9.2.

9.4.

Given x¢ = (70, yo) we have to find functions z = x(¢) and y = y(t) such that the path x(t) = (z(t),y(t))
satisfies x'(t) = (2/(t),y'(t)) = F(x(t)) = (y(t),z(t)), and x(0) = x9. The equations to be satisfied are

2'(t) =y), y'(t)=2z(), 2(0)=u=z0, y(0)=yo.
In particular, z”(t) = z(t) and y" (t) = y(t).
The hyperbolic functions cosht = (e!+e~*)/2 and sinh ¢ = (e!—e~*)/2 both equal their second derivatives.
Also cosh0 = 1 and sinh0 = 0. As a first try, z(t) = zocosht and y(t) = yocosht satisfy our initial
conditions, but they don’t satisfy 2’ = y and ¢’ = z, so this is not a correct answer. This is corrected by

taking
x(t) = g cosht + ygsinht, y(t) = yocosht + zqsinht.

cosht sinht
Then @, (z0. o) = (o(0):5(0) = (an.10) | Gy oo |-

3\, (3 LB 312
143 1+t3) " \1+4 1+ t3

It is easy to check x(0) = (0,0) = lim;_,~ x(t).

(a) One computes that

(b) There seems to be a minus sign missing.

dxt(t) = (=y'(t),2'(t)dt. x(t) e dx (t) = (z,y) ® (—y',2’)dt can be computed directly or by the
observations z/y = 1/t, and

1y, ! 1 9t2
'y —xy dt = y2M dt =vy*d <x> =9 (_> dt = ———
Yy Yy

To compute the area of the leaf, note that div(z,y) = 2.

By the divergence theorem if IN is the outward pointing unit normal, and D is the leaf-region enclosed

by C,
/XoNds:/diVXdA:2/ dA =2 area of D.
c D D

Now N ds = +dx* so x e Nds = £x e dx* = +9t2/(1 + t*)2 dt. So using the substitution u = 1 + 3,

1 1 [ 2 &0
areaofD:/onds:j:/ 9tdt::|:1/ @::&i
2 Jo 2 )y (1413)2 2/, u? 2

Obviously the + sign is the right choice.

(c) At the furthest out point of the loop, N should be (1/4/2,1/4/2) and in particular should have positive
coordinates. Now Nds = +(—y/,2")dt and x is decreasing at that point of the loop, so z’ is negative.
The result is that the proper sign is given by Nds = (y’, —z’). Then

/FoNds-/ (2% — y?)y — 2xya’
c 0
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9.6. Left side: The curve C is the intersection of z = 22 + 32 with the plane z = 1, so it’s the unit circle in
the plane z = 1. Since N points up, C is traversed counterclockwise when viewed from above. So C is
parametrized by

x(t) = (cost,sint, 1), 0 <t < 2.

Then
2m 2m
/ F-Tds= / (sin®t,cost, 1) e (—sint, cost,0) dt = / —sin®t + cos? tdt = .
c 0 0

Right side: parametrize S by = and v,
x = (z,y, 2% +y?), T, = (1,0,2z), T, = (0,1,2y), T, x T, = (—22,—2y,1)

Because the z coordinate of T, x T, is positive, T, x T, gives the preferred direction of the normal
vector.

Next, curl F = (0,0,1 — 2y). So letting D be the unit disk in the x, y-plane,

/curlFoNdS—/(0,0,1—2y)o(—2az,—2y,1)dazdy—/
S D

dwdy—/ 2ydrdy =m—0=m.
D D

9.8. curlF = 0, curl G = (0, 2y, %), curl H = (0,y — 1,%). Only F is a gradient. F = V¢ where ¢(z,y,2) =
xy® + zyz%. ¢ can be found by a good guess and check, or systematically as follows.

In detail, (where * means “it doesn’t matter what it is”),

T y z
o(z,y,2) = / F(t,0,0) e ey dt + / F(x,t,0) e exdt + / F(x,y,t) e ezdt
0 0 0

z Yy z T Yy z
:/ (0,0,0) e €1 dt—l—/ (*,3t%2,0) o €y dt+/ (%, %, 2zyt) @ €3 dt:/ Odt+/ 3t2wdt+/ 2yt dt
0 0 0 0 0 0

= acy3 + xyz2

9.10. By the Divergence Theorem, the outward flux equals

1 4 5
/dideV:/(:c2+y+3z)dV:/ / / (2% +y + 32) dzdy dz
v \% =0 Jy=2Jz2=1

1 4 5 1 4 5 1 4 5
—/ / / xzdzdyd:c+/ / / ydzdyda:—i—/ / / 3zdzdydx
=0 Jy=2 Jz=1 =0 Jy=2 Jz=1 =0 Jy=2 Jz=1
8

=~ 24472
T2+

9.12. divF = 2 so the divergence theorem may be useful.
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9.14.

Let S; be the elliptical disk 422 4+ 9y? = 27 in the plane z = 3 and let V be the solid between S and S;.
(This is the same V as in problem 14.) Using the upward pointing normal N on Si, so that both N’s
point into V, the divergence theorem gives

/FoNdS+/ FoNdS:—/2dV:—2(VolumeofV).
s S v

Next, parametrize S; by = and y, so that NdS = esdrdy. On S;, F e NdS = (2,0,z) e esdrdy =
zdx dy = 3dx dy so

/ FeNdS = 3dx dy = 3(area of S1), and therefore
Sl Sl

/FoNdS:—BA—QV
S
where A and V are the area of §; and the volume of V), respectively.

To calculate A, S; is an ellipse with major and minor axes a = v/27/2 and b = v/27/3 so A = 7ab =
m(27/6) = (9/2)~.

To calculate V, let D be the ellipse 4224 9y? = 27 in the x, y-plane. Then, making the change of variables
u =2z, v =3y, so that z = u/2 and y = v/3, we have a Jacobian factor of 1/6:

1
V= [ (V-7 - 5aa= [ (V36— - 3) S duds
D D’ 6
where D’ is the disk u? + v? = 27 in the (u,v)-plane.

Switching to polar coordinates via u = rcosf, v = rsinf we have

1 27 V27 9 1 2
V= 6/ / (\/36—r2—3)rdrd0:% <—3(36—r2)3/2—3r>
6=0 Jr=0

2

V27

0

Putting it all together, / FeNdS=-34-2V =—-x((27/2) + 15) = =577 /2.
S
divF = 2 and curl F = (0,0,1) = e3 so the divergence theorem and Stokes’ theorem may be useful.

(a) By the divergence theorem, / F-NdS = / 24dV.
s %

The change of coordinates v = 2z, v = 3y, w = z transforms the ellipsoid into the sphere u? + v? +w? =
36 in u,v,w-space, and transforms V into the part V' of that sphere above the plane w = 3. Also

12 0 0
[Dx(u)] =1 0 1/3 0| sodet[Dx(u)] =1/6. The corresponding u, v, w-integral can be evaluated by
0 0 1

cylindrical or spherical coordinates, we use cylindrical, i.e., u = rcosf and v = rsinf, w = w:

21 3vV2  pV/36—12 3v2
/2dV—/ 2-(1/6)dudvdw—/ / / (1/3)7"dwd7"d0—27r/ (1/3)(v/36 — 12 — 3)r dr
\% 4 6=0 Jr=0 w=3 r

=0
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9.16.

9.18.

9.20.

Substituting ¢t = 36 — r2 gives

2;(_21) /3;8(\6 ~3)dt = <§t3/2 — 3t>

36
- g(9o —36v/2)
18

(b) We use Stokes’ Theorem; the oriented surface in Stokes’ Theorem, S;, whose boundary is C, can be
taken to be the ellipse S; defined by 422 + 9y? < 27 in the plane z = 3, with N pointing up, so that
N = e3. Since also curl F = e3, curlF - NdS = e3 - e3dr dy = dr dy and so

/F~Tds-/ dxdy = area of S = 7(V/27/2)(V27/3) = 97/2.
c s

(a) divF =2(z +vy), cwrlF =0, divG =0, curl G = (2 — 22,2z — 2,0).

(b) Let V be the solid unit sphere. Then by the Divergence Theorem,

/G-NdSz/dideVzO.
S %

(c) F is a gradient since curl F = 0 in all of R3. By the method of Example 150, or by inspired guessing
F = Vo for o(z,y,2) = vy + 222 + yz°.

(d) Since F is a gradient, its circulation around any closed path is 0.
See 9.24.

We assume S is the part of the cone lying inside the cylinder. Notice that divG = 0 (!). So we replace
S by an easier surface S; with the same boundary curve, namely S; is the circular disk 22 + 3% < 4 in
the plane 8 — z = 2, i.e. the plane z = 6. Together § and &7 form the boundary of a solid cone V resting
on the base §;. By the divergence theorem

/GoNdS+/ GONdS:/diVGdeo,
S S 1%

where N is the outward normal; thus in the second surface integral, N points down.

Using the parametrization x = x, y = y, z = 6 for S; gives N = te3, so N = —e3. Let D be the disk
22 + y? < 4 in the x,y-(parameter) plane. Then putting it all together,

/GoNdS:— Go(—eg)dS:/ 22y dx dy = 0,
s S D

the last equality because D is symmetric with respect to the xz-axis but the integrand is odd (changes
sign) with respect to y.



9.22,

9.24.

9.26.

9.28.

(a) curl F = (—8y,0,4) and curl G = 0.

(b) G is a gradient because its curl is 0 on all of R3 (and R3 is simply connected). To find ¢ such that
G = V¢, use the method of 9.8 above or a good guess to get p(z,y, z) = 22y + 2 — 2y°2.

(c) Let D be the unit disk in the z, y-plane. Given the usual counterclockwise orientation of the boundary
C of D, it must be that N, the preferred normal for Stokes’ Theorem, points in the positive z-direction,
ie., N=(0,0,1). Then NdS = (0,0, 1) dx dy. By Stokes’ Theorem the requested circulation is

/Fons:/ CurlFoNdS:/(—8y,0,4)0(0,0,1)dxdy:/ 4dx dy = 4.
c D D D

Of course the line integral could be evaluated directly, but it would be a longer calculation.

curl G = (2 — 22,2z — 2,0). Use Stokes’ Theorem, with the surface S being the triangle with the three
given vertices, part of the plane x + y + z = 1. With the given direction of circulation the normal N
should point in the direction of increasing =, y, and z, so N = (1/v/3)(1,1,1). But then curl G ¢ N = 0.
By Stokes’ Theorem,

/GOTds:/CurlGONdS:O.
c S

On the intersection 2% = 4 —y2, so we can use the polar coordinate 6 to parametrize x and y, and z = z?:

r=2cosf, y=2sinf, z=4cos?0, 0 < 0 < 27. With this x = x(6),
27 27
/ FeTds = / F(x(0)) e x'(0) df = / (2cos6,2cos,4cos’0) e (—2sinh, 2cos b, —8cos fsin ) df
c 0 0

27
:4/ —cosfsinf + cos? 0 — 8cos® Osinfdl =0+ 47 + 0 = 4.
0

curl F = (0,0,1). We'll use Stokes’ Theorem.

Let S be the triangle surrounded by C. The plane in which S lies contains (0,0,1) — (0,0,0) = (0,0, 1).
Therefore curl F is parallel to S. So curl F e N = 0 for any normal vector N to §. With Stokes’ Theorem,

/FonSZ/curlFoNdS:O.
c S



