9.1.

9.3.

(a) We know that V' is scalar-valued on R", F is a vector field on R™. We are given that F = —VV
and since x = x(t) is a flow curve of F, x'(¢) = F(x(t)) by definition of flow curve. So, by the chain
rule,

SV(x(1) = TV (x(1) 0 (1) = ~F(x(1)) o F(x()) = ~[F(x(t)” <0

Therefore V(x(t)) is non-increasing on any flow curve.

(b) Now we are given that F = AVV and since x = x(t) is a flow curve of F, x/(t) = F(x(t)). By the
chain rule, on the given flow curve,

%V(x(t)) — VYV (x(t)) e X'(t) = VV(x(1)) e F(x(t)) = VV(x(t))AVV = 0

because A is antisymmetric. (For any antisymmetric A and any vector v, v e Av = 0.) Therefore
V(x(t)) is constant on the flow curve.

Try a replacement trick. Let C” be the straight segment from (0,7) to (0,0), and let D be the region
enclosed by the closed curve consisting of C' followed by C’. Considering F as a vector field in R3,
F(z,y,2) = (sinx + y, 3z + y,0), we have

curl F = (0,0,2), divF =cosz + 1.

The curl looks simple so we try using Stokes’ Theorem. The surface integral, over D, is just a double

/Fons+/ Fons:/curlFoNdS.
C 4 D

Since C' and C" are counterclockwise, the preferred unit normal N is k = (0,0, 1).

integral

/curlFoNdS—/2d2x—2~areaofD—2-((9/2)+7+4)—31
D D

Along the path C’ we can use t = y as the parameter, with x = 0. Then Tds = (2/,y') dt = (0,1) dt
and FeTds = (0+y)dt =tdt, so

0
/Fons:/ tdt = —49/2.
4 7

Putting these together,

/Fons:/CurlFoNdS— FeTds=31—-(-49/2) =111/2
C D c’

Alternatively we can compute |,  F eTds from a direct parametrization of C' in three pieces. We can
use t = x in all cases:

Cir:x=t,y=t,0<t<3; Co:x=t,y=2t-3,3<t<4; Cz3:x=t,y=(1/2)(—t+14),4 >t > 0.
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Then fCFons:fclFons—{—fCQFons—kaSFons:
0

/ 3(sin tHE+3tt) di+ / 4(sin 142t —3+2(3t-+2t—3)) di-+ / (sint-+(1/2)(—t+14)—(1/2)(3t-+(1/2)(—t-+14))) dt
0 3 4

When the integrals are expanded, the three integrals of sint add to foo sintdt = 0, so we can disregard
them. The rest total

3 4 0
/ 5tdt+/ (12t—9)dt+/ (=7/4)t + (7/2)) dt = 111/2.
0 3 4

9.5. Let Cy be the line segment from (0,1) to (0,0), and C5 the line segment from (0,0) to (0,1). Let D
be the quarter-disk enclosed by C, C1, and C5. Then by Stokes’ Theorem,

P
/ GeT ds+ GeT ds+ GeT ds :/ curlGoNdS:/ <8Q — 8> esees dA:/ dA=".
c C1 Cs D p \ Oz oy D 4

Also (1 is parametrized by t =0,y =1—t, fromt =0tot =1 so Tds = —es dt and
1 1 1
Gons:/ (P(0,1—1),Q(0,1—1t)) e (—eq)dt = —/ Q0,1 —t)dt = —/ 0dt =0,
Cy 0 0 0
and similarly
1 1 1
GeTds = / (P(t,0),Q(t,0)) e (e1) dt = / P(t,0)dt = / 0dt =0.
Cs 0 0 0

Combining what we have so far,
i

GeTds = —.
/. i
(0,1)

=2 —1=1. Finally

Also / VopeTds=qp(z,vy)
¢ (1,0)

/Fons:/Gons—i—/V«pons:W+1.
C C C 4

9.7. By Lemma 23 and Theorem 98, a vector field continuously differentiable in all of R? is a curl if and
only if its divergence is identically 0.

divF=1+4+2x,divG =0, divH =2 so only G is a curl.

9.9. The key here is to show that at each point (z,y, z) of the cone z = /22 + y?2,
curl F is tangent to the cone,
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9.11.

9.13.

i.e., curl F is perpendicular to the normal vector IN to the cone. For then by Stokes’ Theorem, if we
let S be the portion of the cone enclosed by C,

j{Fons-/curlFoNdS—/OdS—O.
C S S

To see that curl F e N = 0, parametrize the cone as x = rcosf, y = rsinf, z = r, and let x = x(r,0) =
(rcos@,rsinf,r). Then a normal vector is

n= Ox X Ox = (cos#,sinf, 1) x (—rsinb,rcos,0) = (—rcosb, —rsinb,r) = (—z, —y, z), while

or 00
curl F = (2yz, —22z,0), yielding curl F en = 0, as desired.

Parametrize S by
x = (rcosf,rsinf,1 —r?)

Since the plane in question has equation z = 1 — z, the region D of the parameter (x,y—) plane
corresponding to S is defined by the inequality

1—2?—y?>1—ux, ie., 2% +y*> <z, or in polar coordinates r < cos, —m/2 < 6 < /2.
(D is the circle (z — (1/2))? + y? = (1/2)? as can be seen by completing the square.)
We compute
NdS = +T,xTgdrdf = +(cosf,sinf, —2r)x(—rsin b, cos 8, 0) dr df = +(2r* cos,2r*sin 0, r) dr df
and since the downward normal is specified in the question, the minus sign is correct. Then
F(z,y,2) e NdS = (r? cos0sin 6, r(1 — r?)sin @, r(1 — r2) cos §) e (—2r% cos 0, —2r%sin 0, —r) dr df

w/2 cos 6
= / / —2r* cos? 0sin @ — 2r3 sin? 0 + 2r° sin? 6 — 12 cos 6 + r* cos 0 dr db
—7n/2J0

/2 9 1 1 1 1
= / —Zcos” Osinf — = cos* 0sin® 0 + = cos® Osin® @ — = cos* 6 + = cos® 0 db
/2 2 3 3 5

etc.

First calculate divF = 1. By the divergence theorem the flux out of V equals / divFdV = / dv.
% %

We use cylindrical coordinates. The upper surface of V is z = 4—r2 and the lower surface is 22 = 6—72.
The surfaces intersect where z = 2% — 2, i.e., where z = 2, and thus where 7 = /2. (The root z = —1
is irrelevant to V, since z > 0 everywhere in V.)



9.15.

9.17.

9.19.

Therefore V is described in cylindrical coordinates by

0<6<2m, 0§r§\/§, \/6—r2§z§4—r2, and so the answer is

V2

2r V2 pd—r?
/ dV:/ / / rdzdrd9:27r/ r(4—12) —r\/6 —r2dr etc.
% 0=0 Jr=0 Jz=v6—12 r=0

(a) curl F = 0 and curl G = (4y,0,0)

(b) F = Vo for some ¢. By the method of Example 150, p(x,vy, 2) = 2%y — 222 — y?2 + 22 — 32. The
answer is not unique; any constant can be added to .

Since S is a closed surface we first calculate divF = 2(z + y). We will use the divergence theorem,
and first describe V in cylindrical coordinates. The sphere z = V4 — 12 and the surface z = 1 /T meet
where

(1/r)2=4—7r% r>0,

which yields r? = 2 + V3. The two values of r are Ty =V2+ V3 and r_ =2 — V3.

By the divergence theorem the total flux in question equals

27 pry Va—r2
/ divFdV = / / 2r(cos @ + sin 0)r dz dr df
% 0=0Jr=r_ Jz

=1/r
2m T4 Va—r2Z
—/ (cos9+sin9)d0-/ / 2r? dzdr = 0
6=0 r=r_ Jz=1/r

because the #-integral equals 0.

(a) divF = 2yz — 2z, divG =0, curl F = 0, curl G = (0,2y(1 — ), 22z — 2 — 2z + 2y).

(b) We take N to point up. Let S; be the unit disk in the z,y-plane. Then S and S; form the
boundary of a solid V. By the divergence theorem

/GoNdS+ GONdS:/diVGdV:O
S

S1 v

where N points outward from V), i.e., upward on § and downward on §;. Thus for &1, NdS =
—e3 dx dy, and

/GoNdS— Goegd:):dy—/ 22y dxdy =0,
81 81 Sl

by symmetry with respect to the z-axis. Therefore
/ GeNdS =0.
s
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9.21.

9.25.

(c) Since curl F = 0, F = Vo for some . By the method of Example 150, one such ¢ is ¢(z,y,2) =

r2yz — xy?.

(d) The endpoints of C are (0,0,0) and (—1,—2,2). Then

(7177272)

/Fons:/Vgoons:cp(x,yjz) =—-4+4=0.
¢ © (0,0,0)

As this is a circulation integral, before starting, compute
curlG = (1,1,1).
Because this is in the plane of the triangle C, the circulation will be 0.

In more detail, let S be the triangle bounded by C, so that S is a planar surface. Since that plane
contains the vector from (0,0,0) to (2,2,2), curl G is in the plane, so curl G ¢ N = 0. By Stokes’
Theorem

/GOTd.s:/curlGoNdS:O.
c S

Since it’s a flux integral to be calculated, first calculate
divF = 2yz — 2z.

Although this is not 0, when it is (triple) integrated over any solid with rotational symmetry about
the z-axis, the result will be 0 by a symmetry argument. (Details below.) So we plan to change the
surface S of integration to the unit disk Sy in the z, y-plane at zero cost.

Let V be the solid enclosed by & and &;. Then by the divergence theorem

/FoNdS+/ FoNdS:/dideV
s S 1%

where the normal N in the second integral points outward from V), that is, it points down.

Let’s calculate the right side first:

/dideV:/(2y2+2w)dV:2/yde+2/:CdV.
v v v v

Because V has rotational symmetry about the z-axis it is in particular symmetric with respect to the
zr-axis. But the transformation y — —y changes yz to —yz, so the first integral on the right equals 0.
By a similar argument using symmetry with respect to the y-axis, the second integral is also 0. Thus

/diVFdV—O.
%

5



9.27.

Next consider / F e N dS. Since S; is the unit disk and N points down, as we saw above, N = —e3
S
and dS = dx dy. So,

/ FeNdS = —z2ydedy =0
81 Sl

by another symmetry argument with respect to the z-axis.

Finally
/FoNdS:/dideV—/ FeNdS=0-0=0.
S % S1

The outside part Sy of S is described in terms of parameters r and 6 by Xt = (rcos6,rsinf, 4 — r?).
The inside part Sg is x;,, = (rcosf,rsinf,1/r). As computed in #9.17 above, the two pieces meet

where r = r4 = v/2++/3, and there z = 1/r = 2x =V2F V/3, respectively. For each of S; and S,

the underlying region of the r, #- parameter plane is the annulus (ring)

0<0<2m \2-V3<r<i/2+V3.

(a) The area is computed in an example in Chapter 7.

(b) divF = 2 so we can use the divergence theorem;

Va—r2?
/FoNdS /2dV—2/ / rdzdrdf
0= V2 z=1/r

V243 2
=47 - 2_\/§(r\/m —1)dr =4n (\f— 3>



