether we regard the inside as the positive side, in which case we choose N(s)

to point inward everywhere along the curve, or whether we regard the outside as the positive side,

in which case we choose N(s) to point outward everywhere along the curve.

Now consider an oriented curve C. Let us “zoom in” and look at what the flow is doing near a

segment of the curve between x(s0) and x(s1) with s1 − s0 small but positive. Since for very small

values of t,

If the segment is very short, then the approximation

F(x) ≈ F(x(s0))

will be a good one. We know the flow associated to the constant vector field

F̃(x) := F(x(s0)) ;

it is simply

Φ̃t(x) = x+ tF(x(s0)) .

For small values of t and x near the segment, this should be a good approximation to Φt(x), and in

the limit in which we take t to zero, and the length of our segment to zero, this approximation will

become exact.

In particular, a point x gets carried across the segment between x(s0) and x(s1) by time t if and

only for some s with s0 ≤ s ≤ s1 and some u with 0 ≤ u ≤ t,

x = x(s)− uF(x(s0)) ,
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because in this case, and only this case,

Φ̃u(x) = [x(s)− uF(x(s0))] + uF(x(s0)) = x(s)

which is on the segment.

The region of points that get swept across the segment by the flow is an approximate parallelo-

gram with vertices

x(s0) , x(s1) , x(s0)− tF(x(s0)) , and x(s1)− tF(x(s0)) .

Let ∆s = s1 − s0 be the arc length of our segment. Then the sides of the parallelogram that

meet at x(s0) run along the vectors

∆sT(s0) and tF(x(s0)) .

If we regard the first vector as running along the base of the parallelogram, the height of the

parallelogram is |N(s0) · tF(x(s0))| Thus the area swept across this segment by the flow in time t is

approximately

|N(s0) · tF(x(s0))|∆s .

Next, notice that

N(s0) · F(x(s0)) > 0

if and only if F(x(s0)) points to the positive side of C. Thus, the rate at which area is flowing across

this segment of C, from the negative side to the positive side, is

tF(x(s0)) ·N(s0)∆s ,

where we have reordered terms in what will turn out to be a conveninet way. Dividing by t to get

the rate at which area is flowing, this gives us the flux element for this segment of the curve.

Now adding up the flux elements all along the curve, and taking the limit as the length of the

segments goes to zero, the sum becomes an integral and our approximations become exact, and we

find that the flux is given by ∫ s∗

0

F(x(s)) ·N(s)ds .

We shall also write this simply as ∫

C

F ·Nds ,

and in case C is a simple closed curve, as
∮

C

F ·Nds ,

where the special integration symbol simply emphasizes that the curve is closed.

Definition 95 (Flux integral along an oriented curve). Let C be an oriented curve, and let F be a

differentiable vector field defined in a neighborhood of C. The the flux integral, representing the rate

of flow of area across C, from the negative side to the positive side, under the flow generated by F, is
∫

C

F ·Nds :=

∫ s∗

0

F(x(s)) ·N(s)ds ,

where x(s), 0 ≤ s ≤ s∗ is an arclength parameterization of C (there are two of them), and N(s) is

the prefered unit normal at x(s).
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9.2.1 Computing flux integrals in R
2

Based on the discussion in the previous section, you might think that computing a flux integral will

involve finding an arc length parameterization of a curve. Fortunately, things are much easier than

that.

Let x(t) = (x(t), y(t)), b ≤ t ≤ c, be any parameterization of a curve C. Then the element of

arc length is

ds =
√
(x′(t))2 + (y′(t))2dt .

The unit tangent vector T(t) is

T(t) =
1√

(x′(t))2 + (y′(t))2
(x′(t), y′(t)) ,

and so the preferred unit normal N(t) is

N(t) = ± 1√
(x′(t))2 + (y′(t))2

(− y′(t), x′(t)) ,

with the sign depending on our preference.

Putting things together,

N(t)ds = ± 1√
(x′(t))2 + (y′(t))2

(− y′(t), x′(t))
√
(x′(t))2 + (y′(t))2dt

= ±(− y′(t), x′(t))dt .

The good news is that the factors involving square roots have cancelled out. Let us define

dx⊥(t) := (− y′(t), x′(t))dt .

Then we have, for any parameterization x(t),with s = s(t),

N(s)ds = ±dx⊥(t) ,

so that

F(x(s)) ·N(s)ds = ±F(x(t)) · dx⊥(t) , (9.12)

and hence ∫

C

F ·Nds = ±
∫ c

b

F(x(t)) · dx⊥(t) . (9.13)

Example 136 (Computing a flux integral in R
2). Let

F(x, y) = (− y, x)

from Example 130, and let us take C to be the line segment running from (0, 1) to (0, 3), parameterized

as

x(t) = (0, 1 + 2t) for 0 ≤ t ≤ 1 .

We orient C so the positive side is to the left.

The we compute

F(x(t)) = (− 1− 2t, 0) and N(t)ds = ±(− 2, 0)dt .
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Choosing the plus sign, the first component of N is negative, so N points to the positive side.

Thus, this is the correct choice of the sign.

Putting things together, we have from (9.13) that

∫

C

F ·Nds =

∫ 1

0

(− 1− 2t, 0) · (− 2, 0)dt =

∫ 1

0

(2 + 4t)dt = 4 ,

which is what we found earlier by computing areas.

Example 137 (Computing a flux integral in R
2). Let

F(x, y) = (xy, x2 − y2) ,

and let us take C to be the circle of unit radius centered on (1, 1), oriented so the outside is the

positive side.

We first parameterize C. The standard way is

x(t) = (1 + cos t, 1 + sin t) ,

for 0 ≤ t ≤ 2π.

Then we compute

F(x(t)) = (1 + cos t+ sin t+ cos t sin t , cos2 t− sin2 t+ 2(cos t− sin t))

and

N(t)ds = ±( cos t, sin t)dt

Choosing the plus sign, the first component of N is positive at t = 0,so N points to the positive

side. Thus, this is the correct choice of the sign. Therefore with s = s(t),

F(x(s)) ·N(s)ds = [cos t(1 + cos t+ sin t+ cos t sin t) + sin t(cos2 t− sin2 t+ 2(cos t− sin t)]dt .

Putting things together, we have from (9.13) that

∫

C

F ·Nds =

∫ 2π

0

[cos t(1 + cos t+ sin t+ cos t sin t) + sin t(cos2 t− sin2 t+ 2(cos t− sin t)]dt . (9.14)

There are many terms, but most integrate to zero. Discarding all such terms, we are left with

∫

C

F ·Nds =

∫ 2π

0

[cos2 t− 2 sin2 t]dt = −π .

In this example, there is more area being swept into the disc bounded by C than there is being

swept out.
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9.2.2 The divergence and flux density

Definition 96 (Divergence of a vector field). Let F = (f1, . . . , fn) be a differentiable vector field

defined on an open set U ⊂ R
n. Then the divergence of F is the real valued function div(F) defined

by

div(F)(x) =
n∑

j=1

∂

∂xj
fj(x) .

Example 138 (Computing a divergence). Let

F(x, y) = (xy, x2 − y2) ,

Then

div(F)(x, y) =
∂

∂x
xy +

∂

∂y
(x2 − y2) = y − 2y = −y .

We are now ready to state the Divergence Theorem for flux integrals in R
2:

Theorem 88 (The Divergence Theorem for flux integrals in R
2). Let C be a simple closed curve in

R
2, and let D denote the region bounded by C. Orient C so that the outside is the positive side. Let

F be any continuously differentiable vector field defined on a neighborhood of D. Then
∮

C

F ·Nds =

∫

D

div(F)dA . (9.15)

Example 139 (Using the Divergence Theorem to compute flux). Let

F(x, y) = (xy, x2 − y2) .

Let C be the circle of unit radius centered on (1, 1), oriented so the outside is the positive side. Then

since, as computed in Example 138, div(F)(x, y) = −y,
∮

C

F ·Nds = −
∫

D

ydA ,

where D is the disk of unit radius centered on (1, 1). By symmetry, the average value of y in D is 1.

Hence ∫
D
ydA∫

D
1dA

= 1 .

Since ∫

D

1dA = area(D) = π ,

−
∫

D

ydA = −π .

This is what we found in Example 137, but here the computation is simpler.

The Divergence Theorem is also useful for computing the flux across a curve that is not closed.

Example 140 (The Divergence Theorem and flux across open curves). Let C1 be the part of the

parabola y = 4 − x2 lying above the x-axis oriented so the upward side is the positive side. Let

F(x, y) = (x3y − y2 + x, x2y − 3x+ 5y).
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The endpoints of C1 are ( − 2, 0) and (2, 0). Let C2 be the straight line segment from ( − 2, 0)

and (2, 0). Finally, let C be the simple closed curve that runs from (− 2, 0) to (2, 0) along C2, and

then from (2, 0) and (− 2, 0) along C1.

Notice that orienting C so the outside is the positive side coincides with the original orientation

on C1, and induces the orientation on C2 in which the positive side is the downward side.

Because integrals are limits of sums,
∮

C

F ·Nds =

∫

C1

F ·Nds+

∫

C2

F ·Nds .

But by the Divergence Theorem,
∮

C

F ·Nds =

∫

D

div(F)dA

where D is the region bounded by C. Therefore,
∫

C1

F ·Nds =

∫

D

div(F)dA−
∫

C2

F ·Nds . (9.16)

We now compute the two integrals on the right, each of which is much easier than the integral on the

left.

Indeed, we can parameterize C2 by

x(u) = (− 2 + 4s, 0)

for 0 ≤ s ≤ 4, and this is an arc length parameterization. (Arc length parameterizations are easy for

straight line segments!) Then since y = 0 all along C2, it is easy to compute F(x(s)):

F(x(u)) := (− 2 + s, 6− 3s) .

Also, since N is the downward pointing unit vector, N(s)ds = (0,−1)ds. Putting it all together,

∫

C2

F ·Nds =

∫ 4

0

(3s− 6)ds =
3

2
16− 24 = 0 . (9.17)

Next, let us compute
∫
D
div(F)dA. The first step is to compute

div(F)(x, y) = 3x2y + (6 + x2) .

The region D is given by

0 ≤ y ≤ 4− x2 and − 2 ≤ x ≤ 2 .

Thus,

∫

D

div(F)dA =

∫ 2

−2

(∫ 4−x2

0

[3x2y + (6 + x2)]dy

)
dx

=

∫ 2

−2

[
3

2
x2(4− x2)2 + (6 + x2)(4− x2)

]
dx

=

∫ 2

−2

[
48− 14x2 +

1

2
x4
]
dx =

1856

15
.



9.2. FLUX INTEGRALS IN R
2 375

Combining this result with (9.16) and (9.17), we have
∫

C2

F ·Nds =
1856

15
.

To really appreciate this example, you should carry out the direct computation of
∫
C2

F ·Nds,

which you will find to be somewhat messy.

The point of the last example is that the Divergence Theorem specifies the price that must be

paid to “trade” a curve C1 connecting two point x0 and x1 in on another, simpler curve C2 connecting

the same points. When C1 does not intersect C2 except at the endpoints x0 and x1, so that following

C1 from x0 o x1, and then C2 from x1 back to x0 produces a simple closed curve, the “trade in” is

done just as in the previous example.

9.2.3 Proof and interpretation of the Divergence Theorem

Now that we have seen some examples of how to use the Divergence Theorem, we ask:

• Why is the Divergence Theorem true?

• Why is the divergence related to flux?

The two questions are closely related. To answer the first question, we go back to the notion of

flux as a rate of flow of area.

Proof of the Divergence Theorem in R
2: Let C be a simple closed curve bounding the region

D ⊂ R
2, and orient C so that the positive side of C is the outside of D.

Let F be a differentiable vector field defined on a neighborhood of D, and let Φt denote the flow

transformation generated by F at time t.

Define

Dt = {Φt(x) : x ∈ D } .

Then notice that D−t is precisely the set of points that are in D after running the flow for a time t.

Therefore, the net area swept out of D by the flow in time t is

area(D)− area(D−t) .

(Whatever was in D that is not replaced by what comes in from Dt has gone out.)

To compute area(D−t) we use the change of variables given by the flow transformation:

(u, v) := Φ−t(x, y) .

Note that by part (4) of Theorem 87, Φ−t is continuously differentiable, and so it has a Jacobian

matrix [DΦ−t
(x)].

Then by the change of variables formula,

area(D−t) =

∫

D−t

1d2u =

∫

D

1
∣∣det

(

DΦ−t
(x)
)∣

∣ d2x .

=

∫

D

det
(

DΦ−t
(x)
)

d2x ,
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where in the second line we have dropped the factor of 1 and the absolute value signs. These are not

needed since for t = 0, Φ−1 is the identity transformation, and so det (DΦ0
(x)) = 1. By continuity,

det
(

DΦ−t
(x)
)

is positive for small t which is what concerns us.

Therefore, the flux out of D is given by

flux out of D = lim
t→0

area(D)− area(D−t)

t

= lim
t→0

1

t

∫

D

[1− det
(

DΦ−t
(x)
)

]d2x

= −
∫

D

∂

∂t
det
(

DΦ−t
(x)
)

∣

∣

∣

∣

t=0

d2x .

To complete the proof, we only need to show that

∂

∂t
det
(

DΦ−t
(x)
)

∣

∣

∣

∣

t=0

= −div(F(x)) . (9.18)

Here is one way to do this. We compute an approximation to det
(

DΦ−t
(x)
)

that is accurate to

the leading order in t. For small values of t,

Φ−t(x) ≈ x− tF(x) .

That is, with F(x, y) = (f(x, y), g(x, y)), we have

u(x, y) = x− tf(x, y) and v(x, y) = y − tg(x, y) .

It follows that

DΦ−t
(x) ≈













1− t ∂
∂x
f(x, y) −t ∂

∂y
f(x, y)

−t ∂
∂x
g(x, y) 1− t ∂

∂y
g(x, y)













.

Therefore, to leading order in t, which is all that concerns us in the derivative (9.18) that we are

aiming to compute,

det
(

DΦ−t
(x)
)

≈ 1− t
(

∂

∂x
f(x, y) +

∂

∂y
g(x, y)

)

= 1− tdiv(F(x)) ,

The key to the proof we have just given the identity (9.18). We now give a second proof of this

identity that is valid in R
n for all n, which we shall use later to prove the divergence theorem in R

3.

We shall use the following definition and theorem:

The following definition and theorem complete out work:

Definition 97 (Trace of an n × n matrix). Let A be an n × n matrix. The trace of A, tr(A) is

defined by

tr(A) =

n
∑

i=1

Ai,i .

That is, tr(A) is the sum of the diagonal elements of A.
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For example, if F is any vector field on R
n, then since [DF]i,j =

∂

∂xj
fi(x),

tr(DF(x)) =

n
∑

i=1

∂

∂xi
fi(x) = div(F(x)) . (9.19)

• In other words, the divergence of F is the trace of the Jacobian [DF].

The following important theorem relates the trace and the determinant:

Theorem 89 (The trace, determinant and derivatives). Let A(t) be an n×n matrix valued function

of t ∈ R. Suppose that for each 1 ≤ i, j ≤ n, Ai,j(t) is differentiable at t = 0, with

Bi,j =
d

dt
Ai,j(t)

∣

∣

t=0
.

Suppose also that A(0) = In×n. Then

d

dt
det(A(t))

∣

∣

∣

∣

t=0

= tr(B) . (9.20)

Proof By the determinant formula, det(A(t)) =
∑

σ∈Sn

χ(σ)
n
∏

i=1

Ai,σ(i)(t). By the product rule and the

definition of B,

d

dt

n
∏

i=1

Ai,σ(i)(t)

∣

∣

∣

∣

t=0

=

n
∑

j=1



Bj,σ(j)

n
∏

i=1,i 6=j

Ai,σ(i)(0)



 .

since A(0) = In×n,
n
∏

i=1,i 6=j

Ai,σ(i)(0) = 0

unless σ(i) = i for each i 6= j from 1 to n. But then since σ is one-to-one, it must also be the case

that σ(j) = j. That is,
∏n

i=1,i 6=j Ai,σ(i)(0) = 0 unless σ is the identity permutation, in which case
∏n

i=1,i 6=j Ai,σ(i)(0) = 1. Therefore,

d

dt

(

∑

σ∈Sn

χ(σ)

n
∏

i=1

Ai,σ(i)(t)

)

=

n
∑

j=1

Bj,j = tr(B) .

We are now ready to prove the n-dimensional version of (9.18).

Theorem 90 (The divergence and flows). Let F be a continuously differentiable vector field on R
n,

and suppose that for some finite L ‖DF(x)‖F ≤ L for all x ∈ R
n so that the group of flow transfor-

mations Φt generated by F is well defined, and each Φt is a differentiable one-to-one transformation

of Rn onto R
n. Then

∂

∂t
det
(

DΦ−t
(x)
)

∣

∣

∣

∣

t=0

= −div(F(x)) . (9.21)
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Proof: Let (Φ−t(x))i denote the ith component of the vector Φ−t(x). Then, by definition,

[DΦ−t
(x)]i,j =

∂

∂xj
(Φ−t(x))i ,

and so, by Clairault’s Theorem,

∂

∂t
[DΦ−t

(x)] =
∂

∂t

∂

∂xj
(Φ−t(x))i

=
∂

∂xj

(

∂

∂t
(Φ−t(x))i

)

.

Next, since t 7→ Φ−t(x) is the flow line backwards along the vector field F := (f1, . . . , fn), the

derivative of this curve at any time t is −F at the point Φ−t(x). That is,

∂

∂t
(Φ−t(x)) = −F(Φ−t(x)) .

Therefore,
∂

∂t
[DΦ−t

(x)]i,j

∣

∣

∣

∣

t=0

= − ∂

∂xj
fi(x) = − [DF(x)]i,j . (9.22)

Next, since Φ0 is the identity transformation; i.e., Φ0(x) = x,

[DΦ0
(x)] = In×n , (9.23)

the n× n identity matrix. Therefore, combining (9.22), (9.23) and Theorem 89, we conclude

∂

∂t
det
(

DΦ−t
(x)
)

∣

∣

∣

∣

t=0

= tr
(

− [DF(x)]i,j

)

,

which is equivalent to (9.21).

9.3 Flux integrals in R
3

9.3.1 The flux out of a region V ⊂ R
3

Let V be a bounded region in R
3 bounded by a simple (non-self intersecting) closed surface §. Let F

be a differentiable vector field defined on a neighborhood of V. Then the flux across § generated by

F, from inside to outside is the rate at which volume is swept out of V by the flow Φt generated by

F.

To compute the flux, we reason exactly as in the last section: After running the flow a short

time t, the set of points that are inside V are the points in

V−t := {Φ−t(x) : x ∈ V } .

Therefore, the net flux out of V is given by

net flux out of V = lim
t→0

1

t
[vol(V)− vol(V−t)] .

Also, just as in the last section, the change of variables formula gives

vol(V−t) =

∫

V

det
(

DΦ−t
(x)
)

d3x ,
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so that

lim
t→0

1

t
[vol(V)− vol(V−t)] = −

∫

V

∂

∂t
det
(

[DΦ−t
(x)]

)

∣

∣

∣

∣

t=0

d3x .

Then by Theorem 90 for n = 3, we have that

net flux out of V =

∫

V

div(F(x))d3x . (9.24)

9.3.2 Flux across an oriented surface §
There is also a direct way to calculate the flux across a surface § in terms of a surface integral. In

this case, the surface need not be closed, but it must be orientable.

Definition 98 (Orientable surface). Let § be a differentiable parameterized surface in R
3. At each

point of the surface, there are two sides to the tangent plane to the surface at that point, and hence

two unit normal vectors to the surface at each point. The surface is orientable if it is possible to

specify a preferred unit normal vector N(x) at each point of the surface so that N(x) is a continuous

function of the point x on the surface. Such a specification of a preferred unit normal, it one exists,

is called an orientation of §.

If § is simple and closed, then it bounds a region V, and it clearly has two sides: an inside and

an outside. We can choose N(x) at each point x ∈ § to either point outward from V or inward into

V. In the first case we say N is the outward unit normal vector, and in the second case we say N is

the inward unit normal vector.

Surfaces § that are not closed may or may not be orientable. The Möbius band is an example of

a non-orientable surface R
3.

Now let § be an oriented surface with preferred unit normal N. Let F be a differentiable vector

field defined in a neighborhood of §. Reasoning exactly as in the last section, the rate at which the

flow associated to F sweeps volume across the surface §, from the negative side to the positive side,

is
∫

§

F ·NdS .

Also, just as in the previous section, it is easy to work out the integral in a concrete parameter-

ization of §.
Let x(u, v) with (u, v) ∈ U ⊂ R

2 be a parameterization of §. Then with

Tu =
∂

∂u
x(u, v) and Tv =

∂

∂u
x(u, v) ,

we know that

N(u, v) = ± 1

‖Tu ×Tv(u, v)‖
Tu ×Tv(u, v)

and

dS = ‖Tu ×Tv(u, v)‖dudv .

Therefore the flux element for an infinitesimal tile on the surface is

F ·NdS = F(x(u, v)) ·Tu ×Tv(u, v)dudv ,
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and the flux integral is given, in ready-to-be-computed form as
∫

§

F ·NdS =

∫

U

F(x(u, v)) ·Tu ×Tv(u, v)dudv . (9.25)

Example 141 (Computing the flux across a surface). Let F be the vector field

F = (2xyz − y2, x2z − 2xy, x2y) .

Let § be the part of the paraboloid z = 1 − x2 − y2 that lies above the x, y plane, oriented so its

preferred normal points upward. We will now compute the flux
∫

§

F ·NdS

using (9.25).

The first step is to parameterize the surface. Let us use cylindrical coordinates. Then the equation

defining § is z = 1− r2 and z = 0, and z ≥ 0 becomes r ≤ 1. So

x(r, θ) = (r cos θ, r sin θ, 1− r2) ,

and the parameter domain U is given by

0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π .

Differentiating, we find

Tr(r, θ) = ( cos θ, sin θ,−2r) ,

and

Tθ(r, θ) = (− r sin θ, r cos θ, 0) .

We then compute

Tr ×Tθ(r, θ) = (2r2 cos θ , 2r2 sin θ , r) .

notice that the third component is positive, so this vector points upwards. Thus,

NdS = Tr ×Tθdrdθ .

We then compute

F(x(r, θ)) = (2r2(1− r2) cos θ sin θ − r2 sin2 θ , r2(1− r2) cos2 θ − 2r2 cos θ sin θ , r3 cos2 θ sin θ) .

Therefore, the flux element is

F(x(r, θ)) ·N(r, θ)dS = [2r2(1− r2) cos θ sin θ − r2 sin2 θ][2r2 cos θ]drdθ
+ [r2(1− r2) cos2 θ − 2r2 cos θ sin θ][2r2 sin θ]drdθ

+ [r3 cos2 θ sin θ][r]drdθ .

We now integrate over U . But since

∫ 2π

0

sin2 θ cos θdθ = 0 and

∫ 2π

0

cos2 θ sin θdθ = 0 .

all of the integral give zero. Hence there is no net flux across §.
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9.3.3 The Divergence Theorem in R
3

For surfaces § that bound a connected region V ⊂ R
3, which are necessarily simple closed surfaces,

we usually write
∮

§

F ·NdS

to denote the flux out across §. That is, we canonically take the outward unit normal as the orientation

of § in this case; this is indicated by the special symbol for the integral. Combining our two ways of

computing flux in this case, we have:

Theorem 91 (The Divergence Theorem in R
3). Let V be a bounded connected region in R

3, and let

§ be its boundary, equipped with the outward unit normal orientation. Then
∮

§

F ·NdS =

∫

V

div(F(x))d3x .

The Divergence Theorem is useful for computing flux even for surfaces that are not closed: It

tells you how much you will change the flux by changing the surface § into something simpler. Here

is an example of this:

Example 142 (Trading in one surface on another). There is a better way to compute the flux integral

in the Example 141. Notice that if we let §2 denote the unit disk in the x, y plane, then together §
and §2 bound the region V consisting of points (x, y, z) in R

3 with

0 ≤ z ≤ 1− x2 − y2 .

Also, the outward unit normal on the boundary of V coincides with the preferred unit normal on §.
Thus the net flux outward across the boundary of V is given by

∫

§

F ·NdS +

∫

§2

F ·NdS ,

where on §2 we take the downward unit normal, since this is the outward unit normal.

We can now use (9.24) to compute the net flux outward across the boundary of V, finding
∫

V

div(F(x))d3x .

That is,
∫

§

F ·NdS =

∫

§2

F ·NdS −
∫

V

div(F(x))d3x . (9.26)

It turn out that both of the integrals on the right a very easy to compute. First, since §2 is simply

the unit disk in the x, y pane, the downward unit normal on §2 is simply −e3 = (0, 0 − 1). Also,

F(x, y, 0) = (− y2,−2xy, x2y), and the area element in the x, y plane is simply dS = dxdy. Thus,

F ·NdS = −x2ydx ddy .

Since the integrand is odd under reflection in y, and the region of integration is even, it is then clear

that
∫

§2

F ·NdS = 0 .
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Next, we compute

div(F(x)) = 2yz − 2x .

Notice how much simpler this is than F itself ! To compute the volume integral, we use cylindrical

coordinates. The limits of integration are given by

0 ≤ r ≤ 1 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 1− r2 .

Thus,
∫

V

div(F(x))d3x =

∫ 1

0

(

∫ 1−r2

0

(∫ 2π

0

[2r sin θz − 2r cos θ]dθ

)

dz

)

rdr = 0 ,

since
∫ 2π

0
sin θdθ =

∫ 2π

0
cos θdθ = 0.

Going back to (9.26), we learn that
∫

§
F ·NdS = 0, with much less computation than in Exam-

ple 141.

9.4 Line integrals and circulation

9.4.1 Line integrals, force fields and work

Let F be a continuous vector field on R
n. In this section, we think of F as representing a force field;

that is F gives the force that acts on a point particle located at x.

For instance, if some electric charges are distributed in R
3, they will produce an electric field E(x),

and then any point particle with an electrical charge q will be acted upon by a force F(x) = qE(x).

Let x(t), a ≤ t ≤ b, be a differentiable parameterized curve in R
n. Suppose we move the point

particle along the path x(t). We ask: How much work is done on the point particle as it moves along

the curve from x0 := x(a) to x1 := x(b)?

Let h > 0 be a small time step. As the particle moves from x(t) to x(t + h), the work ∆W (t)

done is approximately given by the dot product of the displacement of the particle and the force

acting time t:

∆W (t) ≈ F(x(t)) · (x(t+ h)− x(t)) .

This is not exact since the force F is not constant, but if the segment is very short, the variation in

the force is a small percentage of the force itself. In this same small step limit, there is one more

useful approximation to make:

F(x(t)) · (x(t+ h)− x(t)) = F(x(t)) · x(t+ h)− x(t)

h
h ≈ F(x(t)) · x′(t)h .

Thus, if we divide the path into many such small segments, and then add up all of the contribu-

tions from all of the segments, and take the limit limit as the length of the segments tends to zero,

we obtain an integral giving the exact value of the work that gets done: This is

∫ b

a

F(x(t)) · x′(t)dt . (9.27)
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Example 143 (Computing a line integral). Let F(x, y, z) = (z, x, y). Let x(t) = ( cos t, sin t, t) for

0 ≤ t ≤ 2π. Let us compute (9.27) in this case:

F(x(t)) · x′(t) = (t, cos t, sin t) · (− sin t, cos t, 1) = −t sin t+ cos2(y) + sin(t) .

Thus the total work is
∫ 2π

0

[−t sin t+ cos2(y) + sin(t)]dt = 3π .

For computational purposes, it is best to represent the line integral in terms of some explicit

parameterization of the curve. But the work done on the particle as it moves along the curve C,

with a specified direction of travel, has a well defined meaning that is independent of any particular

parameterization.

To write the line integral in such a way, introduce the unit tangent vector T(t) along the curve

that points in the specified direction of motion. At each point along a differentiable curve, there are

two unit vectors tangent to the curve. If x(t) is any parameterization of the curve, these are

± 1

‖x′(t)‖x
′(t) .

Taking whichever choice agrees with the specified direction of motion, we have

T(t) = ± 1

‖x′(t)‖x
′(t) and ds = ‖x(t)‖dt .

Thus,

F(x(t)) ·T(t)ds = ±F(x(t)) · x′(t)dt = . (9.28)

This gives us the geometric form of the line integral of F along the curve C:
∫

C

F ·Tds .

We do not need to be given a parameterization of the curve C, we only need to be given the

curve and, what is crucial, the direction in which the curve is traversed. If we are given the force

field F and are told that the path of the particle is the part of the parabola in the x, y plane given

by y = 1− x2, y ≥ 0, this is not enough to determine the work integral. We must also be given the

direction of motion along the parabola. At each point along the parabola, there are two unit vectors

that are tangent to the parabola. The direction of motion singles one of them out to be used as T.

This specification of the direction of motion is called the orientation of the curve.

Example 144 (Computing another line integral). Let F(x, y, z) = (z, x, y) be a given force field,

and suppose a particle moves from (1, 0, 0) to blp− 1, 0, 0) along the parabola y = 1− x2 in the x, y

plane. How much work is done on the particle?

First, we parameterize the path as x(t) = (t, 1 − t2, 0) with −1 ≤ t ≤ 1. This traces out the

parabola in question, but does so backwards, starting at (− 1, 0, 0) and ending at (1, 0, 0). Thus, the

correct unit tangent vector is the opposite of the one associated to this parameterization. Therefore,

we choose the − sign in (9.28) and have

∫

C

F ·Tds = −
∫ 1

−1

(0, t, 1− t2) · (1,−2t, 0)dt = −
∫ 1

−1

2t2dt = −4

3
.
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9.4.2 Conservative vector fields

There is a particularly nice kind of line integral: One in which the vector field F(x) is the gradient

of some function ϕ(x). Indeed, by the chain rule of Chapter 3,

d

dt
ϕ(x(t)) = ∇(x(t)) · x′(t) .

Therefore, if C is the path running along x(t) for, say, a ≤ t ≤ b, the fundamental Theorem of

Calculus gives us

ϕ(x(b))− ϕ(x(a)) =
∫ b

a

∇ϕ(x(t)) · x′(t)dt =
∫

C

∇ϕ ·Tds .

Notice that the left hand side depends only on the initial and final points along the curve C. Therefore,
∫

C

∇ϕ ·Tds

only depends on the curve C through its starting points and endpoint.

Definition 99 (Conservative vector field). Let F be a differentiable vector field defined on an open

set U ⊂ R
n. Then F is a conservative vector field in case whenever C1 and C2 are any two piecewise

differentiable curves with the same initial point and the same final point, both of which stay inside

the set U where F is defined,
∫

C1

F ·Tds =

∫

C2

F ·Tds .

What we have seen just above gives us one class of conservative vector fields – gradients vector

fields: The value of the line integral of ∇ϕ along C is given by the difference in vlaues of ϕ at the

endpoints. In particular, the line integral is zero whenever C is an oriented closed curve. In fact,

this is true for any conservative vector field:

Theorem 92 (Closed curves and conservative vector fields). Let F be a continuous vector field

defined on U ⊂ R
3. Then F is conservative if and only if for all be any closed oriented piecewise

differentiable curves C in U ,
∮

C

F ·Tds = 0 . (9.29)

Note: In (9.29), we have used the special integral symbol to emphasize that we are integrating

over a closed curve.

Proof of Theorem 92: Suppose first that F is conservative. Let C by any closed oriented piecewise

differentiable curve C in U . Pick two distinct points x0 and x1 on C. Define C1 to be the curve

obtained by following C from x0 to x1, following the given orientation. Let C2 be the curve obtained

by continuing onwards from x1 back to x0, still following the given orientation. Let −C2 denote the

reversal of the curve C2: This is the curve on the same path, but with the orientation reversed.

Then C1 and −C2 are two curves in U running from x0 to x1. Since F is a conservative vector

field,
∫

C1

F ·Tds =

∫

−C2

F ·Tds .
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Since changing the orientation changes the sign of T,

∫

−C2

F ·Tds = −
∫

C2

F ·Tds .

But by the additivity property of integrals,

∫

C

F ·Tds =

∫

C1

F ·Tds+

∫

C2

F ·Tds .

Combining the last three identities, we have

∮

C

F ·Tds = 0 .

The argument reverses: Now suppose that F is such that (9.29) is true for any closed oriented

piecewise differentiable curve C in U . If C1 and C2 are two piecewise differentiable curves in U

running from x0 to x1, define the simple closed curve C by following C1 from x0 to x0, then return

from x1 to x0 along −C2. Then

∮

C

F ·Tds =

∫

C1

F ·Tds+

∫

−C2

F ·Tds

=

∫

C1

F ·Tds−
∫

C2

F ·Tds = 0 ,

Thus, F is conservative.

Theorem 93 (Potential functions). Let U be a pathwise connected open set in R
3. Then a continuous

vector field F defined on U is conservative if and only if there is continuously differentiable function

ϕ such that F(x) = ∇ϕ(x) for all x inU .

Proof: We have already seen that all gradient vector fields are conservative. Now suppose that F is

some conservative vector field. Pick any point x0 ∈ U and then for any x ∈ U , define

ϕ(x) =

∫

Cx0,x

F ·T ds

where Cx0,x is any piecewise differentiable curve starting at x0 and ending at x. This is a well defined

function since F is conservative.

Now fix any x in U . Since U is open, x + he1 ∈ U for all sufficiently small values of |h|. Pick

any piecewise differentiable curve Cx0,x starting at x0 and ending at x. Let Cx0,x+he1
be the curve

obtained by continuing Cx0,x by moving along the straight line segment from x to x+ he1. Then

ϕ(xhe1)− ϕ(x) =
∫

Cx0,x+he1

F ·Tds−
∫

Cx0,x

F ·Tds =

∫ 1

0

F(x+ the1) · he1dt .

Therefore,

∇ϕ(x) · e1 = lim
h→0

1

h
(ϕ(xhe1)− ϕ(x)) = F(x) · e1 .

The same argument may be repeated for the other entries, and we obtain the result.
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9.4.3 Circulation

Theorem 92 motivates the the following definition:

Definition 100. Let C be a closed oriented piecewise differentiable curve curve in R
3. Let F be a

continuous vector field defined on a neighborhood of the curve C. Then the circulation of F around

C is the quantity
∮

C

F ·Tds .

.

We may restate Theorem 92 be saying a continuous vector field F defined in U ⊂ R
3 is conser-

vative if and only if for every closed oriented piecewise differentiable curve C in U , the circulation of

F around C is zero.

The computation of circulation for gradient vector fields is trivial: By what we have seen above,

the circulation is always zero.

A circulation integral is therefore nothing other than a special case of a line integral – it is the

case in which the curve C is a simple closed curve. When it is given parametrically, we have a

beginning point and an end point which are the same, and letting the parameter increase specifies a

direction of motion. However, if the curve is specified in purely geometric terms, say, as the circle of

unit radius centered on (0, 0, 1) in the plane x + y + z = 1, then we need additional information to

specify the orientation.

Circulation is very easy to compute for a conservative vector field.

Example 145 (Computation of a circulation integral). Let C be the circle of unit radius centered

on (0, 0, 1) in the plane x + y + z = 1 oriented so that the direction of motion is coutner-clockwise

when viewed from above. Let F = (xy, 1, xy). Let us compute the circulation

∮

C

F ·Tds.

First, we need to parameterize the circle. The normal vector to the plane is (1, 1, 1). If

{u1,u2,u3} is an orthonormal basis of R3 with u3 parallel to (1, 1, 1), then {u1,u2} is an orthonormal

basis for the plane in question, and then

x(t) = (0, 0, 1)+ cos tu1 + sin tu2 0 ≤ t ≤ 2π ,

is a parameterization of the circle. To find the basis explicitly, note that (1,−1, 0) is orthogonal to

(1, 1, 1) We therefore take

u3 =
1√
3
(1, 1, 1) , u1 =

1√
2
(1,−1, 0) and u2 := u3 × u1 =

1√
6
(1, 1,−2) .

Thus,

x(t) = (2−1/2 cos t+ 6−1/2 sin t , −2−1/2 cos t+ 6−1/2 sin t , 1− 21/23−1/2 sin t) .

Differentiating, we find

x′(t) = (− 2−1/2 sin t+ 6−1/2 cos t , 2−1/2 sin t+ 6−1/2 cos t , −21/23−1/2 cos t) .

In particular, x(0) = (2−1/2,−2−1/2, 1) and x′(0) = (6−1/2, 6−1/2, 0)
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At t = 0, the x-coordinate is positive and increasing, and the y coordinate is negative. This means

that when viewed from above, we see counter-clockwise motion. Thus, with this parameterization,

Tds = +(− 2−1/2 sin t+ 6−1/2 cos t , 2−1/2 sin t+ 6−1/2 cos t , −21/23−1/2 cos t)dt ;

i.e., we choose the + sign in (9.28). We then have

∮

C

F ·Tds =

∫ 2π

0

(

1

6
sin2 t− 1

2
cos2 t− 1

)(

− 1√
2
sin t− 1√

6
cos t

)

dt = 0 .

9.4.4 The curl of a vector field on R
3

Let F = (f1, f2, f3) and G = (g1, g2, g3) be two differentiable vector fields defined on an open set

U ⊂ R
3. We can build a new vector field out of F and G by taking their cross product, giving us the

vector field

F×G = (f2g3 − f3g2, f3g1 − f1g3, f1g2 − f2g1) .

Let us compute the divergence of F×G. We find:

div(F×G) =

(

∂f3
∂y

− ∂f2
∂z

)

g1 +

(

∂f1
∂z

− ∂f3
∂x

)

g2 +

(

∂f2
∂x

− ∂f1
∂y

)

g3

−
(

∂g3
∂y

− ∂g2
∂z

)

f1 −
(

∂g1
∂z

− ∂g3
∂x

)

f2 −
(

∂g2
∂x

− ∂g1
∂y

)

f3 . (9.30)

We have grouped the terms so that we can write this in terms of dot products. We now make

the following definition:

Definition 101 (The curl of a vector field on R
3). Let F = (f1, f2, f3) be a differentiable vector field

defined on an open set U ⊂ R
3. Then the curl of F, curl(F) is the vector field on U defined by

curl(F) =

((

∂f3
∂y

− ∂f2
∂z

)

,

(

∂f1
∂z

− ∂f3
∂x

)

,

(

∂f2
∂x

− ∂f1
∂y

))

. (9.31)

Example 146 (Computing a curl). Let F = (xy, 1, xy) is in Example 145 . Then we find

curl(F) = (x,−y,−x) .

Going back to our computation (9.30), we imediaitely deduce:

Theorem 94 (Curl and the divergence of a cross product). Let F = (f1, f2, f3) and G = (g1, g2, g3)

be two differentiable vector fields defined on an open set U ⊂ R
3. Then

div(F×G) = curl(F) ·G− curl(G) · F .

This is the first of several important identities relating gradients, divergences and curls. Here is

another:

Theorem 95 (The curl a gradient is zero). Let ϕ be a twice differnetiable function on an upen set

U ⊂ R
3 so that ∇ϕ is a vector field on U . Then

curl(∇ϕ(x)) = 0

for all x in U .
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Proof: From the definition (9.31),

curl(∇ϕ) =
((

∂2ϕ

∂y∂z
− ∂2ϕ

∂z∂y

)

,

(

∂2ϕ

∂z∂x
− ∂2ϕ

∂x∂z

)

,

(

∂2ϕ

∂x∂y
− ∂2ϕ

∂y∂x

))

,

and each entry on the right is zero by Clairault’s Theorem.

9.4.5 Stokes’ Theorem

The curl of a vector field can be thought of as a circulation density, giving the circulation per unit

area, in much the same way that the divergence can be thought of as a flux density, giving the flux

per unit volume. The theorem that is the basis of this statement is Stokes’ Theorem, which we state

next:

Theorem 96 (Stokes’ Theorem). Let § be an differentiable oriented surface in R
3, with unit normal

N, and suppose that § is bounded by a differentiable simple closed curve C. Orient C so that the unit

tangent vector T has the property that at any point on the boundary, T×N points outward from the

surface. Then
∮

C

F ·Tds =

∫

§

curlF ·NdS .

Here is a picture showing how the orientations of the surface and its boundary “match up”.

Example 147 (Verification of Stokes’ Theorem in an example). Let F and C be the vector field and

curve from Example 145. That is, F = (xy, 1, xy), and C is the circle of unit radius centered on

(0, 0, 1) in the plane x+ y+ z = 1 oriented so that the direction of motion is counter-clockwise when

viewed from above. We have already computed that
∫

C

F ·Tds = 0 .
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We now take § to be the disk in the plane x + y + z = 1 that is bounded by C. To orient §
consistently with C, as in Stokes’ Theorem, we must take N to be the upward unit normal on §.
Thus, at each point of §,

N =
1√
3
(1, 1, 1) .

In Example 146, we have already computed that curl(F) = (x,−y,−x). Thus,

curl(F) ·N = −y ,

and so
∫

§

curl(F) ·NdS = −
∫

§

ydS .

Since § is symmetric under the transformation y 7→ −y, it is clear that
∫

§
ydS = 0. Thus,

∫

§

curl(F) ·NdS = 0 ,

which based on our results in Example 145 is consistent with Stokes’ Theorem.

Example 148 (Computing circulation using Stokes’ Theorem). Let C be the contour that runs from

(1, 0, 0) to (0, 1, 0), and from there to (0, 0, 1), and from there back to (1, 0, 0). Let G = (y + z2, x+

z2, 2x+ 2y). Compute the total circulation

∮

C

G ·Tds .

When asked to compute a circulation, or more generally, a work integral, unless the answer is

totally obvious, the first step is to compute the curl of the vector field. We find:

curl(G) = (2− 2z, 2z − 2, 0) .

This is pretty simple, so it will be good to use Stokes’ Theorem, which says,
∮

C

G ·Tds =

∫

S

curl(G) ·NdS ,

where S is the triangle with the specified vertices.

The triangle S lies in the plane given by x+ y + z = 1, and for this plane the unit normal is

N = ± 1√
3
(1, 1, 1) .

Therefore, curl(G) ·N = 0, and so
∮

C

G ·Tds = 0 .

Stokes’ Theorem may be applied to compute that change in the value of a line integral
∫

C
F ·Tds

that is induced by a change in the curve C. To see how to do this, let C1 and C2 be two differentiable

curves running from x0 to x1. Let x1(t) and x2(t), both for 0 ≤ t ≤ 1 be parameterization of C1 and

C2 respectively.

Define a parameterized surface

x(s, t) 0 ≤ s, t ≤ 1
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by

x(s, t) := (1− s)x1(t) + sx2(t) .

This stretches out a “sheet” between C1 and C2. Now let C denote C1 − C2; that is, the curve

obtained by following C1 from x0 to x1, and then following C2 backwards from x1 to x0. Then C

is the boundary of §, and we orient § consistently with C. (If C1 and C2 intersect, § will consist of
several pieces, each of which should be oriented separately. We will explain this further in examples;

perhaps for now it is best to think of C1 and C2 as non-intersecting.)

Now suppose F is a continuously differentiable vector field that is defined everywhere on a

neighborhood of §. Then by Stokes’ Theorem,
∮

C

F ·Tds =

∫

§

curl(F) ·NdS .

However,
∮

C

F ·Tds =

∫

C1

F ·Tds−
∫

C2

F ·Tds ,

and so
∫

C1

F ·Tds =

∫

C2

F ·Tds+

∫

§

curl(F) ·NdS .

In particular, if curl(F) = 0 everywhere, at least everywhere on §, we have
∫

C1

F ·Tds =

∫

C2

F ·Tds .

Thus, any continuously differentiable vector field F that is defined on all of R
3 and satisfies

curl(F) = 0 everywhere on R
3 is a conservative vector field.

If the vector field is not defined on all of R3, then this need not be the case.

Example 149 (Zero curl, but not conservative). Consider open set

U := {(x, y, z) : x2 + y2 > 0 } .

That is, U is R
3 with the z-axis removed. Consider the vector field F defined on given by

F(x, y, z) =
1

x2 + y2
(− y, x, 0) ,

which is well-defined everywhere on U . Then direct calculation yields

curl(F)(x, y, z) = 0 .

However, if C is the unit circle in the x, y plane, oriented to run counter-clockwise as usual, then

x(t) = ( cos t, sin t, 0) , 0 ≤ t ≤ 2π ,

is a parameterization of C, and we compute

∮

C

F ·Tds =

∫ 2π

0

(− sin t, cos t, 0) · (− sin t, cos t, 0)dt = 2π .

Thus, F is not conservative. The problem is that one cannot find any surface in U of which C is

the boundary: Any such surface must cross the z-axis somewhere, and F is not defined on the z-axis.



9.4. LINE INTEGRALS AND CIRCULATION 391

The previous example brings us to a definition:

Definition 102 (Simply connected region). An open set U ⊂ R
3 is simply connected in case when-

ever C is a simple closed curve in U , there is an oriented surface § in U of which C is the boundary.

An open set O ⊂ R
2 is simply connected if the cylinder U := {(x, y, z) : (x, y) ∈ O} is simply

connected in R
3.

The reason for the second line in the definition is that, as seen in the last example, we can

consider any vector field F(x, y) defined on an open set O ⊂ R
3 as a vector field F̃(x, y, z) defined on

the cylinder U := {(x, y, z) : (x, y) ∈ O} by the simple device

F̃(x, y, z) := F(x, y) .

In this way, we may apply Stokes’ Theorem to vector fields on R
2. We summarize our results in a

Theorem:

Theorem 97 (Zero curl and conservation). Let U be a simply connected open set in R
3. Let F

be a continuously differentiable vector field defined on U . Then F is conservative if and only if

curl(F) = 0 everywhere on U . Likewise, let O be a simply connected open set in R
2. Let F = (f, g)

be a continuously differentiable vector field defined on O. Then F is conservative if and only if

∂

∂x
g(x, y)− ∂

∂y
f(x, y) = 0

everywhere on 0.

Proof: By the remarks made above, it suffices to note that

curl((f, g, 0)) =

(

0, 0,
∂

∂x
g(x, y)− ∂

∂y
f(x, y)

)

.

We now have the means to determine whether a vector field, defined in a simply connected open

set U is the gradient of some potential function: Compute the curl. In case the curl is zero, so that

the vector field is the gradient of some potential function, we can even use the method of proof of

Theorem 93 to compute such a potential function. (The potential function ϕ is only defined up to

an additive constant: Adding a constant to ϕ does not change its gradient, and if ϕ and ψ are two

potential functions for F, ∇(ϕ− ψ) = 0, so ϕ and ψ differ by a constant.)

Example 150 (Finding a potential function). Consider the two vector fields

F = (y + z2, x+ z2, 2zx+ 2zy) and G = (y + z2, x+ z2, 2x+ 2y) .

One of the vector fields F and G is equal to ∇ϕ for some potential function ϕ. Which one is it?

Find such a potential function.

To do this, we compute

curl(F) = 0 and curl(G) = (2− 2z, 2z − 2, 0) .
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A vector field on R
3 is a gradient if and only if its curl is zero at every point in R

3. Hence F is the

gradient of some potential function ϕ.

To find ϕ, we compute line integrals. Pick x0 = 0 as our base point. Then for any point along

the z axis, we find

ϕ(0, 0, z) =

∫ 1

0

F(0, 0, tz) · e3zdt = 0 .

We next compute

ϕ(0, y, z) = ϕ(0, 0, z) =

∫ 1

0

F(0, ty, z) · e2ydt = z2y .

We finally compute

ϕ(x, y, z) = ϕ(0, y, z) =

∫ 1

0

F(tx, y, z) · e1xdt = (y + z2)x .

Altogether,

ϕ(x, y, z) = xy + z2(x+ y) ,

and you can now easily verify that ∇ϕ = F.

9.4.6 Proof of Stokes Theorem

The key to proving Stoke’s Theorem in general it to prove it when C is an oriented triangle in R
3.

Let p1, p2 and p3 be the non-colinear points in R
3, so that they are the vertices of a non-degenerate

triangle in R
3. Let C be the oriented curve that traverses the boundary of the triangle starting at p1,

going next to p2, then on to p3, and finally returning to p1. Let x(t), 0 ≤ t ≤ 1 be a parameterization

of C that is consistent with the orientation. In particular x(0) = p1.

Now let us suppose that p1, p2 and p3 are all very close together, so that the triangle is very

small. We will eventually be concerned with what happens in the limit as these side-lengths go to

zero.

When the distances are very small, the linear approxination

F(x(t)) ≈ F(x(0)) + [JF(x0)](x(t)− x(0))

will be a good approximation, with the errors vanishing percentage-wise in the limit as the side-

lengths go to zero.

Lemma 22. Using the notation established above,

∮

C

F(x(t)) · dx(t) ≈ αcurl(F(x(0)) ·N

where α is the area of the triangle, and where N is its unit normal consistent with the specified

orientation. The errors in this approximation go to zero as a percentage of the right hand side as the

maximum side length of the triangle goes to zero, so that this approximation becomes exact in this

limit.
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Proof: Using the linear approximation F(x) = x(0) + [JF(x0)](x(t)− x(0)),

∮

C

F(x(t)) · dx(t) ≈
∮

C

F(x(0)) · dx(t) +
∮

C

[JF(x0)](x(t)− x(0)) · dx(t) .

Since F(x(0)) is independent of t, and since x(1) = x(0) = p1,

∮

C

F(x(0)) · dx(t) = F(x(0)) ·
∮

C

dx(t) = F(x(0)) ·
∫ 1

0

x′(t)dt = 0

Next, define z(t) = x(t)− x(0). Then

∮

C

[JF(x0)](x(t)− x(0)) · dx(t) =
∫ 1

0

([JF(x0)]z(t)) · z′(t) .

Now define matrices A and B by

A :=
1

2

(

[JF(x0)]− [JF(x0)]
T
)

and B :=
1

2

(

[JF(x0)] + [JF(x0)]
T
)

. (9.32)

Notice that

A = −AT , B = BT and [JF(x0)] = A+B .

The matrix A is called the antisymmetric part of [JF(x0)], and the matrix B is called the symmetric

part of [JF(x0)].

Since B is symmetric,
d

dt
z(t) ·Bz(t) = 2(Bz(t)) · z′(t) .

Therefore, since z(0) = z(1),
∫ 1

0

(Bz(t)) · z′(t)dt = 0 .

Thus the symmetric part of [JF(x0)] plays no role in our circulation computation, and we have that

∮

C

[JF(x0)](x(t)− x(0)) · dx(t) =
∫ 1

0

(Az(t)) · z′(t)dt .

Since A is antisymmetric, it has the form

A =









0 −c b

c 0 −a
−b a 0









. (9.33)

Define the vector a := (a, b, c). Then as we have seen in Example 69,

Az = b× z .

Therefore, by the triple product identity,

(Az(t)) · z′(t) = (a× z(t)) · z′(t) = a · (z(t)× z′(t)) .

Therefore,
∮

C

[JF(x0)](x(t)− x(0)) · dx(t) = a ·
(∫ 1

0

z(t)× z′(t)dt

)

.
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From familiar calculations, we recognize
∫ 1

0
z(t)× z′(t)dt as αN where α is the area of our triangle,

and N is the unit normal pointing to the positive side according to the orientation induced by C.

The final step in our computation is to recognize a as curl(F(x(0)): This follows directly from

(9.32) and (9.33).

Form here, the proof of Stoke’s Theorem is easy. Consider any nice surface such as the one shown

in

“Chop” the surface up into small triangular tiles. Each edge of any of these triangles in the

interior of § is traversed twice, because it is part of the boundary of two triangular tiles. But it is

traversed in opposite directions, so that all of the contributions to the circulation form the interior

triangles is zero: Adding up the circulation around of all of the triangular tiles, everything except

the contribution coming from the boundary of § cancels out.
Thus we have that the circulation about C, the boundary of § is the sum of the circulations

about each of the triangular tiles. Taking the limit as the maximum side length of these triangles

goes to zero, and using Lemma 22,

∮

C

F · dx = lim
side length to 0

∑

triangular tiles in §

(circulation about tile)

= lim
side length to 0

∑

triangular tiles in §

(area of tile)× (N in tile)× (curl(F) in tile)

=

∫

§

curl(F(x)) ·N(x)dS .

This completes the proof of Stoke’s Theorem. .
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9.4.7 Vector Potentials

Lemma 23 (The divergence of a curl is zero). Let A be a twice continuously differentiable vector

field. Then

div(curlA) = 0 .

Proof: Write A(x) = (f(x), g(x), h(x)). Then since

curl(A) =

((

∂h

∂y
− ∂g

∂z

)

,

(

∂f

∂z
− ∂h

∂x

)

,

(

∂g

∂x
− ∂f

∂y

))

,

div(curlA) =
∂

∂x

(

∂h

∂y
− ∂g

∂z

)

+
∂

∂y

(

∂f

∂z
− ∂h

∂x

)

+
∂

∂z

(

∂g

∂x
− ∂f

∂y

)

=

(

∂2f

∂y∂z
− ∂2f

∂z∂y

)

+

(

∂2g

∂z∂x
− ∂2g

∂x∂z

)

+

(

∂2h

∂x∂y
− ∂2h

∂y∂x

)

,

and each of the last three terms are zero by Clairault’s Theorem.

Lemma 23 gives us a necessary condition for a vector field F to be the curl of some other vector

field A: It must be the case that div(F) = 0.

This condition turns out to be necessary as well. To see why this is true, let us consider a

continuously differentiable vector field F(x) = (P (x), Q(x), R(vx)) defined on all of R3 such that

div(F(x)) = 0 for all xinR3.

Let us first observe that If F = curl(A) for some other vector field A, then A is far from unique:

Since curl(∇ϕ) = 0, and since the operation of taking a curl is linear,

curl(A+∇ϕ) = curl(A) + curl(∇ϕ) = F+ 0 = F .

Hence one might hope that among the possible choices of A, there are some that are particularly

simple. This turns out to be the case:

Consider a vector field A of the form

A(x) = (f(x), 0, h(x))

for twice continuously differentiable real valued functions f and g on R
3. Then by the formula for

curl(A),

curl(A) =

(

∂h

∂y
,
∂f

∂z
− ∂h

∂x
, −∂f

∂y

)

. (9.34)

Therefore, if curl(A) = F = (P,Q,R), then by the Fundamental Theorem of Calculus, we must

have

f(x, y, z) = −
∫ y

0

R(x, t, z)dt+ α(x, z)

h(x, y, z) =

∫ y

0

P (x, t, z)dt+ β(x, z) (9.35)

for some functions α(x, z) and β(x, z), since this is equivalent to

−∂f
∂y

= R and
∂h

∂y
= P . (9.36)
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Then with f and h defined by (9.35), we compute the middle component of curl(A):

∂f

∂z
− ∂h

∂x
= −

∫ y

0

[

∂R

∂z
(x, t, z) +

∂P

∂x
(x, t, z)

]

dt+
∂α

∂z
(x, z)− ∂β

∂x
(x, z) . (9.37)

However, since div(F) = 0,
[

∂R

∂z
(x, t, z) +

∂P

∂x
(x, t, z)

]

= −∂Q
∂y

(x, t, z) .

Using this and the Fundamental Theorem of Calculus, (9.37) becomes

∂f

∂z
− ∂h

∂x
= Q(x, y, z)−Q(x, 0, z) +

∂α

∂z
(x, z)− ∂β

∂x
(x, z) . (9.38)

We must choose α(x, z) and β(x, z) so that the right hand side reduces to Q(x, y, z), since then by

(9.34) and (9.36) we will have curl(A) = (P,Q,R) = F. Note that if we chose

α(x, z) =

∫ z

0

Q(x, 0, t)dt and β(x, z) = 0 ,

we do indeed obtain
∂f

∂z
− ∂g

∂x
= Q(x, y, z) ,

and hence curl(A) = (P,Q,R) = F. Thus, whenever div(F) = 0 on all of R3, there is a vector field

A so that F = curl(A) everywhere on R
3. such a vector field A is called a vector potential for F.

We have proved:

Theorem 98 (Vector potentials). Let F be a continuously differentiable vector field on R
3 such that

div(F(x)) = 0 for all x ∈ R
3. Then there is a continuously differentiable vector field A(x) on R

3

such that curl(A(x)) = F(x) for all x in R
3. If F = (P,Q,R), then one such vector potential A is

given by A = (f, 0, h) where

f(x, y, z) = −
∫ y

0

R(x, t, z)dt+

∫ z

0

Q(x, 0, t)dt

h(x, y, z) =

∫ y

0

P (x, t, z)dt . (9.39)

Example 151 (Computing a vector potential). Let F = (−y(2 + x), x, yz). We readily compute

div(F(x, y, z)) = −y + 0 + y = 0 .

Hence, F has a vector potential, and the recipe in Theorem 98 provides one. Since P (x, t, z) =

−t(2 + x), we have

h(x, y, z) = −(2 + x)

∫ y

0

tdt = −1

2
(2 + x)y2 .

Next, since Q(x, 0, t) = x and R(x, t, z) = tz,

f(x, y, z) = −1

2
zy2 + xz .

Altogether,

A(x, y, z) =

(

−1

2
zy2 + xz , 0 , −1

2
(2 + x)y2

)

.

As one readily checks, we do indeed have curl(A) = F.
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9.5 Exercises

1. (a) Let F(x) be a vector field on Rn of the form F(x) = −∇V (x) for some twice continuously

differentiable function V on R
n. Show that along any flow curve x(t) of F, V (x(t)) is a non-increasing

function of t.

(b) Let F(x) be a vector field on Rn of the form F(x) = A∇V (x) for some twice continuously

differentiable function V on R
n and some antisymmetric n× n matrix A. Show that along any flow

curve x(t) of F, V (x(t)) is a constant function of t.

2. Let F(x) be the vector field on R
2 given by F(x, y) = (y, x). Proceeding as in Example 130,

find and explicit formula the flow curve through the general point x0 in R
2. Also, for each t,

find an explicit formula for the flow transformation Φt(x). Your answers will involve the hypbolic

trigonometric functions.

3. Let C be the path consisting of straight line segments running from (0, 0) to (3, 3) and from there to

(4, 5), and from there to (0, 7). Let F(x, y) = (sin(x)+y, 3x+y). Compute the flux integral
∫

C
F·Nds

and the circulation integral
∫

C
F ·Tds, using the orientation induced by the parameterization of C.

4. The curve in the plane given by the equation x3 + y3 = 3xy is known as the folium of Descartes.

Here is a plot of the part of the curve that we shall consider in this exercise:

(Folium is Latin for leaf, as in the English word foliage.) Consider the parameterized curve x(t)

given by

x(t) =

(

3t

1 + t3
,

3t2

1 + t3

)

for 0 ≤ t <∞.

(a) Show that each point on x(t) lies on the folium of Descartes, and that

(0, 0) = x(0) = lim
t→∞

x(t) ,

so that the parameterized curve x(t) is a closed loop. (It is in fact the “leaf” of the folium, which

lies in the upper right quadrant.)
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(b) Show that

x(t) · dx⊥(t) = 9t2

(1 + t3)2
dt ,

and compute the area enclosed by the curve. (That is, compute the area of the leaf.)

(c) Let F(x, y) = (x2 − y2, 2xy). Compute the flux integral
∮

C
F ·Nds where C is the leaf in the

folium of Descartes, and N is its outward unit normal.

5. Let C be path along the unit circle that is in the upper right quadrant in R
2, starting at (1, 0)

and ending at (0, 1). Let F be a vector field of the form

F(x, y) = G(x, y) +∇ϕ(x, y)

where

ϕ(1, 0) = 1 and ϕ(1, 0) = 2 .

Suppose also that with G(x, y) = (P (x, y), Q(x, y)),

∂Q

∂x
− ∂P

∂y
= 1

for all x and y, and finally, P (x, 0) = 0 for all x and Q(0, y) = 0 for all y.

Using this information, compute

∫

C

F ·Tds.

6. Verify Stokes’ Theorem by calculating both sides of
∮

C

F ·Tds =

∫

S

curl(F) ·NdS

where

F(x, y, z) = (y2, x, z2) ,

S is the part of the paraboloid z = x2 + y2 lying below the plane z = 1 with N being the upward

unit normal to S, and C the boundary of S with the orientation that is consistent with the choice of

N.

7. Consider the following vector fields:

F(x, y, z) = (x, xy + z, y2)

G(x, y, z) = (1, xy − z, y2 − xz)
H(x, y, z) = (x, x2 + y + z, y2)

Which of these vector fields are curls, and which are not? That is, does there exist a vector field

A(x, y, z) such that curl(A) = F, and likewise for G and H? Justify your answers.

8. Consider the following vector fields:

F(x, y, z) = (y3 + z2y, 3y2x+ z2x, 2xyz)

G(x, y, z) = (xyz, xy, z

H(x, y, z) = (yz, x, x)
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Which of these vector fields are gradients, and which are not? That is, does there exist a potential

function ϕ(x, y, z) such that ∇ϕ = F, and likewise for G and H? Justify your answers, and in case

a potential function exists, explicitly find one.

9. Let C be any simple closed curve in R
3 that lies on the surface of the cone z =

√

x2 + y2. Let

F(x, y, z) = (x2, y2, z(x2 + y2)). Show that

∮

C

F ·Tds = 0 .

10. Let V be the rectangular box [0, 1]× [2, 4]× [1, 5]. Let F(x, y, z) = (xy, yz, x2z + z2). Let S be

the boundary of V. Compute the outward flux
∫

S

F ·NdS .

11: Let S be the part of the paraboloid z = 1− x2 − y2 that lies above the plane x+ z = 1. Let F

be the vector field F(x, y, z) = (xy, yz, zx). Compute the flux integral

∫

S

F ·NdS

where N is the downward unit normal to the surface. That is, compute the flux across the surface

from top to bottom.

12: Let S be the part of the ellipsoid 4x2 + 9y2 + z2 = 36 that lies above the plane z = 3. Let F be

the vector field F(x, y, z) = (x, 0, z). Compute the flux integral

∫

S

F ·NdS

where N is the downward unit normal to the surface. That is, compute the flux across the surface

from top to bottom.

13: Let S be the boundary of the region V that is above the sphere x2 + y2 + z2 = 6 and below the

paraboloid z = 4− x2 − y2. Let F (x, y, z) be the vector field F(x, y, z) = (z, y, x). Compute the flux

integral
∫

S
F ·NdS for the flux em out of the region D.

14: Let V be the region in R
3 that is inside ellipsoid 4x2+9y2+ z2 = 36, and above the plane z = 3.

Let S be the boundary of V. Let F be the vector field F(x, y, z) = (x, x, z).

(a) Compute the flux integral

∫

S

F ·NdS where N is the outward unit normal to the surface.

(b) Let C be the curve at which the plane z = 3 intersects the ellipsoid 4x2+9y2+ z2 = 36, oriented

to run counterclockwise when viewed from above. Compute
∫

C
F ·Tds.

15: Consider the two vector fields

F(x, y, z) := (2x(y − z) + 2, x2 − 2yz,−x2 − y2 − 3)

and

G(x, y, z) := (2x(y + z) + 2, x2 − 2yz, x2 + y2 + 3) .
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(a) Compute curl(F) and curl(G).

(b) One of the vector fields is the gradient of some function ϕ(x, y, z), and the other is not. Which

one is, and how do you know? For the one that is the gradient of some function ϕ, find such a

function ϕ.

16: Consider the two vector fields

F = (y + z2, x+ z2, 2zx+ 2zy) and G = (y + z2, x+ z2, 2x+ 2y) .

(a) Compute the divergence and curl of F and G.

(b) Let S be the unit sphere, and N its outward normal. Compute either
∫

S

F ·NdS or

∫

S

G ·NdS .

The choice is yours. Do whichever one you find easier, and justify your answer to receive credit.

(c) One of the vector fields F and G is equal to ∇ϕ for some potential function ϕ. Which one is it?

Find such a potential function.

(d) Let C be the curve that is given by

x2 + y2 + y2 = 4 and x+ y + z = 1 .

Orient C so that it is traversed in the counter-clockwise direction when viewed from above. Compute

either ∫

C

F ·Tds or

∫

C

G ·Tds .

The choice is yours. Do whichever one you find easier, and justify your answer to receive credit.

17: Let V be the region in R
3 that lies inside the sphere x2 + y2 + z2 = 4, and above the graph of

z = 1/
√
x2 + y2, as in problem 8. Let F = (y + z2, x + z2, 2z(x + y)) and let N be the outward

normal to S , the boundary of V. Compute the total flux
∫

S

F ·NdS .

18: Let C be the contour that runs from (1, 0, 0) to (0, 1, 0), and from there to (0, 0, 1), and from

there back to (1, 0, 0). Let G = (y + z2, x+ z2, 2x+ 2y). Compute the total circulation
∮

C

G ·Tds .

19: Consider the two vector fields

F = (2xyz − y2, x2z − 2xy, x2y) and G = (2yz − y2, x2z − 2x, x2y) .

(a) Compute the divergence and curl of F and G.

(b) Let S be the part of the paraboloid z = 1− x2 − y2 that lies above the x, y plane. Compute
∫

S

G ·NdS .
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(c) One of the vector fields F and G is equal to ∇ϕ for some potential function ϕ. Which one is it?

Find such a potential function.

(d) Let C be the curve that is parametrized by

x(t) = (t3 − 2t2, t− 3t2, t+ t3) for 0 ≤ t ≤ 1 .

Compute ∫

C

F ·Tds .

20: Let S be the part of the surface in R
3 given by

√
x2 + y2 = 8− z that lies outside the cylinder

x2 + y2 = 4. With G = (2yz − y2, x2z − 2x, x2y), compute the flux
∫

S

G ·NdS ,

where N is taken to point outward from the z-axis.

21: Let C be the contour that runs from (0, 0, 0) to (0, 1, 2), and from there to (2, 2, 2), and from

there back to (0, 0, 0). Let G = (z, x, y). Compute the total circulation
∮

C

G ·Tds .

22: Consider the two vector fields

F(x) := (− 2y + z , 2x+ 4yz , x− 2y2) and G(x) := (2y + z , 2x− 4yz , x− 2y2)

both defined everywhere on R
3.

(a) Compute curl(F) and curl(G)

(b) One of F and G is a gradient vector field and the other is not. Which one is the gradient of some

potential function ϕ(x), and how do you know? For the one that is, find such a potential function

ϕ(x).

(c) For the vector field that is not a gradient vector field, compute its circulation around the unit

circle in the x, y plane, given the usual counter-clockwise orientation.

23: Let V be the region in R
3 specified in problem 7. Let F = (y + z2, x+ z2, 2z(x+ y)) and let N

be the outward normal to S , the boundary of V. Compute the total flux
∫

S

F ·NdS .

24: Let C be the contour that runs from (1, 0, 0) to (0, 1, 0), and from there to (0, 0, 1), and from

there back to (1, 0, 0). Let G = (y + z2, x+ z2, 2x+ 2y). Compute the total circulation
∮

C

G ·Tds .

25: Let F be the vector field

F = (2xyz − y2, x2z − 2xy, x2y) .
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Let § be the part of the paraboloid z = 1− x2 − y2 that lies above the x, y plane, oriented so its

preferred normal points upward. Compute the flux
∫

§

F ·NdS

26: Let C be the curve given by the intersection of the surfaces z = x2 and z = 4− y2. Orient C to

run counterclockwise when viewed from above. Let F(x, y, z) = (x, x, z). Compute

∫

C

F ·Tds .

27: Let V be the region in R
3 that lies inside the sphere x2 + y2 + z2 = 4, and above the graph of

z = 1/
√
x2 + y2. Compute the total surface area of its boundary S. (There are two pieces to the

boundary.)

(a) Compute the surface area of §.
(b) Let F(x, y, z) = (x, x, z). Compute

∫
§
F ·NdV where N is the outward unit normal vector.

28: Let C be the contour that runs from (0, 0, 0) to (1, 0, 0), and from there to (1, 0, 1), and from

there to (0, 0, 1). Let F = (x, x, z). Compute the line integral

∫

C

F ·Tds .


