Chapter 8

PERMUTATIONS,
DETERMINANTS, AND THE
GEOMETRY OF LINEAR
TRANSFORMATIONS

8.1 Permuations

8.1.1 The permutation group

The concept of a transformation group is fundamentally important to modern mathematics, and to
geometry in particular. In this section we introduce a basic example of a transformation group:
the Permutation Group. As we shall explain, the permutation group plays an essential role in the

computations of area, volumes and their higher dimensional generalizations.

Definition 78 (Permutation). A permutation of {1,2,...,n} is a function o from this set onto
itself.
Recall that “onto” means that for every j in {1,2,...,n}, there is an i with o(i) = j. We can
specify a permutation o of {1,2,...,n} by listing the assignments it makes:
1 2 3 e n
\: A oo
o(1) o2) o(3) -+ o(n)

For example, if n =3, and o(1) =2, 0(2) =3 and o(3) = 1,

12 3
o= 111
2 31

© 2011 by the author.

327



328CHAPTER 8. PERMUTATIONS, DETERMINANTS, AND THE GEOMETRY OF LINEAR TRANSFORM

The arrows do not really tell us much; we can remember that the top row is inputs, and the bottom

row is outputs. Let’s shorten the notation to

The generalization of this way of writing permutations to higher values of n is plain, and we use it
freely.

There are exactly n! permutations of {1,2,...,n}: Consider any permutation o of {1,2,...,n}.
There are n choices for the value of o(1). Make this choice, and then, o(1) being taken, there are
n — 1 choices remaining for value of o(2). Next, there are n — 2 choices for o(3), the value to be
assigned to 3. Continuing in this way, there are n(n — 1)(n —2)---1 = n! choices to make, and each

one leads to a distinct permutation.

Example 118 (Permutations of {1,2,3}). There are siz permutations of {1,2,3}:

1 3 1 2
Oq = Op —
1 2
1 3
O‘C = o'd =
1 3 2 3 1
1 2 3 1 2 3 (8.1)
o = ofr = .
‘ 31 2 773 21
Since permutations of {1,2,...,n} are functions from this set into itself, we can compose them:
If o1 and o9 are two permutations of {1,2,...,n}, then o3 0 0y is defined by
o9 001(1) = oa(01(7)) foreach i=1,...,n. (8.2)

Example 119 (Composing permutations). Let us compute o4 0 o, where o4 and oy are the permu-
tations given in (8.1). From (8.1) we see that

oaoop(l) = o4(op(l)) =04(2) =3
oao0p(2) = 0q(0p(2)) =04(1) =2
g4 © Ub(?)) = O'd(Ub(?))) = O'd(3) =1
Thus,
3

gqo0op = = 0oy .
2
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In this example, the composition product of two permutations was another permutation. In fact,
the composition of two permutations is always a permutation: Consider any two permutations oy
and o1 of {1,2,...,n}. To see that o2 0 g1 is also a permutation, we just need to check that for
each j in {1,2,...,n}, there is an i such that o9 0 01(i) = j. But since o9 is a permutation, there
is a k so that o2(k) = j. And since o7 is a permutation, there is an i so that o1(z) = k. Then
o9 001(1) = 02(01(i)) = o2(k) = j. We have found the 4 for which o3 0 01(i) = j, so 03 007 is a
permutation.

The permutation o, at the upper left of the list in (8.1) is called the identity permutation since
it just sends each element of {1,2,3} to itself. This has an obvious generalization to other values
of n. Moreover, every permutation o has an inverse, c—!, which simply sends any j in back to the
integer i in {1,2,...,n} from whence it came. (Since {1,2,...,n} is a finite set, and since o is onto,
it is also one—to—one. Indeed, if o (i) = o(j) for ¢ # j, it would have spent two of n “shots” at hitting
a single target, which would preclude hitting all n. So o is necessarily one-to—one from {1,2,...,n}
onto itself, and hence invertible.)

The inverse too is a map of {1,2,...,n} onto itself, and hence a permutation. (It is just the

original map “in reverse”).

Definition 79 (Pemutation group). Let S,, denote the set of all n! permutations of {1,...,n},

equipped with the composition product oy o 0. This is the permutation group on {1,...,n}.

The term “group” has a precise technical meaning in mathematics; It is a generalization of
the more concrete notion of a “transformation group” which is what the permutations group is: A
transformation group on a set X is a set G of invertible functions from X to X such that whenever
g € G, then g~! € G, and such that whenever g;, g» € G, then g;0go € G. Note that, as a consequence
of the definition, G constains the identity transformation i(x) = x for all € X. Since S,, contains

all invertible transformations form {1,...,n} into itself, it is the largest transformation group on

{1,...,n}.

8.1.2 The character of a permutation

In this subsection, we define a function x on §,, with values in {—1,1}, called the character, that
is essential to the theory of determinants. The definition of x depends on another function which
measures the “degree of mixing” of a permutation o, or in other words, “how far ¢ is from the identity
permutation”.

Consider once more the list (8.1) of permutations. Except for the identity permutation, o, all
of these permutations “mix things up” to some extent. In fact, we have arranged these permutations

in an order that reflects a measure of “how much mixing” is involved in each one, starting from

1 2 3
no mixing in the identity transformation L9 3 at the upper left, to the most mixing in the

“order reversing” permutation 5 9 1 at the lower right. Now, you may well ask: In what sense

is the order reversing permutation “farthest from the identity’? After all, it does send 2 to 2, and
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other permutations have no such fixed points. To answer this question, we must explain how we
quantitatively measure “the degree of mixing” .

We shall quantify the the degree of mixing of a permutation ¢ by counting “the number of pairs
it puts out of order”: Consider the set P := {(4,7) : 1 <1i,j <n} of all distinct ordered pairs chosen

from {1,...,n}, which is a set of n(n — 1) elements. Define the disjoints sets
Py ={(t,j) : 1<i<j<n} and Piown ={(1,7) : 1 <j<i<n}.

Py, is the set of all “increasing” pairs and Pyown is the set of all “decreasing” pairs. Note that both
of these sets consist of n(n —1)/2 ordered pairs, and P = Py, U Paown-
For any o € S,,, the function f, from P into itself defined by

fo(i,3) = (0(i),0(5))

is invertible. In fact, it is a permutation of the elements of P.

Since f, is one-to-one and onto, each pair that f, moves out of P, into Pyown must be replaced
by a pair that f, moves out of Pyown into Py, so that the number of pairs that f, moves out of P,y
into Pyown coincides with the number of pairs it moves out of Paown into Pup: 1t is simply the number

of pairs that f, “swaps” between Piown and Pp.

Definition 80 (Definition (Degree of mixing). The degree of mizing of a permutation o of {1,2,...,n}

is the number of pairs of integers (i,7) in {1,2,...,n} with
i<j and o(i) >o(j) . (8.3)

This number is denoted D(o). In terms of the notation introduced in the preceding paragraph, D(o)
is the number of pairs that f, swaps between Pyown and Pu,. The more “reversed” pairs, the more

mixing there is.

Example 120 (Computing the degree of mixing). Let us compute D(c) for each of the six permu-
tations of {1,2,3}. There are exactly three pairs (i,7) with i < j, namely

(1,2) (1,3 (2,3).

To compute the degree of mizing of o, we look at

and count the number of these pairs that are “out of order”. You can easily check that

D(o,) =0 D(op) =1 D(o.) =1 D(oq) =2 D(o.) =2 D(os)=3.

1 2 3
Thus, with this definition of the degree of mixing, the order reversing permutation - has the
highest degree of mizing among all permutations of {1,2,3}.
Lemma 18 (Degree of mixing and inverses). For each o € Sy,

D(c™') = D(o) .
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Proof: Let f, be the invertible function on pairs induced by o, as explained above. Then evidently
(f»)~' = f,-1. However many pairs f, swaps between P,, and Piown, fs—1 swaps the same same

number back again in undoing the effects of f,. O

Example 121 (A graphical view of the degree of mixing). There is a very good graphical way to

compute D(o) that I have learned from Roe Goodman: For example, start from

which denotes the identity permutation. Now, to represent any other permutation o on {1,2, 3},
simply draw in arrow running from i in the top row to o(i) in the bottom row for i = 1,2,3. Do
this for each of the permutations in the previous example, and note that D(o) is exactly the number
of intersection points of the three arrows. With a bit of thought, you will be able to see that this
generalizes to any value of n, and that the number of intersection points always counts the number

of out-of-order pairs.
The definition of D(o) is useful because of the way it interacts with the composition product:

Consider the following question:

e Given two permutations o1 and o2 of {1,2,...,n}, what can we say about D(og 0 01)?

Lemma 19 (Degree of mixing and composition). For any 01,09 € S,
D(og001) = D(o2) + D(01) — 2¢ (8.4)
where ¢ s a non-negative integer.

Proof: First, in applying o1, we reverse the order of D(oy) pairs. Then, applying os after that, we
reverse the order of D(o2) pairs. So the number of pairs that are reversed by o9 0 7 is no more than
D(o1) + D(o39).

However, some of the pairs that oo reverses may have already been put out of order by ;. In
this case, oo puts them back in order. An extreme case is when oy = (01)*1. Then o5 undoes all of
the mixing done by o1, and D(o2 0 071) = 0.

So we conclude that 0 < D(og001) < D(o1)+ D(02). We can say more: Suppose that when

09 is applied, ¢ pairs that had been put out of order by o7 are “reordered” when we apply oo2. Then,
e Of the D(01) pairs reversed by o1, exactly D(o1) — ¢ are still reversed after applying os.

e Of the D(03) pair reversals created by oo, ¢ are “used up” undoing reversals created by o1, and so

exactly D(o2) — ¢ new reversals are created.

Adding things up, D(og 001) = (D(01) — ¢) + (D(032) — ¢) = D(01) + D(02) — 2¢, which proves
(8.4). O

We now come to our first application of Lemma 19. Note that that whatever ¢ is in (8.4), 2¢ is

always an even integer, and so (—1)%¢ = 1, and

(_1)D(0200'1) — (_1)D(0’1)(_1)D(01) ) (8.5)
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Definition 81 (Character of a Permutation). The character x(o) of a permutation o is defined by

x(o) = (=1)P) . (8.6)

where D(o) is given by (1.7). A permutation o is called an even permutation if x(o) = 1, and an

odd permutation if x(o) = —1.

The key property of the character function is that x(o2001) = x(02)x(01). That is, the character
of a product equals the product of the characters. This follows directly from (8.5). In Example 121
0a, 04 and o, are even permutations whereas oy, 0. and o are odd permutations.

If you want to determine x (o) for a given permutation o you need not compute D(c) first, and

then apply the definition (8.6). There are some general rules for particular kinds of permutations.

Definition 82 (Pair Permutations). For each i < j in {1,2,...,n} the pair permutation o;; is
defined by
O’i,j(i) Zj 5 O'/L'J‘(j) =1 and O’Z‘,j(k) =k for k 7’5 i,j . (87)

It is called an adjacent pair permutation in case j =i+ 1 for i <mn, orif (i,j) = (n,1); i.e., if j

follows i in the cyclic order on {1,...,n}.

Example 122. Forn =4, 024 =

Notice that each pair permutation is its own inverse — applying it twice swaps the reversed pair
back into place.
Next notice that for each adjacent pair permutation o; ;41, D(0;,i+1) = 1, and hence x(0;41) =

—1. What about general pair permutations?

e Forany i < j, 0;j can be written as the product of 2k—1 adjacent pair permutations where k = j—i.

Therefore, since the character of a product is the product of the characters,
X(oij) = (=)t =1

for every pair permutation, adjacent or not.

To justify the claim about o;; with 7 < j , write j = ¢ + k. Then one can “move” i to the right
of j using k adjacent pair permutations. One can then move j back to the ith spot with k£ — 1 pair
permutations. Only k& — 1 are required, because the last pair permutation used to move ¢ into the
jth place already moved j one place to the left.

We summarize the discussion in the following theorem:
Theorem 73 (Properties of the character). For any two permutations o1 and o2 of {1,2,...,n},
X(o2 001) = x(02)x(01) - (8.8)

Moreover, for any pair permutation o; ;,

X(Ui,j) =—-1. (89)
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The theorem gives us a convenient way to compute x(o): Bring the sequence (1,2,...,n) into
the order (o(1),0(2),...,0(n)) by swapping pairs; that is, by pair permutations. Then x(o) is the
product of the characters of these pairs permutations, so it is (—1)¢, where £ is the number of pair

permutations you used.

1 2
Example 123 (Computing (o) counting pair permutations). Consider o = s We can

transform (1,2,3,4) to (4,1,3,2) using pair permutations as follows:
(1,2,3,4) = (4,2,3,1) — (4,1,3,2)

or as well by
(1,2,3,4) = (1,2,4,3) — (1,4,2,3) — (4,1,2,3) — (4,1,3,2)

In the first case we used 2 pair permutations, and in the second case we used 4. FEither way, we see

x(0) = (=12 = (=1)* =1, s0 o is even.

You might wonder why we did not define x(c) to be (—1)* where £ is the number of “pair
swaps” required to produce ¢. The point is this: Suppose you could write some ¢ as a product of 7
pair permutations, and also 242 pair permutations. Then you would have x(¢) = (=1)7 = —1 and
x(0) = (=1)2*2 = 1, and both cannot be right. If this happened, x(c) = (—1)¢ would not be a well
defined function.

Evidently, our analysis above implies that for any given permutation o, if there is a way to write
o as a product of an odd number of pair permutations, then every way of writing ¢ as a product of
pair permutations uses an odd number of them. This fact is not obvious! We know it is true because
we have proved Lemma 19.

At this point we have covered as much of the theory of the permutation group as we shall use
in explaining the theory of determinants. However, the permutation group is such a fundamental
example of a transformation group, and the notion of a transformation group is so essential to modern
analysis and geometry, that it is worthwhile to go somewhat further with the theory of permutations,

and to study S,, as a metric space. We do this in the next subsection.

8.1.3 The permutation group as a metric space

Definition 83 (Distance in S,,). Let g be the function on S, X S,, given by
o(o1,09) = D(Uf1 003) .

This function is called the length function or distance function on S,,.

It is not hard to see that the length function we have just defined is a metric on S,,. That is, it

satisfies the three requirements of a metric:

(1) For all 01,09 € Sy, 0(01,02) >0, and g(01,02) =0 <= 01 =o09.
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(2) For all 01,09 € Sn, Q(O’l,O'Q) = Q(O’Q,O’l).

(3) For all 01,092,053 € S, 0(01,03) < 0(01,02) + 0(02,03).

To see that this is the case, note for (1) that p is defined to be a non-negative integer, and
D(o;! o 0y) = 0 if and only if there are “no crossings” in o, ' o o9, which is the case if and only if

o7 ' ooy is the identity, which is the case if and only if oy = 0. For (2), Note that
(07 00g) =05 00y
and since, by Lemma 18, D is unaffected by taking inverses,

o(01,02) = D(o7 ' 002) = D((07 ' 002) ") = D(0; ' 001) = 0(02,01) .

Finally, for (8) we use (8.4) and the fact that, due the to associative nature of composition,

o7t ooz = (o7 ooy)o (o5t 003) .
Thus, by (8.4), since 2¢ > 0 for all non-negative integers c,
0(01,03) = D(0y too3) = D((0] tooy)o(oy Loas)) < D(oy  ooa)+D(0; oos) = (o1, 09)+o(02,03) .

We now explain how one can think of o(o1,02) as the length of the shortest path in S,, from oy

to oy. Given any o € S,,, consider the set of permutations
{o o7 : 7is an adjacent pair parmuation}

We call this set the set of the nearest neighbors of o in S,,. In terms of the graphical representation
discussed in Example 121, the diagram representing o differs from the diagram representing any of
its nearest neighbors only in having the tails of two adjacent arrows swapped. (We use the cyclic
order on {1,...,n} in which 1 and n are adjacent; 1 follows n.)

Now think of “moving” from ¢ to o o 7, where 7 is an adjacent pair transposition, as a “step”
from o to one of its nearest neighbors. By a path in S, from o1 to o3, we mean a sequences of such

steps starting at o7 and ending at 5.

Definition 84 (Pathsin S,,). For any o1 and o2 in S, a path from oy to o4 is a sequence {1,...,7¢}

of adjacent pair permutations such that
09 = 010T1--0Ty .
For example, if {11, 72,73} is a path from o7 to o2, then the sequences of steps
o1 — 01071 — 01071 0Ty — 01071 0T 0T3 = 02
is a sequence of “one step moves between nearest neighbors” that starts at o7 and ends at 5.

Theorem 74 (The metric in S,, as a minimal path length). For each 01,09 € S, there is a path

from o1 to o9, and

o(c1,09) =min{ ¢ : there exists a path {7y,...,7¢} from o1 to o2} .
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Theorem 74 says that for each 01,09 € S, there is a way to get from o7 to o2 by making a finite
number of steps from one nearest neighbor to another, and that o(o1,02) is the least number of such

steps in which this can be done. The following lemma is the key to the proof.

Lemma 20 (Reduction lemma). For all o € S,, except the indentity, there is some k with 1 < k <
n — 1 such that o(k) > o(k+1). For any such k, let T be the adjacent pair permutation T = o k1.
Then

D(coT)=D(0o)—1.

Proof: Suppose for each i =1,...,n—1, o(i + 1) > o(i). Then
cl)<o(2)< - <on).

The only order preserving permutation is the identity, and since o is not the identity, there is some
ke {1,...,n—1} such that o(k) > o(k+1). Let 7 denote any adjacent pair permutation oy, j41 for
some such value of k.

Define the following sets of ordered pair (i, 7):

A = {(G)) i<k, j>k+1}
B = {(i,j) s j=kork+1,j>k+1}
C = {(i,j) :i<k,j=kork+1}.

The sets A, B, C are disjoint from each other and from {(k,k + 1)}, and AUBUCU{(k,k+ 1)} is
the set of all ordered pairs (4, j) with ¢ < j.
Note that for (i,7) € A, (0(i),0(j)) = (6 o7(i),0 0 7(j)). Hence the image of A under f, is the
same as the image of A under f,o,, and so ¢ and o o 7 reverse the same number of pairs in A.
Note that for (¢,5) € B,

(o(i),0(k)) =(cot(i),oco7(k+1)) and (o(i),0(k+1))=(co7(i),o07(k)).

Hence the image of B under f, is the same as the image of B under f,.., and so o and o o T reverse
the same number of pairs in B.
Note that for (i,j) € C,

(0(k),0(j)) = (eor(k+1),007(j)) and (o(k+1),0(j)) = (co7(k),007(j)) -

Hence the image of C' under f, is the same as the image of C' under f,o-, and so ¢ and o o T reverse
the same number of pairs in C.
Finally, by the choice of k, o reverses (k, k + 1), but then by the definition of 7, o o 7 does not.

Hence o o 7 reverses exactly one fewer pair than does o. O

Proof of Theorem 74: First, suppose that {7;,...,7¢} is a path of length ¢ from oy to o3, Then

09 = 01 0711 ©-07p. Therefore, 01_102 =T1,0---07p and so

D(o7tog) =D(r10---07) .
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Then by Lemma 19

D(rio---o7) < D(m)+ D(rg0---01p)
= 14 D(mpo---07)

since D(7) = 1 for any adjacent pair permutation. Proceeding inductively, we find
D(ryo---o7y) < /L.

Hence, any path from o, to o9 takes at least D(o] ") steps.
On the other hand, by Lemma 20, as long as 01 # 05, or what is the same, D(ag1 ooq) # 0,

there exists an adjacent pair permutation 7 such that
D(oy'ooi0m)=D(0;  001) — 1.
Next as long as D(o5 logio 71) # 0, there exists an adjacent pair permutation 7o such that
D(0'2_100'10T10T2) = D(O’2_1 ooyo7y)—1
= D(oy'oo))—2.
Continuing this way, we find a sequence {71, ... ,TD(U;OUI)} adjacent pair permutations such that

1 o
D(oy " ooroTio0--- oTD((rz_lool)) =0.

But this means that a;l 001070 =0Ty (r104) is the identity, and therefore,

0’2:0'107'10'~'OTD((T;1001).

Hence, there exists a path from o1 to o of length D(Uz_1 oo01). Note that (02_1 ooy) = 01_1 o0y,
and then by Lemma 18,

D(oy'o0y)=D(o;  o0a9) .

Therefore, there exists a path from o to o2 consisting of D(o; Lo 09) steps.
By what we have proved above, this is the least number of steps taken in any path from o; to
g9. O

8.2 Algebraic properties of the determinant

8.2.1 The determinant formula

We are going to break down the formula for the determinant into “building blocks”. The building
blocks will be two simple functions that we will combine to form the determinant function. The first

one is the character function on the permutations. Here is the second one:
Definition 85 (The function A — o(A)). For any n x n matriz A, and any permutation o on
{1,...,n}, define the number o(A) by

o(A) == As1)140(2)2 Ao(nyn = As()g - (8.10)

1

n

J
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Definition 86 (The determinant function). The determinant function det(A) on the set of n x n

matrices is defined by

det(A) = Z x(o)o(A) . (8.11)

gES,

Let us first check that this definition gives us what we expect for n = 2 and n = 3.

Example 124 (2 x 2 determinants). Consider the general 2 X 2 matric A = . There are

only two permutations of {1,2} to consider, namely

1 2 1 2
01 = and o9 =
1
Clearly x(01) = 1 and x(02) = —1. Hence det(A) = Ay 1429 — Az1A12 = ad — be, which is the

usual formula.

Example 125 (3 x 3 determinants). Consider a general 3 x 3 matriz A. We have already worked out
a list of the siz permutations of {1,2,3} in (8.1) of the previous section, and computed the characters
of each of them. In the 3 x 3 case then, the definition (8.11) leads to

det(A) = A11A422A33+ A1 A30A413+ As 1412403
— A1 A1 0A33 — A1 1A32A53 — Az 1A22A13 .

This too is reassuring — the formula (8.11) leads us to the usual formula for 3 x 3 determinants.

Theorem 75 (Characteristic properties of the determinant). Let det be the numerically valued
function on the n x n matrices defined by (8.11). Then:
(1) det(A) changes sign when any two rows of A are interchanged.
(2) det(A) is linear in each row of A.
(8) det(Ixn) = 1, where I, denotes the n x n identity matriz.
Moreover, these three properties characterize the determinant: the function A w— det(A) is the

only function on the n x n matrices with the three properties (1), (2) and (3).

Proof: To prove (1), suppose that B is obtained from A by interchanging the kth and /th rows of
A. Then we have to show that det(B) = — det(A).

To see this, note that B; ; = A and hence, for any permutation o,

I NIONE
o(B) = (0 00ks)(A)
Since oy, ¢ is a pair permutation,

x(oooke) =—x(0) .

Therefore,

det(B) = 3" x(0)o(B) = = 3 x(0 0 01,0)(0 0 00 )(A) - (8.12)

o
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Let 7 denote the permutation 7 := o 0 0 ¢. Since oy ¢ is its own inverse, ¢ = 7 0 o} 0. That is,

the map o +— 7 := 0 0 0y 4 is a one-to-one map of the set of permutations on {1,...,n}. Hence
D X(0 00k (0 00k ) (A) =D x(T)T(A) = det(A) . (8.13)

(In the sum on the middle, we are summing over 7 instead of o, but 7 is just a “dummy” variable;

we are summing over all permutations of on {1,...,n}. Hence Z X(7)7(A) = det(A)). Combining

(8.12) and (8.13) we have det(B) = — det(A), and this proves (1).
To prove (2), we have to show that if

r; = av+ fw

then -~ _ ~ _ ~ _
T r r
r I r
det ! = adet ' + Bdet ' . (8.14)
av + fw v w

This is true since each product o(A) = Ay1)1452),2 - As(n),n contains exactly one factor coming
from the ith row, and hence is a linear function of the entries of the ith row. By definition, det(A)
is a linear combination of the o(A). A linear combination of linear functions is linear, and so the
determinant is a linear function of the entries of the ith row.

To prove (3), note that by the definition of o(I), o(I) = 1 if o is the identity permutation, and
o(I) = 0 otherwise. Hence (3) follows from the formula the determinant.

To prove the uniqueness, let f be any function on the n x n matrices that has properties (1),
(2) and (8). Let A be any n x n matrix. Recall that by subtracting multiples of one row from
another, and perhaps swapping rows, in a finite number of steps we can transform A into a matrix
B that is in row echelon form. Since f has properties (1) and (2), by what we have proved so far,
det(B) = (—1)"det(A) where ¢ is the number of row swaps used in transforming A into B.

Since B is a square matrix in row echelon form, either all of its diagonal entries are non-zero, or
else the bottom row (at least) of B is 0. Then, since f has property (2), multiplying the bottom row
of B by 2 doubles f(B). But since the bottom row of B is 0, multiplying the bottom row of B by 2
does not change B, and therefore does not change f(B). The only number that is its own double is
0, and so f(B) = 0 whenever any of its diagonal entries is zero.

If none of the diagonal entries of B is zero, we can do further row operations to “clean out” the
part of B above the diagonal, leaving us with a diagonal matrix D. Since f has properties (1) and
(2), This does not change the value of f, and so

where D is the diagonal matrix whose jtth diagonal entry id B; ;. But then by the linearity of f in
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each row, we can pull out these factors from each row, leaving us with

f(A) = (=D ] T Bjs f (Inxn) - (8.15)
j=1

Therefore, given that f(I,x,) = 1, we have f(A) = (—1)* [[j-, Bj,; under the assumption that none
of the diagonal entires of B is zero. However, when any of the diagonal entries is zero, the product
of the diagonal entries is zero, and also as we have explained above, f(A4) = 0. Hence (8.15) is valid

without any restrictions.
This gives us a formula for f(A), showing how to compute it in terms of a reduction of A to
row-echelon form. Since for any function f with properties (1), (2) and (3) this formula gives the
value of f, there is at most one such function. Since det(A) is such a function, f(A) = det(A). O

Example 126 (Computing determinants using row operations). The formula (8.15) that we have
encountered in the proof of Theorem 75 is very useful for computing determinants, especially for
larger values of n. All one has to do is to reduce A to row echelon form with a finite sequence of row

operations, keeping track of the number of row swaps that is used. For example, consider the matriz

o

Il
— =
NoRENUN

2
3
4 16

Then subtracting multiples of one row from another, we transform
4
5 —

h
d
o O =

2
1
2

o O =

2
1
0

N Ot

12

Bu (3), the determinant of the upper triangular matriz on the right is 2. But since our row operations
did not change the value of the determinant, this is also the value of det(A). Hence det(A) = 2. You

can readily check that this is what the usual formula gives as well.

8.2.2 Algebraic properties of the determinant function

Theorem 76 (Determinants and invertibility). Let A be any n x n matriz. Then A is invertible if
and only if det(A) # 0.

Proof: This follows immediately from the formula (8.15) that we have derived in the proof of
Theorem 75. As we have seen, the rank of A is n if and only if all of the diagonal entries of B are
non zero. Thus, by (8.15), the rank of A is n if and only if det(A) # 0. But the rank of A is n if and
only if A is invertible. O

The uniqueness part of Theorem 75 has an important consequence:

Theorem 77 (Product property of the determinant). Let A and B be any n X n matrices. Then

det(AB) = det(A) det(B) .
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Proof: If det(B) = 0, then B is not invertible. When linear transformations are not invertible, they
are neither one to one nor onto, so the transformation generated by B is not one to one, and hence
neither is AB. So AB is not invertible, and thus det(AB) = 0.

Tt remains to consider the case det(B) # 0. Fix such a matrix B, and define a function fp on
the n x n matrices by (B

et

f5(d) = de’E(B))
It is easy to see that swapping two rows of A swaps the same two rows of AB, and subtracting a
mutiiple of one row of A from another results in and subtracting the same multiiple of one row of
AB from another — the same rows also. So fp has properties (1) and (2).

Next, by the previous theorem, if A is not invertible, so that neither is AB, det(AB) = 0, and
hence by the definition of fg, fp(A) = 0. Also by the definition of fg, f5(Isxn) = 1. Thus, fp
has the property (3’). By uniqueness part of Theorem 76, this means fp(A) = det(A). But by the
definition of fg, this means det(AB) = det(A) det(B), O

It may seem that we have focused on the rows as opposed to the columns in our definition, but

this is not the case:

Theorem 78 (Invariance of the determinant under the transpose). Let A be an n x n matriz and
AT its transpose. Then
det(AT) = det(A) .

In particular, since the transpose operation swaps rows and columns, det(A) is linear in the columns

of A, and changes sign when two columns of A are swapped.

Proof: Let 7 be any permutation on {1,...,n}. For any n numbers a1, ..., ay,,

H aj = H arg) *
j=1 j=1

The only difference between the products on the left and the right is that we are doing the multipli-
cation in a different order, but since multiplication is commutative, the order does not matter.

Therefore, for any two permutations o, 7 be any permutation on {1,...,n}, and any n x n matrix
A,
n n
a(4) = [[ 4075 = [T Aotriiny sy -
Jj=1 Jj=1

1

Now taking 7 = ¢~ ", we have

n

o(A) =[] 4j-¢) = [[ ALy, = (A7) .
Jj=1 J

—

1

since the character of the identity permutation is 1, for 7 = o7+, x(c o7) = 1 and so x(7) = x(0).

Therefore,

det(A) =Y x(o)o(A) =D x(r)r(A”") = det(AT) .

This proves the theorem. 0
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8.3 (Geometric properties of the determinant

In our study of integration in R? and R?, we have seen that the determinant of a 2 x 2 matrix A gives
the area magnification factor of the linear transformation associated to A, and that the determinant

of a 3 x 3 matrix A given the volume magnification factor of the linear transformation associated to

A.

In this section, we present another proof of these results that makes use of the algebraic properties
of the determinant that we have proved in the previous section. This approach has the advantage
that it yields analogous results n x n matrices. The key to all of this is a factorization result for m xn
matrices called the singular value decomposition.

The Singular Value Decomposition Theorem allows us to express any m X n matrix as the product
of three simple matrices: One will be an m x n diagonal matrix; i.e, a matrix whose ¢, jth entry is
zero when i # j. Moreover, the diagonal entries will be non-negative. Such matrices describe very
simple transformations!

The other two factors in the decomposition will be orthogonal matrices. These too are very
simple once one is familiar with their basic properties. However, these bsic properties do require an

introduction. That is provided in the next subsection.

8.3.1 Orthogonal matrices

Definition 87 (Orthogonal matrix). An n x n matriz U = [uy,...,u,] is an orthogonal matriz if

and only if {uy,...,u,} is an orthonormal basis of R™.

Theorem 79 (Characteristic properties of orthogonal matrices). Let U be an n x n matriz. Then
the following are equivalent:

(1) U is orthogonal.

(2) ||Ux]|| = ||x]|| for all x € R™.

(3) x-y = (Ux)-(Uy) for all x,y € R",

(4) U is invertible, and the inverse of U is the transpose of U; i.e., U=t =UT.

(5) The rows of U, {r1,...,r,}, are an orthonormal basis of R™.

Proof: Suppose that (1) is true so that {u;,...,u,} is an orthonormal basis of R™. Then for any
x € R", Ux =37 x;u; and

2

n n
[Ux]? = Yzl = af = x|
=1 =1

Therefore, (1) = (2).

Now assume that (2) is true.

IU(x+y)|? = (Ux+Uy) (Ux+Uy) = [Ux]* +2(Ux)- (Uy) +[[Uyl]* = [x[|* +2(Ux)- (Uy) +ly | -
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Also by assumption, |U(x +y)|? =[x+ y|? = [[x[|* + 2x - y + [ly[|*>. Comparing calculations, we
see [|x||? + 2(Ux) - (Uy) + [[ylI* = [x[|* + 2x -y + [|y|* for all x,y € R". Cancelling |[x|* and [[y]*
off both sides, we see that (2) = (3).

On the other hand, when (3) is true,

1 i=j

ui-uj:(Uei)-(Uej):ei-ej: .
0 i#j

Thus (3) = (1). At this point we have proved that (1), (2) and (3) are equivalent.

Now assume that U is orthogonal, and hence (2), is true. To show that U is invertible, suppose
that Ux = Uy, and so 0 = ||[U(x — y)|| = ||x — y||, using (2). This implies that x = y, and so the
linear transformation described by U is one-to-one. By the Fundamental Theorem of Linear algebra,
it is also onto, and hence U is invertible.

Moreover, combining (3) with the fundamental property of the transpose, for all x,y
x y=Ux-Uy=x-UlUy .

Therefore,
x-(I-UTU)y=0

for all x,y. Taking x = (I —UTU)y, we see ||(I —UTU)y|| = 0 for all y, and hence (I —UTU)y =0
for all y. This mean that UTUy =y, and since U is invertible, this means that U~' = UT. Thus
when U is orthogonal, (4) is true.

Next, suppose that (/) is true. Then, by the fundamental property of the transpose, for all x,y

Ux - Uy=x-UlUy=xU"Uy=x"-y

so that (4) = (3), and hence that U is orthogonal. Hence, (4) is equivalent to U being orthogonal.
Finally, suppose that U is orthogonal. Then since (2) is true, for all x,

x| = [UU™ x| = [UWU %)| = U] .

This shows that U~! has the property in (2), and by what we have proved above this means that U
is orthogonal. But since U is orthogonal, U~! = U”, and so U” is orthogonal. Hence the columns of
UT are orthonormal. But the columns of U7 are the rows of U, and so (5) is true for all ortogonal
matrices U.

Conversely, suppose that (5) is true. Then U has orthonormal columns and is therefore or-
thogonal. But by what we just proved, every orthogonal matrix also has orthonormal rows. Hence
the rows of UT are orthonormal, and this means that the columns of U are orthonormal. Hence U is

orthogonal whenever (5) is true. O

One consequence of Theorem 79 is that the set of n x n orthogonal matrices, regarded as a set
of transformations of R™ is a transformation group. Indeed, whenever U is an orthogonal matrix, its
inverse U7 is also an orthogonal matrix by Theorem 79: Since both the columns and rows of U are

orthonormal, and since the inverse of U is UT, both the columns and rows of U~! are orthonormal,



8.3. GEOMETRIC PROPERTIES OF THE DETERMINANT 343

and hence U~! is orthogonal. Furthermore, if U and V are any two n x n orthogonal matrices, then
for all x € R",
[(VO)x| = [VUx)[| = |Ux] = <] -

Hence the product VU has property (2) and by Theorem 79 is orthogonal. Thus, the product of
any two orthogonal matrices is again an orthogonal matrix. Since the matrix product corresponds
to the composition of the corresponding linear transformation of R™, this shows that the set of all

orthogonal matrices, regarded as a set of transformations of R" is a transformation group.

Definition 88 (The orthogonal group on R™). The set of all n x n orthogonal matrices is called the
orthogonal group on R"™, and is denoted by O(n).

Theorem 80 (Determinants of orthogonal matrices). Let U € O(n). Then
det(U) = £1 .

The set of matrices U € O(n) such that det(U) = 1, regarded as a set of transformations of R™,

forms a transformation group on R™.

Proof: For all U € O(n), I = UTU. This
1 =det(I) = det(UTU) = det(UT) det(U) = (det(U))?,

where we have used Theorems 77 and 78. The only solutions of the equation 22 = 1 are £1, and so
det(U) = +1.
Now suppose det(U) = 1. Then by Theorem 79 and Theorem 78,
det(U™) = det(UT) = det(U) =1 .

Hence the inverse of U has the same property. Next, let V,U € O(n) be such that det(V') = det(U) =
1. Then by Theorem 77,
det(VU) = det(V)det(U) =1 .

Hence the subset of O(n) consisting of matrices with unit determinant is closed under taking inverses

and products. It is therefore a transformation group, and, as such, a subgroup of O(n).

Definition 89 (The special orthogonal group on R™). The subset of O(n) consisting of orthogonal
matrices U with det(U) = 1 is called the special orthogonal group on R™, and is denoted by SO(n).

Example 127 (Two dimensional orthogonal matrices). Let U = [uy,us] € O(2). Then uy is a unit
vector. Hence

u; = (cos6,sind)

for some 0. Since uy must be a unit vector orthogonal to uy, there are only two choices for uy:
uy; = (—sinf,cosf) orelse uy = (sinf, —cosb) .

Thus either we have

U =

cosf —sinf cos 0 sin 6
orelse U= . (8.16)
sin 0 cos sinf —cosf
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cosf) —sinf cos sin 0
det =1 and det =—1.
sin 0 cosf sinf —cosf

Thus, the matrices in SO(2) are precisely the matrices on the left in (8.16), and we recognize

Note that

these as the two dimensional rotation matrices.
The matrices on the right in (8.16) reflection matrices. Indeed, let u = (cos(0/2),sin(/2)0).

Then the Householder reflection in R? given by u has the matriz

[ 10 ] _Ql cos?(0/2) cos(0/2) sin(6/2) ] _ [ cos 6 sin 0 1
0 1 cos(0/2) sin(6/2) sin?(0/2)

sinf —cos6

by the double-angle formulas. Thus the matrices in O(n) that are not in SO(n) are precisely the

reflection matrices.

Example 128 (Three dimensional orthogonal matrices). Let U = [uy,us,us] € O(3), so that, by
definition, {uy,us,u3} is an orthonormal basis of R3.

We have seen in Chapter One that there is a linear transformation f from R3 to R® that is the
composition of at most 3 Householder reflections such that (e;) = vy for j = 1,2,3. This means
that the matriz representing f is the matriz U, and hence U is the product of at most three matrices
representing Householder reflections. We have seen that whenever hy is a Householder reflection,

and Hy := [hy(e1), hu(ez), hy(es)] is the 3 x 3 matrix representing hy,,
det(Hy) = det([hy(e1), hy(e2), hy(es)]) = hu(er) - hy(ez) x hy(es)] = -1 .

Now suppose U is not the identity matriz. Then U is the product of either 1, 2 or 3 Householder
reflection matrices. Since the determinant of each of these is —1, by Theorem 77, det(U) = 1 if and
only if U is the product of exactly 2 Householder reflection matrices.

As we have seen in Chapter Two, the product of any two Householder reflections is a rotation:
Each Householder reflection leaves a plane through the origin - the plane of reflection - unchanged.
The two planes of reflection meet in a line through the origin which is left unchanged by the composi-
tion of the two reflections. This line is the axis of rotation. Thus, SO(3) consists of the 3 x 3 rotation
matrices. Every matriz U € O(3) that is not in SO(3) is the product of some matriz in SO(3) and

a Householder reflection matriz.

8.3.2 Orthogonal matrices, area, volume and shape

If U € O(2), the action of U on R? preserves the area of of subsets of R?: We have proved that the
area magnification factor of of the linear transformation given by any 2 x 2 matrix A is |det(A)].
Since |det(U)| =1 for all U € O(2), the area magnification factor associated to U is 1.

However, the action of a matrix in O(2) preserves much more than the area of of subsets of R?;
it preserve the distances between each pair of points in the set — there is no distortion of the shape of
the set; all that changes is the way it is situated in the plane. For example, Consider the cat-shaped

set in the unit square in R? shown below:
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0 -1

Consider the matrix U € O(2) given by U = . This matrix U acts on R? be counter-

clockwise rotation through the angle m/2. The image of the out cat shaped set under the action of

U is therefore

The orthogonal transformation has changed the orientation of the set in the plane but has not

distorted it in any way.

Next consider the 2 x 2 matrix A given by A = . Note that det(A4) = 1, and so the

action of A on R? preserves the area of subsets of R?, but it strongly distorts the shapes of subsets

of R2. Here is picture showing the original cat shaped set, and also its image under the action of A:

T

e

/
//
e
y

//
Y
"

While this transformation preserves area, it does not preserve distances: Notice that after the

transformation, the distance between the tips of the cat’s ears is greater than is was before, while
the distance from the tip of the left ear to the center of the cat’s face is less than it was. Also, the

transformation changes angles: After the transformation, the angle in the lower left corner of the
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bounding box is much less than it was, while the angle in the lower right corner of the bounding box
is much greater than it was.

We now show that transformations of R™ that preserve distances automatically preserve angles,
areas and volumes as well. This brings an important definition, and an important characterization

of orthogonal matrices:

Definition 90 (Euclidean transformation). Let f be a function from R™ to R™ with the property that
for all x,y € R™,

[£(x) = £yl = llx =yl - (8.17)

Then f is a Euclidean transformation.

That is, Euclidean transformations preserve the distances between points; there is no “stretching”

or “compression” associated to a Euclidean transformation.

Theorem 81 (Euclidean transformation and orthogonal matrices). A function £ from R™ to R™ is

a Euclidean transformation if and only if there is an xo € R™ and a U € O(n) so that for all x € R™,
f(x) =x0+Ux . (8.18)
Proof: Let f be a Euclidean transformation. Define the transformation g by
g(x) = £(x) — £(0)

and note that since for all x,y € R, g(x) —g(y) = f(x) —f(y), g is also a Euclidean transformation,
and g(0) = (0). Thus, for all x € R™,

%[l = llx = 0] = [lg(x) — g(0)] = [ls()]|

so that the transformation g preserves the lengths of vectors. But then for any x,y € R™.

2y = x[P+lyl* ~lx -yl
= g+ lg®)l* - lgx) — W)l
= 2g(x) g(y) - (8.19)
Thus,
x-y=gx)- gy,
and the transformation g preserves dot products. Therefore, if we define u; = g(e;) for j=1,...,n,
{uy,...,u,} is an orthonormal basis of R™.
Now, for any x € R"”,
n
gx) = (8(x) -uj)u; =Y (8(x) - gle;))u;
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However, if we define the orthogonal matrix U by U = [uy,...,u,], then by the rules of matrix

multiplication,
n
Ux = Z J,‘jllj .
j=1

Therefore, g(x) = Ux for all x. But then by the definition of g, if we define xq := £(0), it follows
that for all x, f(x) = xg + Ux.
Conversely, suppose that the transformation f is given by f(x) = xo+ Ux where U € O(n), Then

[£(x) = £l = [Ux = Uyl = [U(x = y)|| = [x =y

since the final equality is true since U € O(n). Thus, f is a Euclidean transformation. O

We now claim that Euclidean transformations of R™ preserve n-dimensional volume. At least in
2 dimensions, this is intuitively clear: By the previous theorem, a Euclidean transformation is either
a reflection of a rotation, followed by a translation. None of these operations affects area, which is
what we mean by 2-dimensional volume.

The main difficulty in justifying our claim is to make precise sense of what we mean by volume
in R™. To discuss the notion of the volume of sets in R™ in full generality would take us into a study
of Lebesgue measure, and that is beyond the scope of our discussion. However, there is a well defined
notion of the n-dimensional volume of sets in R™ that is valid for all closed bounded sets in R™. The
n-dimensional volume function is additive, meaning that if A = B U C' is a union of two disjoint sets

for which the volume is defined, then
volume(A) = volume(B) + volume(C) .

Suppose that A is any cube of side length h in R™; i.e., any set of the form
n
xo—i—ZSjuj where 0<s;<h forall j=1,...,n,
j=1

where xg is one corner of the cube. Then the n-dimensional volume function is defined so that
volume(A) = A" .

Then by the additivity that we have just discussed, any set A that can be decomposed as a

disjoint union of N cubes of side length h satisfies
volume(A) = Nh" .

Now let U € O(n), Then the image of any cube of side length h in R™ under the transformation
given by U is again a cube of side length h: The transformation preserves dot products, and so it
preserves the lengths and orthogonality of the edges. Hence if A is any disjoint union of N cubes of
side length h, so is its image under the transformation U; i.e., the set U(A) := { Ux : x € A }.
That is,

volume(U(A)) = Nh? = volume(A) .

In the theory of the Lebesgue measure, one proves that every subset A of R™ for which the

volume can be defined and is finite, A can be approximated up to a small error in the volume by
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a finite disjoint union of cubes of some small side length h. Because of this, roughly speaking, the
volume of A is the limit as h tends to 0 of h™ times the number of disjoint cubes of side length h

that can be packed into A. Therefore, one has that:

o Whenever U € O(n), and whenever A C R™ has a well defined volume, the image of A under the

transformation U; i.e., U(A), has the same volume as A.

8.3.3 The Spectral Theorem as a factorization theorem

Before introducing the singular value decomposition, we explain how a theorem with which we are al-
ready familiar, namely the Spectral Theorem, provides a factorization of an arbitrary n xn symmetric

matrix A into the product of three factors,
A=UAUT,

where U = [uy,...,u,] is a matrix whose columns are an orthonormal basis for R™ consisting of
eigenvectors of A — the Spectral Theorem assures us that such a basis exists — and A is an n X n
diagonal matrix whose jth diagonal entry is the eigenvalue \; corresponding to the eigenvector u;.
Finally, U7 is the transpose of U.

As we shall see, each of these factors, U, A and U?, has a simple geometric interpretation that

helps us understand the geometric nature of the linear transformation associated to A.

Theorem 82 (Diagonalization of symmetric matrices). Let A be a symmetric n X n matriz. Let
{uy,...,u,} be an orthonormal basis of R™ consisting of eigenvectors of A, recalling that such a basis
always exists. Let A be the n x n diagonal matriz whose jth diagonal entry of A is the eigenvalue of
A corresponding to u;. Then

A=UAUT .

Conversely, given any n x n diagonal matriz A, and any U = [uy,...,u,] € O(n), UANUT is an
n X n symmetric matriz such that for each each j, u; is an eigenvector of UNUT with eigenvalue ),

where \j is the jth diagonal entry in A.

Proof: We claim that UT AU = A. Once this is shown, we shall have our factorization of A since
multiplying both sides on the left by U and and on the right by U” and using UTU = UUT = I, we
get A=UAUT.

To justify the claim, recall that for any matrix B, the ¢, jth entry is given by B; ; = e; - Bej,

Hence, using the fundamental propert of the transpose and the fact that Ue, = uy, for all &,

N i=j
(UTAU)i,j:eyUTAUej:(Uei)-A(Uej):ui~Auj:)\jui-uj: OJ 7&] .
)

This shows that U7 AU equals the diagonal matrix A.

For the converse, since UTuj = ej,

(UAUT)Uj = U(A(UTUJ)) = U(Aej)) = /\erj = )\ju]‘ .
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This proves that each u; is an eigenvector of UAU T with eigenvalue A;j. Note that
(UAUDT = (hTATUT = UAUT

so UAUT is symmetric. O

8.3.4 The Singular Value Decomposition

The following theorem generalizes the factorization of symmetric matrices that is provided by Theo-

rem 82 to general matrices.

Theorem 83 (The Singular Value Decomposition Theorem). Let A be an m x n matriz. Then there
exist matrices U, V and ¥ such that
A=UxvT

and
(1) U € O(m)
(8) Ve O(m)
(3) ¥ is an m x n diagonal matriz whose jth diagonal entry is o; where where o; > 0j41 > 0 for all
j=1,...,min{m,n} — 1.

In any such factorization of A, the matrix ¥ is always the same. In particular, the numbers

{01, Ominfm.n} } are uniquely determined by A. We call these numbers the singular values of A.

For example, if m = 3 and n = 4, the matrix o has the form

g1 0
Y= 0 g9
0 0 o3 O

g1 0 0
¥ — 0 (o) 0
0 0 g3
0 0 O

In both cases,
o1>0322>032>0.

Before we prove this theorem, let us see what it tells us about the geometry of the general
invertible linear transformation from R™ to R™. Let A be any invertible n x n matrix. Let A = UXVT
be the factorization of it provided by the singular value decomposition. Then ¥ is a diagonal matrix
whose jth diagonal entry is ;. Since U and V are invertible, the fact that A is invertible implies
that ¥ is invertible. This in turn implies that o; > 0 for each j =1,...,n.

In particular, if n = 2, and A is invertible, then

Z: g1 0 ,
0 g9
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where o1 > 09 > 0.
The transformation given by ¥ is very easy to understand geometrically: Let D C R? be the
closed unit disc; i.e., the set of points (z,y) such that 2 4 y*> < 1. Let D denote the image of D

under the transformation given by ¥, and regard D as a set in the u, v plane. Since

(U,’U) - E(l‘,y) = (0'115,0'23,/) )

u2 ’1}2
—+—=<1 = ?+y? <1,
o1 03

This tells us that D is an ellipse centered on the origin whose majors axis has length o7, and whose
minor axis has length 20,.

Now that we know what the image of the unit disc is under ¥, we ask:
o What is the image of the unit disc under a general invertible linear tranformation from R? to R??

To answer this question, let A = UXV7 be a singular value decomposition of A. The matrices
U and V are both 2 x 2 orthogonal matrices, and hence by what we have seen in Example 127, they
are either 2 x 2 rotations or 2 x 2 reflections. Since by Theorem 79, V7' is also an orthogonal matrix,
it too is either a rotation or a reflection.

Now, the image of the unit disc under either a rotation or a reflection is again the unit disc,
though points in it will generally get moved around. Here is a picture showing the original unit disc

with the vectors e; and ry drawn in.

The next picture shows the image under V7 of the unit disk: The image is still the unit disc,
but the vectors e; and es have been rotated or reflected into new positions — in the picture it is a

rotation.

Now apply ¥: This distorts he unit disc into an ellipse whose major axis lies along the first

coordinate axis and has length 207, and whose minor axis lies along the second coordinate axis and
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has length 205. Here is a picture showing the action of ¥ on the unit disk:

Now apply U: Since U is either a rotation or reflection, it either rotates or reflects the ellipse,
changing only the orientation of the major and minor axes, and not their lengths. Here is a picture

showing the action of U on the ellipse (D) where D is the unit disc.

Again, in this picture, U is a rotation, and the lengths of the major and minor axes of the ellipse
are 201 and 205. This reasoning applies to any invertible 2 x 2 matrix A, and hence we conclude,
that:

o The image of the unit disc in R? under the action of any 2 x 2 invertible matriz A is an ellipse,

and from the magjor and minor axes of this elipse, one can read off the singular values of A.

These conclusions are readily extended to general n x n matrices. In fact, we have: .

Theorem 84 (Geometric consequences of the singular value decomposition). Let A be any m x n
matrixz. Then the image of the unit ball in R™ under the action of A is an m-dimensional ellipsoid
in R™. The directions of the principle axes of the ellipsoid are the columns of U, and the length of

the awis with direction u; is 20;.

Finally, when A = UXVT is a singular value decomposition of an n x n matrix, by Theorems 77
and 78,

| det(A)| = | det(USVT)| = | det(U)|| det(S)]| det(V)| = det(X)

since U,V € O(n) so that their determinants are £1, and since ¥ is diagonal with all of its entries

non-negative
n
det ¥ = H oj .
j=1

Now, consider an n-dimensional cube in R™ whose edges are parallel to the coordinate axes, and
whose sides have length h, Since the action of ¥ on R” is simply stretch or compress distances along
lines parallel to the cooridinate axes, the image of such a cube under ¥ is a rectangular box with
edges parallel to the axes and side lengths o1h,...,0,h. The transformation associates to X is often

called a scale transformation since its action effectively changes the scale along the coordinate axes.
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It is easy to understand the effect of the scale transformation ¥ on volume. By what we have

explained about volume in R™, the volume of such a box is the product of the edge lengths; i.e., it is

n
h* [ os = h"ldet(A)] .
j=1
Thus, the transformation ¥ has the volume magnification factor | det(A)|, But since A = UXVT and

neither U nor V7 affect volume, this is also the volume magnification factor of A. We summarize:

e For any invertible n X n matriz A, whenever E C R™ has a well defined volume, the image of E

under the transformation A; i.e., A(E), has the volume

volume(A(E)) = | det(A)|volume(A) .

Proof of Theorem 83: To prove the existence of the singular value decomposition A = ULV, it

suffices to find an orthonormal bases {uy,...,u;,} of R™ and an orthonormal bases {vi,...,v,,} of
R™ and numbers o1 > -+ > 0, > 0, t < min{m, n}, such that
op 1=3<r

u; - AVj = . (820)
0  otherwise

To see this, suppose we have (8.20). Define U = [uy,...,uy] and V — [vq,...,v,]. Then

U inO(m) and V € O(mn). Let us compute the i, jth entry of UT AV. This is given by

(UTAV), ; =e;-UTAVe; = (Ue;) - A(Ve —j) = u; - v, . (8.21)
Define Sigma to be the m x n matrix with

ag; Z:]ST
Yij =

0 otherwise

Comparing this with (??) and using the assumption (8.20) we conclude that for all i and j, (UT AV); ; =
¥ ;. This of course means that

UrAV =% .

Now, multiplying both sides on the left by U and on the right by V7 and using the fact that
UUT = Lxm and VVT = I,,,,, we have that A = ULV, as desired.

To complete the proof, we now construct the orthonormal bases and the numbers o; that figure
in (77?)

Let A be any m x n matrix. Form the (m + n) x (m + n) matrices

A —I
0 O] and M:—l mm 0 ]

B =
AT 0 I xn

More explicitly, the 0 entry in the upper left of B denotes the m x m zero matrix, and the 0 entry

in the lower right of B denotes the n x n zero matrix. Likewise, the 0 entry in the upper right of M
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denotes the m x n zero matrix, and the 0 entry in the lower left of M denotes the n x m zero matrix.

A little though about the rules of matrix multiplication shows that

0 A
AT 0

0

MB = AT

—A
0 and BM =

That is,
BM =—-MB .

This has the following consequence: If w € R™*" is an eigenvector of B with eigenvalue )\, then
B(Mw) =—-M(Bw) = —M(Aw) = -AMw .

Since M is orthogonal, Mw # 0, and so Mw is an eigenvector of B with eigenvalue —\.

Thus, again using the fact that M € O(m + n), if {w1,..., Wy1n} is any orthonormal basis of
R™*™ consisting of eigenvectors of B, so is {Mwy, ..., MWy, 1}

Moreover, the eigenvalue associated to the jth vector in the first basis is minus the eigenvalue
associated to the jth vector in the second basis. Since the set of eigenvectors of B is the set of
roots of the characteristic polynomial pB(t) := det(B — tI), it must be that the non-zero eigenvalues
come in pairs, one positive and one negative, so that for some r < min{m,n}, there are exactly r
strictly positive eigenvalues, and r strictly negative eigenvalues in the spectrum of B, together with

n +m — 2r zero eigenvalues.

Let
oy >-->20.>0
be the r strictly positive eigenvalues arranged in non-decreasing order. Let {wy,...,w,} be an
orthonormal set of of eigenvectors of B with Bw; = o; for each j = 1,...,7. We could obtain such a

set by selecting the appropriate vectors from the first orthonormal basis introduced above, and then
adjusting the indexing as needed.

Next define the vector w11, ..., W, by
{Wrtj,..,wor b ={Mwy,...,Mw,} .

Since M is orthogonal, this set is orthonormal. Since B is symmetric, eigenvectors with distinct
eigenvalues are orthogonal. Since every vector in the first set has a posotive eigenvalue, and every

vector in the second set has a negative eigenvalue, the combined set
{le ey W, W e 7W2r}

is orthonormal.

Next, for each j = 1,...,r, define the vectors u; € R™ and v; € R" by

1
ﬁ(ujvvj) :

WjZ

That is, u; consists of the first m entries of \@wj, while v; consists of the last n entries of \@Wj.
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We now claim that {uj,...,u,} is an orthonormal subset of R™, and that {vy,...,v,} is an

orthonormal subset of R™. To see this, we note that, by construction,
py 1 ( )
wr = —(—u;,v;).
17 /2 o Vi

Since w; and w,; are orthogonal.

0= (uj,v;) - (—u;,v;) = [vy[I* = [Juy]|* .
Since
1= flwsl? = 5 (05, %5) - (a5, v5) = 5 (g + 1wl
we see that ||u;|| =||v;||=1forj=1,...,7.

Next, for i # j, w; is orthogonal to both w; and w,.1 ;. Then means
0= (us,vi) (uj,vy) =u;-uj; +v;-v; and 0= (u;,v;)-(—u;,v;)=—-u;-u;+v;-vj.

Adding and subtracting, we obtain that u; - u; = 0 and v; - v; = 0. This proves that these sets are
orthonormal.

Next, in case r < m, we take any extension of {uy,...,u,} to an orthonormal basis {uy,...,u,,}
of R™, and we define

{W2'r’+17 e 7W7’+m} = {(u’r’+17 0)7 ey (um,O)} )

where 0 denotes the zero vector in R™ so that each of the vectors in {wo,41,..., Wy iy, } is in R™T7,
Each of these vectors is orthogonal to every eigenvector of B with a non-zero eigenvalue, and hence
it must be in the zero eigenspace of B; i.e., the null space of B.

Likewise, in 7 < n, we take any extension of {v1,...,v,} to an orthonormal basis {v1,...,v,}

of R™, and we define

{Wm+r+1a s 7Wm+n} = {(07 Vm+r+1)7 SR (07 um+n)} s

where 0 denotes the zero vector in R™ so that each of the vectors in {wWy,41ri1,. ., Wipant is in
R™*"_ Each of these vectors is orthogonal to every eigenvector of B with a non-zero eigenvalue, and
hence it must be in the zero eigenspace of B; i.e., the null space of B.

We now claim that the orthonormal bases {uj,...,u,,} and {vy,...,v,} that we have just
constructed, together with the numbers {o1,...,0,}, satisfy (8.20). As explained at the beginning
of the proof, this completes the proof of the existence of the singular value decomposition.

To do this, we compute
%B (uj,v;) = %

We also have that for j <.

1 1
Bw; = (Av;, A'u;) and Bw,;; = —=B(—u;,v;) = —2(Avj7 —Atuy) .

V2
1 1
BWj =0;W; = ajﬁ(uj,vj) and Bwr+j = —0jWpytj = O’jﬁ(lﬁlj, 7Vj) .
Therefore,

1 1 1
0j =W - BWj = 5(11]‘7Vj) . (Avj,Atuj) = 511]‘ : AVj + §Vj . ATllj =u;- AVj R
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where we have used the fundamental property of the transpose. An even easier computation shows
u; - v; = 0 if either ¢ > 7 or j > r.
Next, by similar computations
1 1
0=w; - Bw; :§ui~Avj+§uj'Avi ,
and

1 1
():wi 'Bwr—i-j = 5112‘ 'AVj — 511]‘ AV7 s

Combining these equations, we conclude u; - Av; = 0 whenever ¢ # j. This proves (8.20). O

8.4 Exercises

1 Consider the following permutations

1 2 3 45 6 1 2 3 4 5 6 4
01 = 02 = 03 =
31 45 6 2 4 3 6 5 2 1 4 1
(a) Compute D(o;) and x(o;) for j =1,2,3.
(b) For each j =1,2,3, find a way to write o; as a product of pair permutations.
(c) Compute the value of (o1 0 (69 0 03)71).
2 Consider the following permutations
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4
g1 = g9 = g3 =
2 4 6 1 3 5 5 1 6 4 2

(a) Compute D(o;) and x(o;) for j =1,2,3.
(b) For each j =1,2,3, find a way to write o; as a product of pair permutations.
(c) Compute the value of x (o7 o (63 0 03)71).

3 Let 01, o9 and o3 be the permutations defined in Exercise 1. Compute the distances o(cq,02),

0(o2,03) and p(o3,01). Also, find geodesics from o1 to o3, from o3 to o3, and from o3 to oy.

4 Let 01, 09 and o3 be the permutations defined in Exercise 2. Compute the distances o(o1, 02),

o(o2,03) and p(o3,01). Also, find geodesics from o1 to o, from o3 to o3, and from o3 to oy.

5 The order reversing permuation o, in S, is the permutation defined by

1 2 ... n—1 n
Oy i=
n n—1 ... 2 1

In other words,
o(k)=n—k+1 for all E=1,....n.

(a) Show that D(o.) = n(n —1)/2, and that for all 0 € S,,, D(0) < n(n —1)/2 unless o = o..
(b) Prove that
max{ g(01,02) : 01,02 €S, }=n(n—1)/2.
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In other words, and two permutations in S,, are connected by a path of at most n(n —1)/2 steps, and
there exist pairs of permutations such that the shortest path connecting them has this many steps.

This is often expressed by saying that the diameter of S, is n(n —1)/2.

6 Show that the set A, consisting of all even permutations in §,, is a transformation group on
{1,...,n}. A, is called the alternating group of order n. Show that there are exactly n!/2 permuta-

tions in A,,, and show that the set of all odd permutations is not a transformation group.
7 For each o € §,,, define the n x n matrix P, by
Pa = [eg(l), eg(g), ceey e(,(n)] ] (8.22)

that is, the jth column of P, is e,(;). The n! matrices P, with o € §,, are called the permutation

matrices. Prove that for all o € S,,, det(P,) = x(0).



Chapter 9

FLUX AND CIRCULATION,
DIVERGENCE AND CURL

9.1 Flows and flux

9.1.1 Vector fields and motion

Let F(x) = (f1(x), ..., fn(x)) be a function from R™ to R™. We have studied such functions already,
but now our point of view will be slightly different. To go along with this new point of view, we

introduce some new terminology:

Definition 91 (Vector field). A vector field on an open set U C R™, possibly R™ itself, is a function
F defined on U with values in R™. The vector field is said to continuous, differentiable or continuously

differentiable if the function F is continuous, differentiable or continuously differentiable.

We can represent vector fields on R? in an informative graphical manner, and so our first examples

concern the case n = 2. Let us look at the specific vector field

F(z,y) = (z(1-y), y(z—1)) .

Here is a plot of this vector field for 0 < z,y < 3:

357
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The arrows at each point show the direction of the vector field at each point on a grid, and color
is used to indicate the length of these vectors: As the colors range from blue to red, the length of the
vectors ranges from shortest to longest.

Think of the arrows as describing motion. A point particle at x will move to x + F(x)d¢ in an
infinitesimal time step d¢, and then move on from there following the arrow at that point, and so on.

To make this more precise, take a starting point xg = (0, o) and fix a small time step h. Define

a sequence of points {x,(zh)} by XM = xg and for n > 1,

xM = x4 pEE™) (9.1)

n—

Run this sequence until the point leaves the region where the vector field F is defined, or forever if
F is defined everywhere, or the sequence never leaves the the region where F is defined.
Given the sequence x;’”, define the continuous function x(h)(t) by “connecting the dots”; that
is,
xM () =x" 4 t/h—n-1))x" —x™)  for  (n—Dh<t<nh.

n

The resulting curve x()(#) moves along by following the arrows provided by the vector field,
updating the information from the vector field every time-step h. As h tends to zero, it follows the

arrows provided by the vector field more and more accurately. Indeed, since (9.1) can be written

h

(h) (h)
Xn Xp— h
L=F(x"),

one would expect a limiting curve x(t) := limj,_,o x") (¢) to exist and satisfy
x'(t) = F(x(t)) . (9.2)

When F is continuously differentiable, this is indeed the case. Let us take this for granted for the
moment — after all, it is quite intuitive — and focus instead on what we can learn from the curves
satisfying (9.2).
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Definition 92 (Flow lines). Curves x(t) satisfying (9.2) on any open interval to < t < t1 are called
flow curves of the vector field F; they describe the motion of a point particle that is “going with the
flow” described by the vector field F.

In some cases, it is possible to explicitly solve (9.2) to find the flow lines. We begin with the

simplest (but important) example:
Example 129 (Solving for flow lines). Consider the constant vector field defined on all of R? by
F(z,y) = (a,b)

where a,b € R are constant. Then x(t) is a flow curve for F if and only if x'(t) = (a,b). By the

Fundamental Theorem of Calculus, this means
x(t) = xo +t(a,b) .
The flow curves are simply straight lines with direction vector given by (a,b).
The next example is less simple, but also important:

Example 130 (Solving for flow curves). Consider the vector field F on R? given by F(z,y) = (—y, z).
0

Note that F(x) is a linear function of x; if we define the matriz A := )

-1
, we have
O ‘|

F(z) = Ax .
If x(t) is any flow curve for F, then x'(t) = Ax(t). Differentiating again, we get
X (1) = A%(t) = —x(1)
since A? = —1. Thus, whenever x(t) = (x(t),y(t)) is a flow curve of F, we have
a"(t)=—x(t) and  y'(t) =—y(t) .

One way to solve these equations is to take x(t) = acos(t) + fsin(t). Then z(0) = « and
z'(0) = B. But x'(t) = Ax(t) says that 2'(t) = —y(t). Hence § = z'(0) = —y(0). That is,
x(t) = xgcos(t) — yosin(t). Then since y(t) = —a'(t), y(t) = xosin(t) + yo cos(t). Thus,

x(t) = (2o cos(t) — yosin(t) , zo sin(t) + yo cos(t)) (9.3)

s a flow curve for ¥ through xg, and it is defined for all t.
In fact, it is the unique flow curve for F through xq. To see this, suppose that y(t) is any other,
and define z(t) = x(t) — y(t). Note that z(0) = x(0) — y(0) = xg — x9 = 0, since by hypothesis both

curves are initially at xg. Also,
2/ (t) =X'(t) —y'(t) = A(x(t) — y(t)) = Az(t) .
Next, a simple calculation shows that (a,b) - A(a,b) =0 for all (a,b). Hence

d 2 _
la(0)| = 22() - Aa(t) = 0.
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Thus, since ||z(0)|| =0, ||1z(t)|| = 0 for all t, and this means that y(t) = x(t) for all t. The two flow
curves are in fact the same, which proves the uniqueness of the flow curves for F.
There is still more to be learned from this example if we write (9.3) another way. Define the

t-dependent matrix

cost —sint
R0 = l sint cost ] . ©-4)
Then (9.8) is equivalent to
x(t) = [R(t)]xo - (9-5)

You recognize [R(t)] as a rotation matriz. The vector field describes circular motion about the origin
at a constant speed that is equal to the distance from the origin. The flow exists for all times t. Here

1s a plot of the vector field:
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Example 131 (Solving for flow lines). Consider the vector field F(z,y) = (z%,1). Then (9.2) gives

us the system

() = 22(t)

y'(t) = 1.

This system may also be solved by single variable calculus methods since the rate of change of

x(t) depends only on z(t) and the rate of change of y(t) is even constant. Indeed, by the Fundamental
(t d 1
Theorem of Calculus, y(t) = y(0) + f(f y'(s)ds = yo + t. Likewise, we have 1 = 52—((2) = Ok

Therefore, by the Fundamental Theorem of Calculus,

1 1 t
roREo R Rt

- ].—tl’o ’

and so

x(t)
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For t = 1/x¢, we would be dividing by zero. Indeed, notice x(t) is well defined for |t| < 1/|xo|, but
that limt — 1/xox(t) = co. This is an example where, although the vector field is very simple, the

flow only exists a finite time before it “explodes” to infinity.
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AAAAPPPTTIEL R R PP AA
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AAAAPPPTITTIN LR R PP AAA
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bttt ol A 8 B 5B B R ettt
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AAAAPPITILII L P2 2P AR
AAFAITTTITOVI T F T A7 A555
AAAAPPPTTTE TR R AP AR
AAXAAPPTTTITR R PR
AARARPPTT T PR P PR
AAAAPPPTTHN T R R PP AP
AARAAPPTT TR P2
ettt 22 R 8 11 B R R Lt
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For positive x, the vector field pushes point particles further off to the right, faster and faster, so
that although the vector field itself is finite everywhere, it accelerates a point particle to infinite speed

n a finite time.

Example 132 (Solving for flow lines). Consider the vector field F(x,y) = (2/3,1). Then (9.2)

gives us the system
2t = zV3(t)
y'(t) = 1.
Let xo = (0,0). Then since F(0,t) = (0,1) for all t, the curve x(t) = (0,t) is a flow curve

of F with x(0) = xq. But there is another flow curve of F through x¢. For xz(t) > 0, the equation

z'(t) = x'/3(t) is equivalent to

"(t d
z'(t) _§_x2/3t

L=y ~ 2@t @

Hence, by the Fundamental Theorem of Calculus, t = %xz/g(t), so that

S

Hence the curve X(t) given by X(t) = (0,t) fort <0, and by

X(t) = <<§{>w2,t>

fort > 0 is another flow curve of ¥ passing through x.
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9.1.2 Flow transformations

To understand the flow described by a vector field, it is best to look at the set of flow curves as a
whole instead of individually. The basic idea is that a “nice” vector field F describes a one parameter
set {®; : t € R} of transformations of R™ through the following simple rule: for each t, and each
X0, Pt(x0) is the point one gets to by following the flow lines described by F for a time t. Tt is useful
to picture this for n = 2 in terms an actual flow of liquid across the plane in which at each time ¢,
a particle being carried along with the flowing liquid has the velocity F(x) is it passes through the
point x. As the particle moves, it traces out a flow curve. Other particles, placed elsewhere, would
trace out other flow curves. The flow transformation tells where the flowing liquid takes any particle,
started anywhere, in time ¢t. It is a fundamental object of study in fluid mechanics, aerodynamics,
and many other fields of science, including electrodynamics, for less obvious reasons.

In our applications of the flow curve concept, we need to know something not only about the
existence, but also the uniqueness of flow curves. We have given a “recipe” for constructing flow curves
through a limiting process. But maybe a different “recipe” would yield different curves. Indeed, we
have seen in Example 132 that this can happen: Our recipe would yield the flow curve x(t) = (0, t),
but as we have seen, there is another flow curve for this vector field F that passes through (0,0) at
time ¢t = 0. If flow curves are not unique, our simple recipe for the flow transformation ®; does not
define a function: Which flow curve do you follow?

Also, we have seen in Example 131 that flow curves might “blow up” in a finite time. So for
some vector fields F, it may not be possible to follow a flow curve for time t if ¢ is too large.

On the other hand, in our first two example, the vector field was “nice” and had unique flow
curves through each point that existed for all times t. How do we recognize “nice” vector fields?

As we shall see, a vector filed F behaves nicely whenever it is continuously differentiable and has
a Jacobian matrix [Dp(x)] that has a bounded Frobenius norm, meaning that there is some finite
number L such that

I[Dr(x)][|[r <L  forall xecR?. (9.6)

The condition (9.6) has the following consequence:

Lemma 21. Let F be a vector field that satisfies (9.6). Then for all x,y € R",

IF() = F)ll < LIx =yl -

Proof: Consider the parameterized line segment z(t) defined by z(t) = (1 — t)x + ty for which
z(0) = x, 2(1) =y and z'(t) = y — vz for all £. Then by the Fundamental Theorem of Calculus and
the Chain Rule,

Ply) ~F() = [ GF0) = [ D]y -

Then by the triangle inequality for integrals,

1 1
IF(y) - F(x)| < / I[De(2(t))](y — x)||dt < / Llly = x|dt = L]y — x| -
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Theorem 85 (Uniqueness of flow curves). Let F be a vector field that satisfies (9.6). Let x(t) and
y(t) be flow curves for F defined for —a < t < a for some a > 0. Let xq denote x(0), and let yg
denote y(0). Then for all —a <t < a,

e ¥ xo —yoll < [Ix(t) =y ()] < e|lxo = ol| - (9-7)

Both inequalities in (9.7) tells us something important about flow lines: From the inequality on
the right, we see that if xo = yo, then x(¢t) = y(¢) for all —a < ¢ < a, so that the two flow curves are
the same. In other words, when F satisfies (9.6), there is at most one flow curve through each point
xo € R"™.

But that is not all: fix any e > 0, and define J(¢) = el!/*e. Then

Iyo — Xoll < 8(e) == ele = |Ix(t) —y(t)]| <e. (9-8)

In other words, if the initial points xo and yq are sufficiently close, then the flow curves through
them will be close at time ¢.

The inequality on the left in (9.7) tells the flow curves never cross: If x(0) # y(0), then it is
impossible to have x(t) = y(t) for any .
Proof of Theorem 85: We compute:

%IIX(t) =y =2(x(t) = y(1)) - (x'(t) = ¥' (1)) = 2(x(t) — y(1)) - (F(x(t)) = F(y(t))) -

Then by the Cauchy-Schwarz inequality and Lemma 21,

i%IIX(t)*Y(t)IIQ < 2lx(t) = y@OIIF () = F(y ()l

< 2L|x(t) - y(®)|* (9-9)

where we have taken advantage of the fact that we can multiply through by —1 before applying the

Cauchy-Schwarz inequality since, after all, we are going to take absolute values. In other words,

—2L||x(t) - y(t)|* < %I\X(t) — ¥y < 2Llx(t) —y®)lI* - (9.10)

The inequality on the right in (9.10) says that

%IIX(t) vyl = 2Llx(t) —y(@®)]* < 0.

d
Multiplying through by e *£ we obtain T (e M |Ix(t) — y(#)||*) < 0. It follows that
(t) = (7 [x(t) =y ()?)
is a non-increasing function of t.
Likewise, the inequality on the left in (9.10) says that

%IIX(t) =y +2Llx(t) —y(@®)|* > 0 .

% (e*™||x(t) — y(¥)||?) > 0. It follows that

e(t) = (M |x(t) — y(©)]1?)

Multiplying through by e’ we obtain
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is a non-decreasing function of t. Since p(0) = ¥(0) = ||x(0) — y(0)|?, we have that for ¢ > 0
o(t) < ||x(0) — y(0)|> < w(t), while for t < 0, () < ||x(0) — y(0)||> < ¢(t). Form the definitions of

o and v, either way we have

e M x(t) =y ()II* < [[x(0) = y(0)|* < " |jx(t) — y(8)]* -
Taking squares roots and rearranging terms gives us (9.7). O

We now state a theorem whose proof we postpone until later. This theorem guarantees the

existence of flow curves under the conditions we have showed guarantee uniqueness.

Theorem 86 (Existence of flow curves). Let F be a vector field on R™ that satisfies (9.6). Then for
all xg € R™, there exists a flow curve x(t) for F that is defined for all —o0o < t < oo and such that
x(0) = xg.

We may use the flow curves of a vector field F that satisfies (9.6) to define a one-parameter

family ®; of continuous one-to-one transformations transformations of R? onto R2:

Definition 93 (Flow transformations). Let F be a vector field on R™ that satisfies (9.6). Then for
each t € R, the functions ®; from R™ to R™ is defined as follows: For any xo € R™,

D, (x0) = x(t)

where x(t) is the point at time t along the unique flow curve through xo. The transformations
{®; : te€ R} are called the flow transformations generated by F. Note that ®g is the identity

transformation.

Example 133 (Rotational flow). Let us once more consider our rotational vector field

F(xvy) :(—y,I) :

Then as we saw in Ezample 130, the solution of X' (t) = F(x(t)) is

X(t) = [R(t)]xo where [R(t)] — [ cost —sint ]

sint cost

which is rotation of the plane R? counterclockwise through the angle t.
Now notice that for any t1 and to, a simple calculation using the angle addition formulas shows
that
[R(t1)][R(t2)] = [R(t1 +t2)] -

Therefore,

(I)t O(I)t2 = (I)t1+t2 .

1

Furthermore, since rotations are invertible, and in fact [R(t)]~1 = [R(—t)], each ®; is invertible, and

<I>t_1 = ®_,. That is, the inverse transformation is obtained by running the flow backwards in time.
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Here is one more simple, but important, example:

Example 134 (Constant flow). Consider the constant vector field F(x,y) = (a,b) from Ezample 129.
As we have seen there, The the flow curves are given by x(t) = xo + t(a,b). Thus,

Py (x0) = x0 +t(a,b) = (zo + ta,yo +tb) ,
Since this is true for any xq, we may now frop the subscript 0, and simply write
O (x) = (x + ta,y + tb) .

It is easy to check from this formula that for any t1 and te, @1, o @y, = @4, 44, and that each Py
18 invertible with <I>t_1 = ®_;. That is, as in the previous example, the inverse transformation is

obtained by running the flow backwards in time.

The reason the last example is important is that for any differentiable, and hence continuous,
vector field F defined on a neighborhood of some point xg, as long a F(xg) # 0, if you “zoom in” on

the vector field in a small neighborhood of xg, you will have
F(x) ~ F(xg) ,

and so locally, the vector field will look like a constant vector field, and thus, locally, the flow lines
will be nearly straight parallel lines.

This is not necessarily true as a point x¢ where F(xg) = 0. Consider the rotational vector field
F(z,y) = (—y,x). Then F(0,0) = (0,0), but the vector field takes on every direction in any small
neighborhood of (0,0), and the flow lines are concentric circles, not straight lines.

The next theorem tells us that some of what we saw in the last two examples always happens
for flows generated by nice vector fields F. We shall prove all of it here except the last part, which

we postpose until later.

Theorem 87 (Fundamental properties of the flow transformations). Let F be a continuously differen-
tiable vector field on R™ that satisfies (9.6), and let { ®; : t € R } be the set of flow transformations

generated by f£. Then:
(1) For each t, @y is a continuous, one-to-one transformation of R™ onto R™, and therefore invertible.
(2) For each tq,to,

@,

1 © q)tz = (I)tﬁ-tz :

(8) For each t, the inverse of ®; is ®_,;.

(4) For each t, ®, is is not only continuous; it is continuously differentiable.

Proof: For (1), fix any ¢. Since by definition ||®:(x0) — P:(yo)|| = ||x(¢t) — y(¥)||, (9.8) says that for
any € > 0, with 6(e) := el!lLe,

[yo =xoll <d(e) = [|®i(x0) = Ps(yo)]| <.
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This shows that ®; is continuous at xg, and since xg was an arbitrary point in R, ®; is continuous
on R".

To see that ®; transforms R™ onto R", consider any x € R", and let x(s) be the flow curve
passing through x at time s = 0. (We used s as the parameter now since ¢ is already in use and

fixed.) consider the curve X(s) defined by
X(s) =x(s—1t).

d . - ~
Differentiating, we find &X(S) =x'(s—t) = F(x(s — t)) = F(X(s)). Thus, X(s) is a flow curve. De-
fine

Xp :=x(0) = x(—t) .

Then, by the definition of ®;,
Dy (Xo) =x(t) =x(t —t) =x(0) =x .

Thus ®; transforms X, onto x, and since x is an arbitrary point in R?, we have shown that ®,
transforms R™ onto R™. Finally, if ®; were not one-to-one, there would be some xq,yo € R™ with
X0 # yo but with ®;(xg) = ®,(yo). But this is impossible, since flow lines never cross when F satisfies
(9.6), as we have explained after Theorem 85. Altogether, we have proved that ®; is a continuous
invertible transformation from R™ onto R™.

We next prove (2), Fix any xo € R". Let x(¢) be the flow curve of F with x(0) = x¢, Let
X(t) = x(t + t1). Differentiating as above, we see that X is a flow curve of F, and X(0) = x(¢1).

By definition, @4, (xg) = x(t1) = x(0), and so

Py, 0 Py, (x0) = Pu, Py, (%0)) = P, (X(0)) = X(t2) = x(t1 + t2) = Pe, 4, (X0) -

Finally since ® is the identity transformation, (3) follows directly from (2). O

The theorem we have just proved says that the set {®; : t € R} of transformations of R"
generated by F is a transformation group. As we work with these transformations, we shall see why
the group property is important.

Let us close this subsection by going back and considering our two “badly behaved” vector fields
from Examples 131 and 132, starting with the latter.

When F(x) is given by F(x,y) = (#'/3,1), we compute that for = # 0,

x| =2/3/3 0 ]

Hence

1, -
I[Dr (@, y)lle = Sl 7

which tends to infinity as = tends to zero. Thus (9.6) cannot be satisfied for any finite L, and even
worse, F is not even differentiable at any point (0,y). Vector fields with such irregular behavior

evidently can be badly behaved, and must be treated with care.
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Things are somewhat better with the vector field in Example 131. This vector field F(z,y) =

(2%,1) is clearly continuously differentiable, and

2¢ 0
[Dr(z,y)] = [ 0 0]

Hence ||[Dg(x,y)]||r = 422 . Note (9.6) cannot be satisfied for any finite L, but only because of what
happens for very large values of ||x]|.

Very often in what follows, we will be interested only in what the flow transformation is doing
to points in some bounded set for a short interval of time. In this case, the following localization
procedure is often useful.

We begin with some preliminary calculations. Note that the function (z — 1)(z — 2) is negative

for 1 < 2 < 2 and equals zero for = 1 and « = 2. Hence the function ¢(y) defined by

o) = [ (o= (o - 2o = G207 - 097 + 129 - 9

is monotone decreasing on the interval (1,2) with ¢(1) = ¢/(1) = ¢/(2) = 0.
Now define the function x(r) on [0, 00) by

1 r<l1
X(r)=41+6(r)/d(2) 1<r<2 .
0 r> 2

By what we have proved above about ¢, this function is continuously differentiable. Hence by
the Chain Rule, for any R > 0, the function x(||x||/R) is continuously differentiable on R™. and
equals 1 for ||x|| < R, and equals 0 for ||x|| > 2R, and

, X
Vx(Ix[l/R) = x (R||X||)m :
A simple calculation shows that x'(r)] < |x’'(3/2)] = 3/2, and so
VXU /R < 5 -

Now, given any continuously differentiable vector field F on R?, suppose we are only interested
in what the flow is doing inside Br(0), the ball of radius R centered at the origin. Then let us define
the localized vector filed F by

F(x) = x(||x[|/R)F (x) .

Then, by construction, F(x) = F(x) everywhere in Br(0). Hence the flow curves of F and F
coincide as long as they remain inside Br(0). Next, using the product rule, one sees that the Jacobian
of F(x) is continuous and every entry is identically zero outside of Byg(0). Hence I[Dg(x)]||F is a
continuous function of x, and is zero outside of Byr(0). Let L be its maximum value in Bar(0).
Then we have

(D50 e < L

for all x € R™. Hence the localized vector field F is a nice vector field satisfying the hypotheses of

all of the theorems of this subsection.
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Example 135 (Localizing a flow with explosion). Consider the vector field F(z,y) = (x2,1). from
FEzxample 151.
Then as we saw in Example 131, the flow curve of F through (xo,yo) is given by

x(t) = (zo/(1 —txo) ,y0 + 1) for two<1.

Now fix any R > 0. For all x € Bg(0), |F(x)|| < VR* + 1, and hence if x(t) is any flow curve of
F or of f‘, as long as this curve is in Bgr(0), its speed is bounded above by v/R* + 1. Evidently any
flow curve starting in Br/2(0) at time t = 0 must travel a distance of at least R/2 to exit Br(0),
and since its speed is limited by vV R2 + 1,

R
t < ——— = x(t) € Br(0) .
Hence, if we only look at times t with [t| < R/vVR*+1 and points ¢ with ||x|| < R, we do not
see the difference between the “explosive” vector field F and the “nice” vector field F. In particular,
for such t and x, ®y(x) is the same for F and for F, and may be computed using the flow curves we

have found in Example 131:
Po(z,y) = (x/(1 —tx) ,y+1) .

However, for larger times explosion may have occurred for some points in Bg/2(0), and so for such

t, the transformation cannot be defined on Br(0).

9.2 Flux integrals in R?

Let F be a continuously differentiable vector field defined on R?, and suppose that for some a > 0,
the corresponding flow transformation ®, is well defined for |[t| < a. Let C' be a parameterized curve
in R? given by x(u) for 0 < u < b, some b > 0. The curve C' may be open or closed.

For 0 < t < a, consider the set of points A; that get “swept across C” by time t. To be concrete,
let us take F to be the rotational vector field

F(z,y) = (- y,2)

from Example 130, and let us take C' to be the line segment running from (0, 1) to (0,3). We may
parameterize C' as

x(u) = (0,1 + 2u) for 0<u<l.
cost —sint

Now it is easy to see that ®;(x) = )
sint cost

] x crosses C' by time ¢ if and only if x

belongs to the keystone-shaped region given in polar coordinates by

1<r<3 and —t<0<7. (9.11)

B

Thus, the region A; is the part of the plane given by (9.11). We then compute

—~

1
area(A;) = 5(32 — 1%t =4t .



9.2. FLUX INTEGRALS IN R? 369

Thus, area is being swept across the segment C', form right to left, at a steady rate of 4 units of
area per unit of time. We express this by saying that the flur across C, from right to left, produced
by F is 4.

In this example, all of the area that got swept across the curve at by time ¢ got swept across from
right to left. For other curves, this need not be the case. For example, replace C' by the line segment
running from (0,—1) to (0,1). Then there is a region in the upper half plane that gets swept right
to left across the curve by time ¢, but there is a region of equal area in the lower half plane the swept
left to right across the curve by time ¢. In this case, there is no net area flowing across the curve
from right ot left (or from left ot right), and so in this case we say the flux is zero. Flux refers to the
net rate of flow of area from one side of a curve to the other.

Now that we have in mind a picture of what we mean by flux, let us proceed to precise mathe-

matical definitions.

Definition 94 (Oriented curve). Consider a differentiable curve C, and let curve x(s), 0 < s < s, be
its arc length parameterization. The curve is simple in case for s1 < s2, X(s1) # x(s2), except possibly
if s1 =0 and sg = s, in which case it is a simple closed curve. At each point x(s), 0 < s < s*, there
are two unit vectors that are orthogonal to T(s), namely £T(s)*. An orientation of such a curve C
is a specification of either T(s)* or —T(s)*, making the same sign choice for all s, as the preferred
normal N(s). We think of N(s) as pointing to the “positive side” of C. We call such a curve with

an orientation an oriented curve.

For a simple closed curve in R?, there are always an inside and an outside. To orient a simple
closed is to specify whether we regard the inside as the positive side, in which case we choose N(s)
to point inward everywhere along the curve, or whether we regard the outside as the positive side,
in which case we choose N(s) to point outward everywhere along the curve.

Now consider an oriented curve C. Let us “zoom in” and look at what the flow is doing near a
segment of the curve between x(sp) and x(s1) with s; — sg small but positive. Since for very small
values of ¢,

If the segment is very short, then the approximation
F(z) = F(x(s0))

will be a good one. We know the flow associated to the constant vector field

F(x) := F(x(s0)) ;
it is simply
dy(x) = x + tF(x(s0)) .
For small values of ¢ and x near the segment, this should be a good approximation to ®;(x), and in
the limit in which we take ¢ to zero, and the length of our segment to zero, this approximation will
become exact.
In particular, a point x gets carried across the segment between x(sg) and x(s1) by time ¢ if and

only for some s with sy < s < s7 and some v with 0 < u < ¢,

x =x(s) — uF(x(s0)) ,
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because in this case, and only this case,
B, (x) = [x(5) — uF (x(s50))] + uF (x(s0)) = x(s)

which is on the segment.
The region of points that get swept across the segment by the flow is an approximate parallelo-

gram with vertices
x(so), x(s1), x(so)—tF(x(sp)), and x(s1)—tF(x(so)) .

Let As = s1 — sg be the arc length of our segment. Then the sides of the parallelogram that

meet at x(sp) run along the vectors
AsT(sp) and tF(x(so)) -

If we regard the first vector as running along the base of the parallelogram, the height of the
parallelogram is [N(sg) - tF(x(so))| Thus the area swept across this segment by the flow in time ¢ is
approximately

IN(s0) - tF(x(s0))|As .
Next, notice that
N(sp) - F(x(s0)) >0
if and only if F(x(so)) points to the positive side of C. Thus, the rate at which area is flowing across

this segment of C, from the negative side to the positive side, is
tF(x(s0)) - N(s0)As ,

where we have reordered terms in what will turn out to be a conveninet way. Dividing by ¢ to get
the rate at which area is flowing, this gives us the flux element for this segment of the curve.

Now adding up the flux elements all along the curve, and taking the limit as the length of the
segments goes to zero, the sum becomes an integral and our approximations become exact, and we
find that the flux is given by

/0 " F(x(s)) - N(s)ds .

/F'Nds,

C

]{F'Nds,
C

where the special integration symbol simply emphasizes that the curve is closed.

We shall also write this simply as

and in case C' is a simple closed curve, as

Definition 95 (Flux integral along an oriented curve). Let C' be an oriented curve, and let F be a
differentiable vector field defined in a neighborhood of C. The the flux integral, representing the rate
of flow of area across C, from the negative side to the positive side, under the flow generated by F, is

[ FNas = [ R) NGs)ds

0
where x(s), 0 < s < s, is an arclength parameterization of C' (there are two of them), and N(s) is

the prefered unit normal at x(s).
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9.2.1 Computing flux integrals in R?

Based on the discussion in the previous section, you might think that computing a flux integral will
involve finding an arc length parameterization of a curve. Fortunately, things are much easier than
that.

Let x(t) = (x(t),y(t)), b <t < ¢, be any parameterization of a curve C'. Then the element of

arc length is

ds = /(2/(1))% + (y'(1))2dt .

The unit tangent vector T(t) is

T _ 2! 7 / ,
U= orrear” v
and so the preferred unit normal N(¢) is
N = + L~y

with the sign depending on our preference.
Putting things together,
1
N(t)ds = =+ (—9'(), 2" ()@ (1)) + (' (¢))*dt
V(@' (1) + (¥ (1)?
= £(—y'(t),2'(t)dt .

The good news is that the factors involving square roots have cancelled out. Let us define
dx*(t) = (= ¢/ (1), 2/ (1))dt .
Then we have, for any parameterization x(t),with s = s(¢),
N(s)ds = +dx*(t) ,

so that
F(x(s)) - N(s)ds = £F(x(t)) - dx*(t) , (9.12)
and hence

/ F-Nds = j:/CF(x(t)) Sdxt(t) . (9.13)
C b

Example 136 (Computing a flux integral in R?). Let

F(I’,y) - (7y,l’)

from Example 150, and let us take C' to be the line segment running from (0, 1) to (0, 3), parameterized

as
x(t) = (0,1+2t) for 0<t<1.

We orient C' so the positive side is to the left.

The we compute

F(x(t)) =(—1-2t,0) and  N(t)ds = +(—2,0)dt .
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Choosing the plus sign, the first component of N is negative, so N points to the positive side.
Thus, this is the correct choice of the sign.

Putting things together, we have from (9.13) that

1 1
/F-Nds:/ (—1—2t,0)-(—2,0)dt=/ 2+ 4)dt = 4 |
c 0 0
which is what we found earlier by computing areas.
Example 137 (Computing a flux integral in R?). Let
F(z,y) = (zy,2* - y°)

and let us take C' to be the circle of unit radius centered on (1,1), oriented so the outside is the
positive side.

We first parameterize C'. The standard way is
x(t) = (1 +cost,1 +sint) ,

for 0 <t <2r.

Then we compute
F(x(t)) = (1 + cost +sint + costsint , cos®t —sin®t + 2(cost — sint))

and

N(t)ds = £(cost,sint)dt

Choosing the plus sign, the first component of N is positive at t = 0,s0 N points to the positive

side. Thus, this is the correct choice of the sign. Therefore with s = s(t),
F(x(s)) - N(s)ds = [cost(1 + cost + sint + costsint) + sint(cos® t — sin® ¢t + 2(cost — sint)]dt .
Putting things together, we have from (9.13) that
/ F-Nds =
c
2m
/ [cost(1 + cost + sint + costsint) + sint(cos? t — sin® ¢ + 2(cost — sint)]dt . (9.14)
0
There are many terms, but most integrate to zero. Discarding all such terms, we are left with
2m
/ F-Nds = / [cos? t — 2sin® t]dt = —7r .
C 0

In this example, there is more area being swept into the disc bounded by C' than there is being

swept out.
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9.2.2 The divergence and flux density

Definition 96 (Divergence of a vector field). Let F = (f1,..., fn) be a differentiable vector field
defined on an open set U C R™. Then the divergence of F is the real valued function div(F) defined

by
- 8
di -y Z
Example 138 (Computing a divergence). Let

F(I7y) = (l'y,IZ - y2) )

Then 5 5
div(F - = St =y—2%=—y .
iv(F)(z,y) 5.0yt ay(aC y)=y—2y=—y

We are now ready to state the Divergence Theorem for flux integrals in R?:

Theorem 88 (The Divergence Theorem for flux integrals in R?). Let C be a simple closed curve in
R2, and let D denote the region bounded by C. Orient C so that the outside is the positive side. Let
F be any continuously differentiable vector field defined on a neighborhood of D. Then

ng-Nds:/Ddiv(F)dA. (9.15)

Example 139 (Using the Divergence Theorem to compute flux). Let
F(I7y) - (I’y,IZ - y2) .

Let C be the circle of unit radius centered on (1,1), oriented so the outside is the positive side. Then

since, as computed in Example 158, div(F)(x,y) = —y,

%F-Nds:—/ydfl,
c D

where D is the disk of unit radius centered on (1,1). By symmetry, the average value of y in D is 1.

Hence
fD ydA

[oraa =t

Since
/ 1dA = area(D) =7 ,
D

—/ydA:—w
D

This is what we found in Example 137, but here the computation is simpler.
The Divergence Theorem is also useful for computing the flux across a curve that is not closed.

Example 140 (The Divergence Theorem and flux across open curves). Let Cy be the part of the
parabola y = 4 — 22 lying above the x-axis oriented so the upward side is the positive side. Let

F(z,y) = (a%y — y* + x, 2%y — 3z + 5y).
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The endpoints of Cy are (—2,0) and (2,0). Let Cy be the straight line segment from ( — 2,0)
and (2,0). Finally, let C be the simple closed curve that runs from (—2,0) to (2,0) along Cs, and
then from (2,0) and (— 2,0) along Cy.

Notice that orienting C so the outside is the positive side coincides with the original orientation
on C1, and induces the orientation on Co in which the positive side is the downward side.

Because integrals are limits of sums,

7{F~Nds:/ F-Nds—l—/ F-Nds .
C Cl CZ

But by the Divergence Theorem,

yfF-Nds:/ div(F)dA
C D

where D is the region bounded by C'. Therefore,

/ F~Nds:/ div(F)dA—/ F - Nds . (9.16)
Cl D CQ

We now compute the two integrals on the right, each of which is much easier than the integral on the
left.

Indeed, we can parameterize Co by
x(u) = (—2+4s,0)

for 0 < s <4, and this is an arc length parameterization. (Arc length parameterizations are easy for

straight line segments!) Then since y = 0 all along Co, it is easy to compute F(x(s)):
F(x(u)):==(—24+s,6—3s) .
Also, since N is the downward pointing unit vector, N(s)ds = (0, —1)ds. Putting it all together,
: 3
/ F-Nd5:/ (3s—6)ds =-16—-24=0". (9.17)
Cy 0 2
Next, let us compute fD div(F)dA. The first step is to compute
div(F)(z,y) = 32%y + (6 + 2?) .
The region D s given by
O§y§4—z2 and —2<x<2.

Thus,

/D div(F)d4 =

/2(/0 3xy+(6—|—x)]dy>dx
= /2 { z? )2+(6+$2)(4—x2)]dx
/

“3[0

1856

1
|:48—14£U +2 }dx— R

2
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Combining this result with (9.16) and (9.17), we have
1
/ F.Nds = 596
Cy 15
To really appreciate this ezample, you should carry out the direct computation of f02 F - Nds,

which you will find to be somewhat messy.

The point of the last example is that the Divergence Theorem specifies the price that must be
paid to “trade” a curve C connecting two point xg and x; in on another, simpler curve Cs5 connecting
the same points. When C; does not intersect Cy except at the endpoints xg and x1, so that following
C4 from xg o x1, and then C5 from x; back to xg produces a simple closed curve, the “trade in” is

done just as in the previous example.

9.2.3 Proof and interpretation of the Divergence Theorem
Now that we have seen some examples of how to use the Divergence Theorem, we ask:

e Why is the Divergence Theorem true?

e Why is the divergence related to flux?

The two questions are closely related. To answer the first question, we go back to the notion of
flux as a rate of flow of area.
Proof of the Divergence Theorem in R?: Let C be a simple closed curve bounding the region
D c R?, and orient C so that the positive side of C is the outside of D.

Let F be a differentiable vector field defined on a neighborhood of D, and let ®; denote the flow
transformation generated by F at time ¢.

Define

D;={®:(x) : xe€D}.

Then notice that D_; is precisely the set of points that are in D after running the flow for a time .

Therefore, the net area swept out of D by the flow in time ¢ is
area(D) — area(D_y) .

(Whatever was in D that is not replaced by what comes in from D; has gone out.)

To compute area(D_;) we use the change of variables given by the flow transformation:

(u,v) == D_y(x,y) .

Note that by part (4) of Theorem 87, ®_; is continuously differentiable, and so it has a Jacobian
matrix [Dg_, (x)].

Then by the change of variables formula,

area(D_;) = /D 1d*u /D 1|det (Dg_, (x))|d*x .

_ / det (Dg_, (x)) d?x ,
D
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where in the second line we have dropped the factor of 1 and the absolute value signs. These are not
needed since for t = 0, ®_; is the identity transformation, and so det (Dg,(x)) = 1. By continuity,
det (D(pft(x)) is positive for small ¢ which is what concerns us.

Therefore, the flux out of D is given by
area(D) — area(D_;)

flux out of D = lim
t—0 t
1 9
= }5% i D[l — det (D¢7t(x))]d X
9 2
= — | =det(Do_,(x))| d°x.
p Ot 0
To complete the proof, we only need to show that
0
— det (D‘;Lt(x)) = —div(F(x)) . (9.18)
ot 0

Here is one way to do this. We compute an approximation to det (Dq,ft(x)) that is accurate to

the leading order in t. For small values of ¢,
O, (x) = x—tF(x) .
That is, with F(z,y) = (f(z,y), g(x,y)), we have
wz,y) =z —tf(z,y)  and  w(zy) =y —tg(z,y) .

It follows that

0 s,
1—t— —t—
Selen)  —t5fa)
be,t (X) ~
0 0
—t— 1—t—
5,9, Y) 3yg(w, y)
Therefore, to leading order in ¢, which is all that concerns us in the derivative (9.18) that we are

aiming to compute,

det (D<I>,t (X))

Q

1t (;xf(x,y) + ;)yg(%y))
1 — tdiv(F(x)) ,

O

The key to the proof we have just given the identity (9.18). We now give a second proof of this

identity that is valid in R™ for all n, which we shall use later to prove the divergence theorem in R3.
We shall use the following definition and theorem:

The following definition and theorem complete out work:

Definition 97 (Trace of an n X n matrix). Let A be an n x n matriz. The trace of A, tr(A) is
defined by

i=1

That is, tr(A) is the sum of the diagonal elements of A.
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For example, if F is any vector field on R™, then since [Dy]; ; = %fi(x),
J

Z (% = div(F(x)) . (9.19)

e In other words, the divergence of F is the trace of the Jacobian [Dg].

The following important theorem relates the trace and the determinant:

Theorem 89 (The trace, determinant and derivatives). Let A(t) be an n X n matriz valued function
of t € R. Suppose that for each 1 < i,j <n, A; ;(t) is differentiable at t =0, with

d
Bij =240, -
Suppose also that A(0) = I xn. Then
d
— det(A(t)) = tr(B) . (9.20)
dt =0
Proof By the determinant formula, det(A(t)) = Z H A (i) (t). By the product rule and the
oES,
definition of B,
d n n n
g HAew® =3 |Bico) I A
i=1 =0 j=1 i=1,i#j

since A(0) = I xn,
n
H Ai o (0) =0
i=1,i#j
unless o (i) = ¢ for each i # j from 1 to n. But then since o is one-to-one, it must also be the case

that o(j) = j. That is, Hzl:l,#j A 5@i)(0) = 0 unless o is the identity permutation, in which case
[T, itj A +i)(0) = 1. Therefore,

T PORC) | EUE) B oEREEES

ceS,

We are now ready to prove the n-dimensional version of (9.18).

Theorem 90 (The divergence and flows). Let F be a continuously differentiable vector field on R™,
and suppose that for some finite L || D (x)||lr < L for all x € R™ so that the group of flow transfor-
mations ®; generated by F is well defined, and each ®; is a differentiable one-to-one transformation

of R™ onto R™. Then

%det (Ds_,(x)) L = —div(F(x)) . (9.21)
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Proof: Let (P_;(x)); denote the ith component of the vector ®_,(x). Then, by definition,

[Da_, (x)]i,; = T%(é—t(x))z ;
and so, by Clairault’s Theorem,
0 o 0
&[qu(x)] = aa—%(cb,t(x))i

— o (Geb) -

Next, since ¢t — ®_;(x) is the flow line backwards along the vector field F := (f,..., fn), the

derivative of this curve at any time ¢ is —F at the point ®_;(x). That is,

0
&(d)_t(x)) = —F(®_+(x))
Therefore,
5i 1D (0| = =59 = ~De(x, (922)

Next, since @ is the identity transformation; i.e., ®o(x) = x,
[D@D(X)] = Inxn , (923)
the n x n identity matrix. Therefore, combining (9.22), (9.23) and Theorem 89, we conclude

0
pn det (Dg_, (x))

=t (= [Dr(x)],,) -

t=0

which is equivalent to (9.21). O

9.3 Flux integrals in R3

9.3.1 The flux out of a region V C R3

Let V be a bounded region in R* bounded by a simple (non-self intersecting) closed surface §. Let F
be a differentiable vector field defined on a neighborhood of V. Then the flux across § generated by
F, from inside to outside is the rate at which volume is swept out of V by the flow ®; generated by
F.

To compute the flux, we reason exactly as in the last section: After running the flow a short

time ¢, the set of points that are inside V are the points in
Vo ={P_4(x) : xeV}.
Therefore, the net flux out of V' is given by
1
net flux out of V = }gr(l) ;[VO](V) —vol(V_y)] .

Also, just as in the last section, the change of variables formula gives

vol(V_y) = /vdet (Do_,(x)) d®x ,
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so that
lim 1[Vol(V) —vol(V_;)] = — /v % det ([Do_, (x)]) d3x .

t—0 t =0

Then by Theorem 90 for n = 3, we have that

net flux out of ¥V = / div(F(x))d*x . (9.24)
v

9.3.2 Flux across an oriented surface §

There is also a direct way to calculate the flux across a surface § in terms of a surface integral. In

this case, the surface need not be closed, but it must be orientable.

Definition 98 (Orientable surface). Let § be a differentiable parameterized surface in R®. At each
point of the surface, there are two sides to the tangent plane to the surface at that point, and hence
two unit normal vectors to the surface at each point. The surface is orientable if it is possible to
specify a preferred unit normal vector N(x) at each point of the surface so that N(x) is a continuous
function of the point x on the surface. Such a specification of a preferred unit normal, it one exists,

is called an orientation of §.

If § is simple and closed, then it bounds a region V), and it clearly has two sides: an inside and
an outside. We can choose N(x) at each point x € § to either point outward from V or inward into
V. In the first case we say N is the outward unit normal vector, and in the second case we say N is
the inward unit normal vector.

Surfaces § that are not closed may or may not be orientable. The Md&bius band is an example of
a non-orientable surface R3.

Now let § be an oriented surface with preferred unit normal N. Let F be a differentiable vector
field defined in a neighborhood of §. Reasoning exactly as in the last section, the rate at which the

flow associated to F sweeps volume across the surface §, from the negative side to the positive side,

/F-NdS.
§

Also, just as in the previous section, it is easy to work out the integral in a concrete parameter-

is

ization of §.

Let x(u,v) with (u,v) € U C R? be a parameterization of §. Then with

T, = a—ux(u,v) and T, = a—ux(u,v) )
we know that .
N — T, xTy(u,
() = S oy < )

and
dS = || Ty x Ty(u,v)|dudo .

Therefore the flur element for an infinitesimal tile on the surface is

F-NdS = F(x(u,v)) - T, x Ty(u,v)dudv ,
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and the flux integral is given, in ready-to-be-computed form as
/§F -INdS = /UF(x(u,v)) - T, x Ty(u,v)dudv . (9.25)
Example 141 (Computing the flux across a surface). Let F be the vector field
F = (2zyz — y?, 2%z — 2xy, 2%y) .

Let § be the part of the paraboloid z = 1 — x? — y? that lies above the .,y plane, oriented so its

preferred normal points upward. We will now compute the flux

/F-NdS
§

using (9.25).
The first step is to parameterize the surface. Let us use cylindrical coordinates. Then the equation

defining § is z =1 — 12 and z = 0, and z > 0 becomes r < 1. So
x(r,0) = (rcos@,rsind, 1 —r?)
and the parameter domain U 1is given by
0<r<i1 and 0<6<2r.

Differentiating, we find
T, (r,0) = (cosf,sinf, —2r) |

and
Ty(r,0) = (—rsinb,rcosb,0) .

We then compute
T, x Ty(r,0) = (2r%cosf , 2r’sinf , 7) .

notice that the third component is positive, so this vector points upwards. Thus,
NdS =T, x Tydrdd .
We then compute
F(x(r,0)) = (2r*(1 — r*) cos @sinf — r2sin 0 , r?(1 —r?) cos® 6 — 2r® cosOsinf , r°cos® fsinf) .
Therefore, the flux element is

F(x(r,0))-N(r,0)dS = [2r*(1 — %) cosfsind — 2 sin” 0][2r2 cos 0] drdd
+  [r*(1 = 7?) cos? 6 — 2r? cos O sin 0] [2r? sin O] drdd
4+ [r® cos? O sin 0][r]drdd .

We now integrate over U. But since
27 27
/ sin?fcosfdd =0 and / cos? 0sinfdf =0 .
0 0

all of the integral give zero. Hence there is no net flux across §.
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9.3.3 The Divergence Theorem in R?

For surfaces § that bound a connected region ¥V C R?, which are necessarily simple closed surfaces,

%F-NdS
§

to denote the flux out across §. That is, we canonically take the outward unit normal as the orientation

we usually write

of § in this case; this is indicated by the special symbol for the integral. Combining our two ways of

computing flux in this case, we have:

Theorem 91 (The Divergence Theorem in R?). Let V be a bounded connected region in R?, and let

§ be its boundary, equipped with the outward unit normal orientation. Then
7{F -NdS = / div(F(x))d*x .
§ v

The Divergence Theorem is useful for computing flux even for surfaces that are not closed: It
tells you how much you will change the flux by changing the surface § into something simpler. Here

is an example of this:

Example 142 (Trading in one surface on another). There is a better way to compute the flux integral
in the Example 141. Notice that if we let §5 denote the unit disk in the x,y plane, then together §

and §5 bound the region V consisting of points (x,vy,z) in R® with
O§z§17x27y2.

Also, the outward unit normal on the boundary of V coincides with the preferred unit normal on §.

Thus the net flux outward across the boundary of V is given by

/F-NdS+/F-NdS,
§ 2

where on §9 we take the downward unit normal, since this is the outward unit normal.

We can now use (9.24) to compute the net flur outward across the boundary of V, finding

/ div(F(x))d*x .
v

That 1is,
/F "NdS = [ F-NdS - / div(F(x))d*x . (9.26)
§ 82 \z

It turn out that both of the integrals on the right a very easy to compute. First, since §5 is simply
the unit disk in the x,y pane, the downward unit normal on §2 is simply —ez = (0,0 — 1). Also,

F(z,y,0) = (—y% —2xy,2%y), and the area element in the x,y plane is simply dS = dxdy. Thus,
F - NdS = —2%ydz ddy .

Since the integrand is odd under reflection in y, and the region of integration is even, it is then clear
that
/ F-NdS=0.

2
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Next, we compute

div(F(x)) = 2yz — 2x .

Notice how much simpler this is than F itself! To compute the volume integral, we use cylindrical

coordinates. The limits of integration are given by

0<r<1l 0<6<2r and 0<z<1-—7r%.

/Vdiv(F(x))d‘gx = /01 </01—’”2 (/()%[27“ sin 0z — 2r cos 9]d9) dz) rdr=0,

since fo% sin 0df = fo% cos 0df = 0.
Going back to (9.26), we learn that f§ F - NdS = 0, with much less computation than in Exam-
ple 141.

Thus,

9.4 Line integrals and circulation

9.4.1 Line integrals, force fields and work

Let F be a continuous vector field on R™. In this section, we think of F as representing a force field;
that is F gives the force that acts on a point particle located at x.

For instance, if some electric charges are distributed in R?, they will produce an electric field E(x),
and then any point particle with an electrical charge ¢ will be acted upon by a force F(x) = gE(x).

Let x(t), a <t < b, be a differentiable parameterized curve in R™. Suppose we move the point
particle along the path x(¢). We ask: How much work is done on the point particle as it moves along
the curve from xg := x(a) to x; := x(b)?

Let h > 0 be a small time step. As the particle moves from x(t) to x(t + h), the work AW (¢)
done is approximately given by the dot product of the displacement of the particle and the force
acting time ¢:

AW () = F(x(t)) - (x(t + h) — x(1)) .

This is not exact since the force F is not constant, but if the segment is very short, the variation in
the force is a small percentage of the force itself. In this same small step limit, there is one more

useful approximation to make:

x(t+h) —x(1)

F(x(t)) - (x(t + h) —x(t)) = F(x(t)) h~F(x(t)- -x'(t)h .

Thus, if we divide the path into many such small segments, and then add up all of the contribu-
tions from all of the segments, and take the limit limit as the length of the segments tends to zero,

we obtain an integral giving the exact value of the work that gets done: This is

/bF(x(t)) -x/(t)dt . (9.27)
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Example 143 (Computing a line integral). Let F(x,y,z) = (2,2,y). Let x(t) = (cost,sint,t) for
0 <t <2m. Let us compute (9.27) in this case:

F(x(t)) - x'(t) = (t,cost,sint) - ( — sint,cost,1) = —tsint + cos>(y) + sin(t) .
Thus the total work is )
/ [—tsint + cos®(y) + sin(t)]dt = 37 .
0

For computational purposes, it is best to represent the line integral in terms of some explicit
parameterization of the curve. But the work done on the particle as it moves along the curve C,
with a specified direction of travel, has a well defined meaning that is independent of any particular
parameterization.

To write the line integral in such a way, introduce the unit tangent vector T(¢) along the curve
that points in the specified direction of motion. At each point along a differentiable curve, there are

two unit vectors tangent to the curve. If x(¢) is any parameterization of the curve, these are

1
+—x(t) .
1@l
Taking whichever choice agrees with the specified direction of motion, we have
1
T(t) =+ x'(t)  and  ds=|x(¢)||dt .
=’ (0]l
Thus,
F(x(t)) - T(t)ds = £F(x(t)) - x'(¢)dt = . (9.28)

This gives us the geometric form of the line integral of F along the curve C:

/F-Tds.
C

We do not need to be given a parameterization of the curve C, we only need to be given the
curve and, what is crucial, the direction in which the curve is traversed. If we are given the force
field F and are told that the path of the particle is the part of the parabola in the z,y plane given
by y = 1 — 22, y > 0, this is not enough to determine the work integral. We must also be given the
direction of motion along the parabola. At each point along the parabola, there are two unit vectors
that are tangent to the parabola. The direction of motion singles one of them out to be used as T.

This specification of the direction of motion is called the orientation of the curve.

Example 144 (Computing another line integral). Let F(z,y,2) = (z,z,y) be a given force field,
and suppose a particle moves from (1,0,0) to blp — 1,0,0) along the parabola y = 1 — 22 in the z,y
plane. How much work is done on the particle?

First, we parameterize the path as x(t) = (t,1 — t2,0) with —1 < t < 1. This traces out the
parabola in question, but does so backwards, starting at ( — 1,0,0) and ending at (1,0,0). Thus, the
correct unit tangent vector is the opposite of the one associated to this parameterization. Therefore,

we choose the — sign in (9.28) and have

1 1
4
/F~Tds:—/ (0,t,1—t2)o(1,72t,0)dt:7/ 2t2dt:f§.
c -1

—1
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9.4.2 Conservative vector fields

There is a particularly nice kind of line integral: One in which the vector field F(x) is the gradient

of some function ¢(x). Indeed, by the chain rule of Chapter 3,

d
3 P(x(0) = V(x(®)) - x'(2) -
Therefore, if C' is the path running along x(t) for, say, a < ¢t < b, the fundamental Theorem of

Calculus gives us

b
p(x(b)) — p(x(a)) = / Vo (x(t)) - X' (£)dt = /C Vi Tds

Notice that the left hand side depends only on the initial and final points along the curve C'. Therefore,

/ V- Tds
c

only depends on the curve C' through its starting points and endpoint.

Definition 99 (Conservative vector field). Let F be a differentiable vector field defined on an open
set U C R™. Then F is a conservative vector field in case whenever Cy and Cy are any two piecewise

differentiable curves with the same initial point and the same final point, both of which stay inside

the set U where F is defined,
/ F-Tds=/ F-Tds.
Cl C2

What we have seen just above gives us one class of conservative vector fields — gradients vector
fields: The value of the line integral of Vi along C' is given by the difference in vlaues of ¢ at the
endpoints. In particular, the line integral is zero whenever C is an oriented closed curve. In fact,

this is true for any conservative vector field:

Theorem 92 (Closed curves and conservative vector fields). Let F be a continuous vector field
defined on U C R3. Then F is conservative if and only if for all be any closed oriented piecewise

differentiable curves C in U,
jf F.-Tds =0 . 9.29)
c

Note: In (9.29), we have used the special integral symbol to emphasize that we are integrating

over a closed curve.

Proof of Theorem 92: Suppose first that F is conservative. Let C by any closed oriented piecewise
differentiable curve C' in U. Pick two distinct points xg and x; on C. Define C; to be the curve
obtained by following C' from xq to x1, following the given orientation. Let C5 be the curve obtained
by continuing onwards from x; back to xg, still following the given orientation. Let —C5 denote the
reversal of the curve Cy: This is the curve on the same path, but with the orientation reversed.

Then Cy and —C5 are two curves in U running from xg to x;. Since F is a conservative vector

field,
/F~Td5:/ F-Tds .
Cl 762
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Since changing the orientation changes the sign of T,

/ F-Tds:—/ F-Tds .
702 C2

But by the additivity property of integrals,

/F-TdSZ/ F~Tds+/ F.-Tds .
C Cq Cy

Combining the last three identities, we have

%F-Tds:().
C

The argument reverses: Now suppose that F is such that (9.29) is true for any closed oriented
piecewise differentiable curve C' in U. If C; and Cs are two piecewise differentiable curves in U
running from xg to x7, define the simple closed curve C by following C; from x( to X, then return

from x; to xg along —C5. Then

%F-Tds
c

/ F~Tds+/ F.Tds
C] _CQ

= /F~Tds—/ F-Tds=0,
Cl CZ

Thus, F is conservative. O

Theorem 93 (Potential functions). Let U be a pathwise connected open set in R®. Then a continuous
vector field F defined on U is conservative if and only if there is continuously differentiable function
@ such that F(x) = Vo(x) for all x inU.

Proof: We have already seen that all gradient vector fields are conservative. Now suppose that F is

some conservative vector field. Pick any point xg € U and then for any x € U, define

go(x):/c F-Tds

x(0,%

where Cy, x is any piecewise differentiable curve starting at x¢ and ending at x. This is a well defined
function since F' is conservative.

Now fix any x in U. Since U is open, x + he; € U for all sufficiently small values of |h|. Pick
any piecewise differentiable curve Cy, x starting at x¢ and ending at x. Let Cx, x1re, be the curve

obtained by continuing Cx, x by moving along the straight line segment from x to x 4 he;. Then
1
o(xper) — p(x) = / F.-Tds— / F.-Tds = / F(x + they) - heidt .
Cxo,x+he1 Cxo,x 0
Therefore,
.1
Vo(x) ey = lim —(p(xpe1) — ¢(x)) =F(x) -e; .
h—0 h

The same argument may be repeated for the other entries, and we obtain the result. ]
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9.4.3 Circulation
Theorem 92 motivates the the following definition:

Definition 100. Let C be a closed oriented piecewise differentiable curve curve in R3. Let F be a

continuous vector field defined on a neighborhood of the curve C'. Then the circulation of F around

%F'Tds.
c

We may restate Theorem 92 be saying a continuous vector field F defined in U C R? is conser-

C' is the quantity

vative if and only if for every closed oriented piecewise differentiable curve C in U, the circulation of
F around C' is zero.

The computation of circulation for gradient vector fields is trivial: By what we have seen above,
the circulation is always zero.

A circulation integral is therefore nothing other than a special case of a line integral — it is the
case in which the curve C' is a simple closed curve. When it is given parametrically, we have a
beginning point and an end point which are the same, and letting the parameter increase specifies a
direction of motion. However, if the curve is specified in purely geometric terms, say, as the circle of
unit radius centered on (0,0, 1) in the plane z + y + z = 1, then we need additional information to
specify the orientation.

Circulation is very easy to compute for a conservative vector field.

Example 145 (Computation of a circulation integral). Let C' be the circle of unit radius centered

on (0,0,1) in the plane x + y + z = 1 oriented so that the direction of motion is coutner-clockwise
when viewed from above. Let F = (xy, 1, zy). Let us compute the circulation ¢ F - Tds.

c
First, we need to parameterize the circle. The normal vector to the plane is (1,1,1). If
{uy,us,u3} is an orthonormal basis of R with uz parallel to (1,1,1), then {uy,us} is an orthonormal

basis for the plane in question, and then
x(t) = (0,0,1) + costu; + sintuy 0<t<2nm,

is a parameterization of the circle. To find the basis explicitly, note that (1,—1,0) is orthogonal to
(1,1,1) We therefore take

1 1

1
uz = —3(1, ,1) , w (1,-1,0) and wp:=uzxu = \/6(1, 1,-2) .

V3 R
Thus,
x(t) = (272 cost + 671/ 2sint , —27%cost + 67 ?sint , 1 — 22371 2sint) .
Differentiating, we find

x'(t) = (—27Y%sint + 62 cost , 27/ %sint 4+ 62 cost , —2'/2371/2 cost) |

In particular, x(0) = (2712, -27Y2 1) and x'(0) = (6-1/2,671/2,0)
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Att =0, the x-coordinate is positive and increasing, and the y coordinate is negative. This means
that when viewed from above, we see counter-clockwise motion. Thus, with this parameterization,

Tds =+(— 271 25int + 672 cost , 27/ ?sint + 6 /% cost , —21/2371/2 cost)dt ;

i.e., we choose the + sign in (9.28). We then have

27
1 1 1 1
F-Tds=/ (sin%—cos%—l) (—sint— cost) dt=0.
ji o \6 2 V2 V6

9.4.4 The curl of a vector field on R?

Let F = (f1, f2, f3) and G = (g1, 92,93) be two differentiable vector fields defined on an open set
U c R3. We can build a new vector field out of F and G by taking their cross product, giving us the
vector field

F x G = (f293 — f392, f3g1 — f193, f192 — f291) -

Let us compute the divergence of F x G. We find:
div(F x G) = <%_%)gl+<aﬁ_%>gz+ (3ﬁ_3ﬁ>93

y 0z 0z or ox y
dgs 092 dg1  0gs dga  Ogq1
a (61/_8z>f1_<82_8x>f2_(8x_8y)f3' (9:30)

We have grouped the terms so that we can write this in terms of dot products. We now make

the following definition:

Definition 101 (The curl of a vector field on R3). Let F = (f1, fa, f3) be a differentiable vector field
defined on an open set U C R3. Then the curl of F, curl(F) is the vector field on U defined by

0fs 0fa ofi  0fs dfs  0h
(F) = ( (2292 gh 9l g9z 9 31
curl(F) << dy 9z )\ 9z 9z ) \9dxr Oy (9:31)
Example 146 (Computing a curl). Let F = (zy, 1, zy) is in Ezample 145 . Then we find
curl(F) = (z, —y, —x) .
Going back to our computation (9.30), we imediaitely deduce:

Theorem 94 (Curl and the divergence of a cross product). Let F = (f1, fo, f3) and G = (g1, 92, 93)
be two differentiable vector fields defined on an open set U C R3. Then

div(F x G) = curl(F) - G — curl(G) - F .

This is the first of several important identities relating gradients, divergences and curls. Here is

another:

Theorem 95 (The curl a gradient is zero). Let ¢ be a twice differnetiable function on an upen set
U C R3 so that Vi is a vector field on U. Then

curl(Vo(x)) =0

for allx in U.
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Proof: From the definition (9.31),

curl(Vg) = D¢ B falts D¢ B 9 falts B 9
uever = Oydz 0z0y ) ~ \0z0x 0Oxdz)  \Ox0y Oydx ’

and each entry on the right is zero by Clairault’s Theorem. O

9.4.5 Stokes’ Theorem

The curl of a vector field can be thought of as a circulation density, giving the circulation per unit
area, in much the same way that the divergence can be thought of as a flur density, giving the flux
per unit volume. The theorem that is the basis of this statement is Stokes’ Theorem, which we state

next:

Theorem 96 (Stokes’ Theorem). Let § be an differentiable oriented surface in R3, with unit normal
N, and suppose that § is bounded by a differentiable simple closed curve C. Orient C so that the unit
tangent vector T has the property that at any point on the boundary, T x N points outward from the

}{F-Tds:/curlF~NdS.
c §

Here is a picture showing how the orientations of the surface and its boundary “match up”.

surface. Then

Z“

\

y

Example 147 (Verification of Stokes’ Theorem in an example). Let F and C' be the vector field and
curve from Example 145. That is, F = (zy,1,2y), and C is the circle of unit radius centered on
(0,0,1) in the plane x +y+ z = 1 oriented so that the direction of motion is counter-clockwise when

viewed from above. We have already computed that

/F-Tds=0.
c
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We now take § to be the disk in the plane © + vy + z = 1 that is bounded by C. To orient §
consistently with C, as in Stokes’ Theorem, we must take N to be the upward unit normal on §.

Thus, at each point of §,

1
N = %(1,1,1) .

In Ezample 146, we have already computed that curl(F) = (x, —y, —x). Thus,
curl(F) N = —y |

and so

/curl(F) -NdS = —/de .
§ §

Since § is symmetric under the transformation y — —vy, it is clear that f§ ydS = 0. Thus,

/curl(F) -NdS =0,
§

which based on our results in Example 145 is consistent with Stokes’ Theorem.

Example 148 (Computing circulation using Stokes’ Theorem). Let C' be the contour that runs from
(1,0,0) to (0,1,0), and from there to (0,0,1), and from there back to (1,0,0). Let G = (y + 22,z +
22, 2x + 2y). Compute the total circulation
% G - Tds .
c

When asked to compute a circulation, or more generally, a work integral, unless the answer is

totally obvious, the first step is to compute the curl of the vector field. We find:
curl(G) = (2 — 22,22 — 2,0) .
This is pretty simple, so it will be good to use Stokes’ Theorem, which says,

7{ G- Tds = / curl(G) - NdS ,
c s

where S is the triangle with the specified vertices.
The triangle S lies in the plane given by x + y + z = 1, and for this plane the unit normal is

1
N=+—(1,1,1) .

V3
Therefore, curl(G) - N = 0, and so

j{G~Tds:O.
c

Stokes’ Theorem may be applied to compute that change in the value of a line integral f o F-Tds
that is induced by a change in the curve C. To see how to do this, let C; and Cs be two differentiable
curves running from xg to x;. Let x;(¢) and x5(¢), both for 0 < ¢ < 1 be parameterization of C; and
C5 respectively.

Define a parameterized surface

x(s,t) 0<s,t<1
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by
x(s,t) := (1 — s)x1(¢t) + sxa(t) .

This stretches out a “sheet” between C'; and Cy. Now let C' denote Cy — Cs; that is, the curve
obtained by following C from xg to x;, and then following C5 backwards from x; to x¢. Then C
is the boundary of §, and we orient § consistently with C. (If Cy and C9 intersect, § will consist of
several pieces, each of which should be oriented separately. We will explain this further in examples;
perhaps for now it is best to think of C'y and Cy as non-intersecting.)

Now suppose F is a continuously differentiable vector field that is defined everywhere on a
neighborhood of §. Then by Stokes” Theorem,

% F.-Tds = /Curl(F) -INdS .
c §

]{F~Tds:/ F-Tds—/ F - Tds,
C 01 CZ

/ F~Tds:/ F~Tds+/cur1(F)~NdS.
Cl C2 §

In particular, if curl(F) = 0 everywhere, at least everywhere on §, we have

/ F-Tds:/ F-Tds .
Cl C2

Thus, any continuously differentiable vector field F that is defined on all of R? and satisfies

However,

and so

curl(F) = 0 everywhere on R? is a conservative vector field.
If the vector field is not defined on all of R3, then this need not be the case.

Example 149 (Zero curl, but not conservative). Consider open set

U= {(@y,2) : 2 +42 >0} .
That is, U is R® with the z-axis removed. Consider the vector field F defined on given by

1

F(z,y,2) = m( - y,7,0),

which is well-defined everywhere on U. Then direct calculation yields
curl(F)(z,y,2) =0 .
However, if C is the unit circle in the x,y plane, oriented to run counter-clockwise as usual, then
x(t) = (cost,sint,0) , 0<t<2m,
s a parameterization of C, and we compute
27
j{ F. Tds= / (—sint,cost,0) - (—sint,cost,0)dt = 27 .
c 0

Thus, F is not conservative. The problem is that one cannot find any surface in U of which C' is

the boundary: Any such surface must cross the z-axis somewhere, and F is not defined on the z-axis.
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The previous example brings us to a definition:

Definition 102 (Simply connected region). An open set U C R3 is simply connected in case when-
ever C' is a simple closed curve in U, there is an oriented surface § in U of which C' is the boundary.
An open set O C R? is simply connected if the cylinder U = {(z,y,2) : (z,y) € O} is simply

connected in R3.

The reason for the second line in the definition is that, as seen in the last example, we can
consider any vector field F(x,y) defined on an open set O C R? as a vector field F(m, y, z) defined on
the cylinder U := {(z,y,2) : (z,y) € O} by the simple device

F(z,y,z2) :=F(z,y) .

In this way, we may apply Stokes’ Theorem to vector fields on R?. We summarize our results in a

Theorem:

Theorem 97 (Zero curl and conservation). Let U be a simply connected open set in R3. Let F
be a continuously differentiable vector field defined on U. Then F is conservative if and only if
curl(F) = 0 everywhere on U. Likewise, let O be a simply connected open set in R%. Let F = (f,g)

be a continuously differentiable vector field defined on O. Then F is conservative if and only if

0 0
Fp9@ ) — a*yf(ﬂ%@/) =0
everywhere on 0.

Proof: By the remarks made above, it suffices to note that

curl((7.9,0)) = (0.0, - ate0) = 5-70))

O

We now have the means to determine whether a vector field, defined in a simply connected open

set U is the gradient of some potential function: Compute the curl. In case the curl is zero, so that
the vector field is the gradient of some potential function, we can even use the method of proof of
Theorem 93 to compute such a potential function. (The potential function ¢ is only defined up to
an additive constant: Adding a constant to ¢ does not change its gradient, and if ¢ and v are two

potential functions for F, V(¢ — 1) = 0, so ¢ and 1 differ by a constant.)
Example 150 (Finding a potential function). Consider the two vector fields
F=(y+2%2+2% 222+ 22y) and G=(y+2%r+2%2c+2y) .

One of the vector fields ¥ and G is equal to Vo for some potential function ¢. Which one is it?
Find such a potential function.

To do this, we compute

curl(F) =0 and curl(G) = (2 — 22,22 — 2,0) .
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A wvector field on R? is a gradient if and only if its curl is zero at every point in R3. Hence F is the
gradient of some potential function .
To find ¢, we compute line integrals. Pick xg = 0 as our base point. Then for any point along

the z axis, we find
1
©(0,0,z2) = / F(0,0,tz) - e3zdt =0 .
0

We next compute

1
©(0,y,2) = ¢(0,0,2) = / F(0,ty, z) - eqydt = 2%y .
0

We finally compute

1
@(xaya Z) = @(07:% Z) = / F(tl‘,y, Z) : elxdt = (y + 22).13 .
0

Altogether,
p(z,y,2) =2y +2°(x +y) ,

and you can now easily verify that Vo = F.

9.4.6 Proof of Stokes Theorem

The key to proving Stoke’s Theorem in general it to prove it when C' is an oriented triangle in R3.
Let p1, p2 and p3 be the non-colinear points in R?, so that they are the vertices of a non-degenerate
triangle in R?. Let C be the oriented curve that traverses the boundary of the triangle starting at p1,
going next to ps, then on to ps, and finally returning to p;. Let x(¢), 0 < ¢ < 1 be a parameterization
of C that is consistent with the orientation. In particular x(0) = p;.

Now let us suppose that pi, p2 and ps are all very close together, so that the triangle is very
small. We will eventually be concerned with what happens in the limit as these side-lengths go to
zZero.

When the distances are very small, the linear approxination
F(x(t)) = F(x(0)) + [Jr (x0)](x(t) — x(0))

will be a good approximation, with the errors vanishing percentage-wise in the limit as the side-

lengths go to zero.

Lemma 22. Using the notation established above,
7{ F(x(t)) - dx(t) ~ acurl(F(x(0)) - N
c

where « is the area of the triangle, and where N is its unit normal consistent with the specified
orientation. The errors in this approximation go to zero as a percentage of the right hand side as the
mazimum side length of the triangle goes to zero, so that this approzimation becomes exact in this

limit.
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Proof: Using the linear approximation F(x) = x(0) + [Jr(x0)](x(¢t) — x(0)),

;40 F(x(t)) - dx(t) ~ 7{} F(x(0)) - dx(t) + f [ (x0)] (x(t) — x(0)) - dx()

C

Since F(x(0)) is independent of ¢, and since x(1) = x(0) = pq,

7{} F(x(0)) - dx(t) = F(x(0)) - 7{} dx(t) = F(x(0) - /0 X/ (£)dt = 0

Next, define z(t) = x(t) — x(0). Then

¢ eGxa)lx(t) = x(0) - dx(t) = [ (Uelxo)la(®) -2'(0)
C 0
Now define matrices A and B by

A=

([JF(XQ)] — [JF(Xo)]T) and B = ([JF(Xo)] + [JF(XQ)]T) . (932)

DN | =
N | =

Notice that
A=-AT, B=B" and [Jp(x¢)]=A+B.

The matrix A is called the antisymmetric part of [Jr(Xg)], and the matrix B is called the symmetric
part of [Jr(x0)].

Since B is symmetric,

d /
gz(t) - Bz(t) = 2(Bz(t)) - 2'(t) .
Therefore, since z(0) = z(1),

/O (Bz(t))-Z'(t)dt =0 .

Thus the symmetric part of [Jr(xo)] plays no role in our circulation computation, and we have that

1
f e (x0)] (x(£) — x(0)) - dx(t) = / (Az(t)) - 2/ (t)dt .
C 0

Since A is antisymmetric, it has the form

0 —c b
A= c 0 —a | . (9.33)
—b a 0

Define the vector a := (a,b,c). Then as we have seen in Example 69,
Az=b xz.
Therefore, by the triple product identity,
(Az(t)) - 2'(t) = (a x z(t)) - 2'(t) = a- (z(t) x 2'(t)) .

Therefore,

et —x(0) - ax(t) = a- [ a(t) x 2008
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From familiar calculations, we recognize fol z(t) x 2z’ (t)dt as aN where « is the area of our triangle,

and N is the unit normal pointing to the positive side according to the orientation induced by C.

The final step in our computation is to recognize a as curl(F(x(0)): This follows directly from
(9.32) and (9.33). 0

Form here, the proof of Stoke’s Theorem is easy. Consider any nice surface such as the one shown

in

Z“

\——

y

“Chop” the surface up into small triangular tiles. Each edge of any of these triangles in the
interior of § is traversed twice, because it is part of the boundary of two triangular tiles. But it is
traversed in opposite directions, so that all of the contributions to the circulation form the interior
triangles is zero: Adding up the circulation around of all of the triangular tiles, everything except
the contribution coming from the boundary of § cancels out.

Thus we have that the circulation about C, the boundary of § is the sum of the circulations
about each of the triangular tiles. Taking the limit as the maximum side length of these triangles

goes to zero, and using Lemma 22,

% F.-dx = lim Z (circulation about tile)
c side length to 0

triangular tiles in §

Z (area of tile) x (N in tile) x (curl(F) in tile)

triangular tiles in §

- / curl(F(x)) - N(x)dS .

§

lim
side length to 0

This completes the proof of Stoke’s Theorem. .
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9.4.7 Vector Potentials

Lemma 23 (The divergence of a curl is zero). Let A be a twice continuously differentiable vector
field. Then
div(curlA) =0 .

Proof: Write A(x) = (f(x), g(x), h(x)). Then since
_((0h g af on dg _ of
wwn=((5-5) (Gi-a) (53))

divienrld) = 2 (ah ‘99>+ 0 <5f 5h>+5<3g 8f>

oz \dy 9z) y\dz 0dxr) 9z\dx 9y
B 0% f B 0% f L 0%g B 0%g n 0%h B 0%h
— \Oydz 0z0y 020x  Ox0z 0xdy Oydx )’
and each of the last three terms are zero by Clairault’s Theorem. O

Lemma 23 gives us a necessary condition for a vector field F to be the curl of some other vector
field A: It must be the case that div(F) = 0.

This condition turns out to be necessary as well. To see why this is true, let us consider a
continuously differentiable vector field F(x) = (P(x), Q(x), R(vx)) defined on all of R? such that
div(F(x)) = 0 for all xinR3.

Let us first observe that If F = curl(A) for some other vector field A, then A is far from unique:

Since curl(Vy) = 0, and since the operation of taking a curl is linear,
curl(A + Vo) = curl(A) + cwrl(Vp) =F+0 =F .

Hence one might hope that among the possible choices of A, there are some that are particularly
simple. This turns out to be the case:
Consider a vector field A of the form

A(x) = (f(x),0,h(x))

for twice continuously differentiable real valued functions f and g on R3. Then by the formula for

i) on df oh  of

Therefore, if curl(A) = F = (P, Q, R), then by the Fundamental Theorem of Calculus, we must

have
y
f(x,y,z) = _/ R(;E7t,z)dt+o¢(x,z)
0
y
hz,y,z) = / P(x,t,z)dt + 3(x,2) (9.35)
0

for some functions a(z, z) and B(zx, z), since this is equivalent to

- =R and on _

—=Pr. .
3 B (9.36)
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Then with f and h defined by (9.35), we compute the middle component of curl(A):

af oh YTOR oP Oa op
o —/0 {az(x,t,z) + ax(x,t,z)] i+ 52 (2,2) — 5o, 2) (9.37)
However, since div(F) = 0,
OR oP oQ
[az(x,t,z) + ax(x,t,z)] = —a—y(x,t,z) .
Using this and the Fundamental Theorem of Calculus, (9.37) becomes
af Ooh Ja o
L = Qy )~ Q. 0,2) + (7)o (w,2) (9:39)

We must choose a(x, z) and S(z, z) so that the right hand side reduces to Q(x,y, z), since then by
(9.34) and (9.36) we will have curl(A) = (P,Q, R) = F. Note that if we chose

alz, z) = /OZ Q(x,0,t)dt and Bz, z) =0,

we do indeed obtain of o
a. 79 = Q(Z,yv'z) y

0z Ox
and hence curl(A) = (P,Q, R) = F. Thus, whenever div(F) = 0 on all of R3, there is a vector field
A so that F = curl(A) everywhere on R3. such a vector field A is called a vector potential for F.

We have proved:

Theorem 98 (Vector potentials). Let F be a continuously differentiable vector field on R® such that
div(F(x)) = 0 for all x € R®. Then there is a continuously differentiable vector field A(x) on R3
such that curl(A(x)) = F(x) for all x in R3. If F = (P,Q, R), then one such vector potential A is
given by A = (f,0,h) where

Yy z

f@yz) = — [ Rt z)dt+ / Q(a,0,0)dt
0 0
Yy

hw,y,2) = /O Pla,t,2)dt . (9.39)

Example 151 (Computing a vector potential). Let F = (—y(2 + ), z,yz). We readily compute
div(F(z,y,2)) = —y+0+y=0.

Hence, F has a vector potential, and the recipe in Theorem 98 provides one. Since P(x,t,z) =
—t(2 + ), we have

v 1

hayz) = —@2+2) [ tdt =324 )?
0
Next, since Q(x,0,t) = x and R(x,t,z) = tz,
L5
f(l‘vyvz> = _izy +zz .

Altogether,

1 1
A(z,y,z) = (—szQ—i—xz , 0, —2(2+x)y2) )

As one readily checks, we do indeed have curl(A) = F.
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9.5 Exercises

1. (a) Let F(x) be a vector field on R" of the form F(x) = —VV/(x) for some twice continuously
differentiable function V on R™. Show that along any flow curve x(¢) of F, V(x(t)) is a non-increasing

function of ¢.

(b) Let F(x) be a vector field on R™ of the form F(x) = AVV(x) for some twice continuously
differentiable function V' on R™ and some antisymmetric n X n matrix A. Show that along any flow

curve x(t) of F, V(x(¢)) is a constant function of ¢.

2. Let F(x) be the vector field on R? given by F(x,y) = (y,7). Proceeding as in Example 130,
find and explicit formula the flow curve through the general point xo in R2. Also, for each ¢,
find an explicit formula for the flow transformation ®;(x). Your answers will involve the hypbolic

trigonometric functions.

3. Let C be the path consisting of straight line segments running from (0, 0) to (3, 3) and from there to
(4,5), and from there to (0,7). Let F(z,y) = (sin(z)+y,3z+y). Compute the flux integral [, F-Nds

and the circulation integral |, o F - Tds, using the orientation induced by the parameterization of C'.

4. The curve in the plane given by the equation 2* + 43 = 3y is known as the folium of Descartes.

Here is a plot of the part of the curve that we shall consider in this exercise:
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(Folium is Latin for leaf, as in the English word foliage.) Consider the parameterized curve x(t)
3t 3t?
= (—0, =
x(?) (1+t3’ 1+t3>

(a) Show that each point on x(t) lies on the folium of Descartes, and that

given by

for 0 <t < o0.

(0,0) = x(0) = lim x(t) ,

t—o0

so that the parameterized curve x(t) is a closed loop. (It is in fact the “leaf” of the folium, which

lies in the upper right quadrant.)
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(b) Show that

x(t) - dx*(t) = u—gk%)?dt :

and compute the area enclosed by the curve. (That is, compute the area of the leaf.)

(c) Let F(x,y) = (22 — 9%, 2xy). Compute the flux integral fc F - Nds where C is the leaf in the

folium of Descartes, and N is its outward unit normal.

5. Let C be path along the unit circle that is in the upper right quadrant in R?, starting at (1,0)
and ending at (0,1). Let F be a vector field of the form

F(z,y) = G(z,y) + Vo(z,y)
where
»(1,0) =1 and p(1,0)=2.
Suppose also that with G(z,y) = (P(z,y), Q(z,v)),
A
oxr Oy
for all  and y, and finally, P(x,0) =0 for all z and Q(0,y) = 0 for all y.

Using this information, compute [ F - Tds.
c

6. Verify Stokes’ Theorem by calculating both sides of

f F-Tds = / curl(F) - NdS
c S
where

F(z,y,2) = (%, 2,2%)

S is the part of the paraboloid z = x2? + y? lying below the plane z = 1 with N being the upward
unit normal to §, and C the boundary of § with the orientation that is consistent with the choice of
N.

7. Consider the following vector fields:

F(z,y,2) = (z,2y+ 29
G(%Z/J’) = (1,CCy—Z7y2—$Z)
H(z,y,2) = (z,2°+y+2zy°)

Which of these vector fields are curls, and which are not? That is, does there exist a vector field

A(z,y,z) such that curl(A) = F, and likewise for G and H? Justify your answers.
8. Consider the following vector fields:

F(z,y,2) = (y°+2%,3y°s + 2"z, 22y2)

G(z,y,2) = (xyz,zy,z

H(z,y,2) = (yz2,2)
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Which of these vector fields are gradients, and which are not? That is, does there exist a potential
function p(z,y, z) such that Vo = F, and likewise for G and H? Justify your answers, and in case

a potential function exists, explicitly find one.

9. Let C be any simple closed curve in R? that lies on the surface of the cone z = \/sﬁy2 Let
F(z,y,2) = (22,92 2(2® + y?)). Show that

fF-Tds:O.
c

10. Let V be the rectangular box [0, 1] x [2,4] x [1,5]. Let F(x,y,2) = (zy,yz, 2%z + 22). Let S be
the boundary of V. Compute the outward flux

/F-NdS.
S

11: Let S be the part of the paraboloid z = 1 — 22 — y? that lies above the plane z + z = 1. Let F
be the vector field F(z,y, z) = (zy,yz, zz). Compute the flux integral

/F-NdS
S

where N is the downward unit normal to the surface. That is, compute the flux across the surface

from top to bottom.

12: Let S be the part of the ellipsoid 422 + 9y? + 22 = 36 that lies above the plane z = 3. Let F be
the vector field F(z,y,2) = (2,0, z). Compute the flux integral

/F-NdS
S

where N is the downward unit normal to the surface. That is, compute the flux across the surface

from top to bottom.

13: Let S be the boundary of the region V that is above the sphere z2? + y2 + 22 = 6 and below the
paraboloid z = 4 — 2% — y2. Let F(x,y, 2) be the vector field F(z,y, 2) = (2,y,z). Compute the flux
integral [ s F - INdS for the flux em out of the region D.

14: Let V be the region in R? that is inside ellipsoid 422 + 9y? + 22 = 36, and above the plane z = 3.
Let S be the boundary of V. Let F be the vector field F(z,y, 2) = (z, , 2).

(a) Compute the flux integral / F - NdS where N is the outward unit normal to the surface.

s
(b) Let C be the curve at which the plane z = 3 intersects the ellipsoid 422 +9y? + 22 = 36, oriented

to run counterclockwise when viewed from above. Compute | o F-Tds.

15: Consider the two vector fields
F(xay7 Z) = (QZ‘(y - Z) + 2,.132 - 292', _xQ - y2 - 3)

and

G(z,y,2) = 2u(y +2)+2,2% — 2yz, 2> + > +3) .
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(a) Compute curl(F) and curl(G).

(b) One of the vector fields is the gradient of some function ¢(z,y, z), and the other is not. Which
one is, and how do you know? For the one that is the gradient of some function ¢, find such a

function ¢.

16: Consider the two vector fields
F=(y+220+2%222+229) and G=(y+2%z+2%20+2).

(a) Compute the divergence and curl of F and G.
(b) Let S be the unit sphere, and N its outward normal. Compute either

/F~NdS or /G~NdS.
S S

The choice is yours. Do whichever one you find easier, and justify your answer to receive credit.

(c) One of the vector fields F and G is equal to Vo for some potential function ¢. Which one is it?

Find such a potential function.

(d) Let C be the curve that is given by
24yt eyt =4 and r+y+z=1.

Orient C' so that it is traversed in the counter-clockwise direction when viewed from above. Compute

/F-Tds or /G-Tds.
c c

The choice is yours. Do whichever one you find easier, and justify your answer to receive credit.

either

17: Let V be the region in R? that lies inside the sphere 2 4 52 + 22 = 4, and above the graph of
2z = 1/y/22 +y2, as in problem 8. Let F = (y + 22,z + 22,2z(z + y)) and let N be the outward
normal to § , the boundary of V. Compute the total flux

/F~NdS.
S

18: Let C be the contour that runs from (1,0,0) to (0,1,0), and from there to (0,0,1), and from
there back to (1,0,0). Let G = (y + 2%,z + 22, 22 + 2y). Compute the total circulation

]{G-Tds.
C

19: Consider the two vector fields
F = (2zyz — %, 222 — 22y, 2°%Y) and G = (2yz — y?, 2%z — 2z, 2%y) .

(a) Compute the divergence and curl of F and G.
(b) Let S be the part of the paraboloid z = 1 — 22 — y? that lies above the z,y plane. Compute

/G-NdS.
S
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(c) One of the vector fields F and G is equal to Vo for some potential function ¢. Which one is it?

Find such a potential function.

(d) Let C be the curve that is parametrized by

x(t) = (12 — 2t t — 3%, t + 1) for 0<t<1.

/F-Tds.
c

20: Let S be the part of the surface in R? given by /22 + y2 = 8 — z that lies outside the cylinder
2?2 +y? = 4. With G = (2yz — y?, 2%z — 22, 2%y), compute the flux

/G-NdS,
S

where N is taken to point outward from the z-axis.

Compute

21: Let C be the contour that runs from (0,0,0) to (0,1,2), and from there to (2,2,2), and from
there back to (0,0,0). Let G = (z,z,y). Compute the total circulation

?{G-Tds.
c

22: Consider the two vector fields
F(x):=(-2y+2z, 2z+4yz, = —2y?) and G(x):=Q2y+z, 2v—4dyz , z —2y%)

both defined everywhere on R3.
(a) Compute curl(F) and curl(G)
(b) One of F and G is a gradient vector field and the other is not. Which one is the gradient of some

potential function ¢(x), and how do you know? For the one that is, find such a potential function
p(x).
(c) For the vector field that is not a gradient vector field, compute its circulation around the unit

circle in the x,y plane, given the usual counter-clockwise orientation.

23: Let V be the region in R? specified in problem 7. Let F = (y + 22,2 + 22,2z(x + y)) and let N
be the outward normal to § , the boundary of V. Compute the total flux

/F-NdS.
S

24: Let C be the contour that runs from (1,0,0) to (0,1,0), and from there to (0,0,1), and from
there back to (1,0,0). Let G = (y + 22,2 + 22,22 + 2y). Compute the total circulation

%G-Tds.
C

F = 2zyz — y?, 2%z — 2xy, 2%y) .

25: Let F be the vector field
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Let § be the part of the paraboloid z = 1 — 22 — y? that lies above the z,y plane, oriented so its

preferred normal points upward. Compute the flux

/F~NdS
§

26: Let C be the curve given by the intersection of the surfaces z = 22 and z = 4 — y2. Orient C to

run counterclockwise when viewed from above. Let F(z,y, z) = (x,, z). Compute

/F~Tds.
c

27: Let V be the region in R? that lies inside the sphere 22 + y? + 22 = 4, and above the graph of
z = 1//x% + y%. Compute the total surface area of its boundary S. (There are two pieces to the
boundary.)

(a) Compute the surface area of §.
(b) Let F(z,y,2) = (x,z,z). Compute f§ F - NdV where N is the outward unit normal vector.

28: Let C be the contour that runs from (0,0,0) to (1,0,0), and from there to (1,0,1), and from
there to (0,0,1). Let F = (2,2, z). Compute the line integral

/F~Tds.
c



