
9.1. (a) We know that V is scalar-valued on Rn, F is a vector field on Rn. We are given that F = −∇V

and since x = x(t) is a flow curve of F, x′(t) = F(x(t)) by definition of flow curve. So, by the chain
rule,

d

dt
V (x(t)) = ∇V (x(t)) • x′(t) = −F(x(t)) • F(x(t)) = −‖F(x(t))‖2 ≤ 0.

Therefore V (x(t)) is non-increasing on any flow curve.

(b) Now we are given that F = A∇V and since x = x(t) is a flow curve of F, x′(t) = F(x(t)). By the
chain rule, on the given flow curve,

d

dt
V (x(t)) = ∇V (x(t)) • x′(t) = ∇V (x(t)) • F(x(t)) = ∇V (x(t))A∇V = 0

because A is antisymmetric. (For any antisymmetric A and any vector v, v • Av = 0.) Therefore
V (x(t)) is constant on the flow curve.

9.3. Try a replacement trick. Let C ′ be the straight segment from (0, 7) to (0, 0), and let D be the region
enclosed by the closed curve consisting of C followed by C ′. Considering F as a vector field in R3,
F(x, y, z) = (sin x + y, 3x + y, 0), we have

curlF = (0, 0, 2), div F = cos x + 1.

The curl looks simple so we try using Stokes’ Theorem. The surface integral, over D, is just a double
integral ∫

C

F •T ds +
∫

C′
F •T ds =

∫
D

curlF •N dS.

Since C and C ′ are counterclockwise, the preferred unit normal N is k = (0, 0, 1).∫
D

curlF •N dS =
∫

D

2d2x = 2 · area of D = 2 · ((9/2) + 7 + 4) = 31

Along the path C ′ we can use t = y as the parameter, with x = 0. Then T ds = (x′, y′) dt = (0, 1) dt

and F •T ds = (0 + y) dt = t dt, so∫
C′

F •T ds =
∫ 0

7

t dt = −49/2.

Putting these together,∫
C

F •T ds =
∫

D

curlF •N dS −
∫

C′
F •T ds = 31− (−49/2) = 111/2

Alternatively we can compute
∫

C
F •T ds from a direct parametrization of C in three pieces. We can

use t = x in all cases:

C1 : x = t, y = t, 0 ≤ t ≤ 3; C2 : x = t, y = 2t−3, 3 ≤ t ≤ 4; C3 : x = t, y = (1/2)(−t+14), 4 ≥ t ≥ 0.
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Then
∫

C
F •T ds =

∫
C1

F •T ds +
∫

C2
F •T ds +

∫
C3

F •T ds =

∫ 3

0

(sin t+t+3t+t) dt+
∫ 4

3

(sin t+2t−3+2(3t+2t−3)) dt+
∫ 0

4

(sin t+(1/2)(−t+14)−(1/2)(3t+(1/2)(−t+14))) dt

When the integrals are expanded, the three integrals of sin t add to
∫ 0

0
sin t dt = 0, so we can disregard

them. The rest total∫ 3

0

5t dt +
∫ 4

3

(12t− 9) dt +
∫ 0

4

((−7/4)t + (7/2)) dt = 111/2.

9.5. Let C1 be the line segment from (0, 1) to (0, 0), and C2 the line segment from (0, 0) to (0, 1). Let D

be the quarter-disk enclosed by C, C1, and C2. Then by Stokes’ Theorem,∫
C

G•T ds+
∫

C1

G•T ds+
∫

C2

G•T ds =
∫

D

curlG•N dS =
∫

D

(
∂Q

∂x
− ∂P

∂y

)
e3•e3 dA =

∫
D

dA =
π

4
.

Also C1 is parametrized by x = 0, y = 1− t, from t = 0 to t = 1 so T ds = −e2 dt and∫
C1

G •T ds =
∫ 1

0

(P (0, 1− t), Q(0, 1− t)) • (−e2) dt = −
∫ 1

0

Q(0, 1− t) dt = −
∫ 1

0

0 dt = 0,

and similarly∫
C2

G •T ds =
∫ 1

0

(P (t, 0), Q(t, 0)) • (e1) dt =
∫ 1

0

P (t, 0) dt =
∫ 1

0

0 dt = 0.

Combining what we have so far, ∫
C

G •T ds =
π

4
.

Also
∫

C

∇ϕ •T ds = ϕ(x, y)

∣∣∣∣∣
(0,1)

(1,0)

= 2− 1 = 1. Finally

∫
C

F •T ds =
∫

C

G •T ds +
∫

C

∇ϕ •T ds =
π

4
+ 1.

9.7. By Lemma 23 and Theorem 98, a vector field continuously differentiable in all of R3 is a curl if and
only if its divergence is identically 0.

div F = 1 + x, div G = 0, div H = 2 so only G is a curl.

9.9. The key here is to show that at each point (x, y, z) of the cone z =
√

x2 + y2,

curlF is tangent to the cone,
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i.e., curlF is perpendicular to the normal vector N to the cone. For then by Stokes’ Theorem, if we
let S be the portion of the cone enclosed by C,∮

C

F •T ds =
∫
S

curlF •N dS =
∫
S

0 dS = 0.

To see that curlF•N = 0, parametrize the cone as x = r cos θ, y = r sin θ, z = r, and let x = x(r, θ) =
(r cos θ, r sin θ, r). Then a normal vector is

n =
∂x
∂r

× ∂x
∂θ

= (cos θ, sin θ, 1)× (−r sin θ, r cos θ, 0) = (−r cos θ,−r sin θ, r) = (−x,−y, z), while

curlF = (2yz,−2xz, 0), yielding curlF • n = 0, as desired.

9.11. Parametrize S by
x = (r cos θ, r sin θ, 1− r2)

Since the plane in question has equation z = 1 − x, the region D of the parameter (x, y−) plane
corresponding to S is defined by the inequality

1− x2 − y2 ≥ 1− x, i.e., x2 + y2 ≤ x, or in polar coordinates r ≤ cos θ, −π/2 ≤ θ ≤ π/2.

(D is the circle (x− (1/2))2 + y2 = (1/2)2 as can be seen by completing the square.)

We compute

N dS = ±Tr×Tθ dr dθ = ±(cos θ, sin θ,−2r)×(−r sin θ, r cos θ, 0) dr dθ = ±(2r2 cos θ, 2r2 sin θ, r) dr dθ

and since the downward normal is specified in the question, the minus sign is correct. Then

F(x, y, z) •N dS = (r2 cos θ sin θ, r(1− r2) sin θ, r(1− r2) cos θ) • (−2r2 cos θ,−2r2 sin θ,−r) dr dθ

=
∫ π/2

−π/2

∫ cos θ

0

−2r4 cos2 θ sin θ − 2r3 sin2 θ + 2r5 sin2 θ − r2 cos θ + r4 cos θ dr dθ

=
∫ π/2

−π/2

−2
5

cos7 θ sin θ − 1
2

cos4 θ sin2 θ +
1
3

cos6 θ sin2 θ − 1
3

cos4 θ +
1
5

cos5 θ dθ

etc.

9.13. First calculate div F = 1. By the divergence theorem the flux out of V equals
∫
V

div F dV =
∫
V

dV .

We use cylindrical coordinates. The upper surface of V is z = 4−r2 and the lower surface is z2 = 6−r2.
The surfaces intersect where z = z2 − 2, i.e., where z = 2, and thus where r =

√
2. (The root z = −1

is irrelevant to V, since z > 0 everywhere in V.)
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Therefore V is described in cylindrical coordinates by

0 ≤ θ ≤ 2π, 0 ≤ r ≤
√

2,
√

6− r2 ≤ z ≤ 4− r2, and so the answer is

∫
V

dV =
∫ 2π

θ=0

∫ √
2

r=0

∫ 4−r2

z=
√

6−r2
r dz dr dθ = 2π

∫ √
2

r=0

r(4− r2)− r
√

6− r2 dr etc.

9.15. (a) curlF = 0 and curlG = (4y, 0, 0)

(b) F = ∇ϕ for some ϕ. By the method of Example 150, ϕ(x, y, z) = x2y − x2z − y2z + 2x− 3z. The
answer is not unique; any constant can be added to ϕ.

9.17. Since S is a closed surface we first calculate div F = 2(x + y). We will use the divergence theorem,
and first describe V in cylindrical coordinates. The sphere z =

√
4− r2 and the surface z = 1/r meet

where
(1/r)2 = 4− r2, r > 0,

which yields r2 = 2±
√

3. The two values of r are r+ =
√

2 +
√

3 and r− =
√

2−
√

3.

By the divergence theorem the total flux in question equals

∫
V

div F dV =
∫ 2π

θ=0

∫ r+

r=r−

∫ √
4−r2

z=1/r

2r(cos θ + sin θ)r dz dr dθ

=
∫ 2π

θ=0

(cos θ + sin θ) dθ ·
∫ r+

r=r−

∫ √
4−r2

z=1/r

2r2 dz dr = 0

because the θ-integral equals 0.

9.19. (a) div F = 2yz − 2x, div G = 0, curlF = 0, curlG = (0, 2y(1− x), 2xz − 2− 2z + 2y).

(b) We take N to point up. Let S1 be the unit disk in the x, y-plane. Then S and S1 form the
boundary of a solid V. By the divergence theorem∫

S
G •N dS +

∫
S1

G •N dS =
∫
V

div G dV = 0

where N points outward from V, i.e., upward on S and downward on S1. Thus for S1, N dS =
−e3 dx dy, and ∫

S1

G •N dS =
∫
S1

G • e3 dx dy =
∫
S1

x2y dx dy = 0,

by symmetry with respect to the x-axis. Therefore∫
S
G •N dS = 0.
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(c) Since curlF = 0, F = ∇ϕ for some ϕ. By the method of Example 150, one such ϕ is ϕ(x, y, z) =
x2yz − xy2.

(d) The endpoints of C are (0, 0, 0) and (−1,−2, 2). Then

∫
C

F •T ds =
∫

C

∇ϕ •T ds = ϕ(x, y, z)

∣∣∣∣∣
(−1,−2,2)

(0,0,0)

= −4 + 4 = 0.

9.21. As this is a circulation integral, before starting, compute

curlG = (1, 1, 1).

Because this is in the plane of the triangle C, the circulation will be 0.

In more detail, let S be the triangle bounded by C, so that S is a planar surface. Since that plane
contains the vector from (0, 0, 0) to (2, 2, 2), curlG is in the plane, so curlG • N = 0. By Stokes’
Theorem ∫

C

G •T ds =
∫
S

curlG •N dS = 0.

9.25. Since it’s a flux integral to be calculated, first calculate

div F = 2yz − 2x.

Although this is not 0, when it is (triple) integrated over any solid with rotational symmetry about
the z-axis, the result will be 0 by a symmetry argument. (Details below.) So we plan to change the
surface S of integration to the unit disk S1 in the x, y-plane at zero cost.

Let V be the solid enclosed by S and S1. Then by the divergence theorem∫
S
F •N dS +

∫
S1

F •N dS =
∫
V

div F dV

where the normal N in the second integral points outward from V, that is, it points down.

Let’s calculate the right side first:∫
V

div F dV =
∫
V
(2yz + 2x) dV = 2

∫
V

yz dV + 2
∫
V

x dV.

Because V has rotational symmetry about the z-axis it is in particular symmetric with respect to the
x-axis. But the transformation y → −y changes yz to −yz, so the first integral on the right equals 0.
By a similar argument using symmetry with respect to the y-axis, the second integral is also 0. Thus∫

V
div F dV = 0.
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Next consider
∫
S1

F •N dS. Since S1 is the unit disk and N points down, as we saw above, N = −e3

and dS = dx dy. So, ∫
S1

F •N dS =
∫
S1

−x2y dx dy = 0

by another symmetry argument with respect to the x-axis.

Finally ∫
S
F •N dS =

∫
V

div F dV −
∫
S1

F •N dS = 0− 0 = 0.

9.27. The outside part S1 of S is described in terms of parameters r and θ by xout = (r cos θ, r sin θ,
√

4− r2).
The inside part S2 is xin = (r cos θ, r sin θ, 1/r). As computed in #9.17 above, the two pieces meet

where r = r± =
√

2±
√

3, and there z = 1/r = z∓ =
√

2∓
√

3, respectively. For each of S1 and S2,
the underlying region of the r, θ- parameter plane is the annulus (ring)

0 ≤ θ ≤ 2π,

√
2−

√
3 ≤ r ≤

√
2 +

√
3.

(a) The area is computed in an example in Chapter 7.

(b) div F = 2 so we can use the divergence theorem;

∫
S
F •N dS =

∫
V

2 dV = 2
∫ 2π

θ=0

∫ √
2+
√

3

r=
√

2−
√

3

∫ √
4−r2

z=1/r

r dz dr dθ

= 4π

∫ √
2+
√

3

r=
√

2−
√

3

(r
√

4− r2 − 1) dr = 4π

(√
2− 2

3

)
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