
9.2. Given x0 = (x0, y0) we have to find functions x = x(t) and y = y(t) such that the path x(t) = (x(t), y(t))
satisfies x′(t) = (x′(t), y′(t)) = F(x(t)) = (y(t), x(t)), and x(0) = x0. The equations to be satisfied are

x′(t) = y(t), y′(t) = x(t), x(0) = x0, y(0) = y0.

In particular, x′′(t) = x(t) and y′′(t) = y(t).

The hyperbolic functions cosh t = (et+e−t)/2 and sinh t = (et−e−t)/2 both equal their second derivatives.
Also cosh 0 = 1 and sinh 0 = 0. As a first try, x(t) = x0 cosh t and y(t) = y0 cosh t satisfy our initial
conditions, but they don’t satisfy x′ = y and y′ = x, so this is not a correct answer. This is corrected by
taking

x(t) = x0 cosh t + y0 sinh t, y(t) = y0 cosh t + x0 sinh t.

Then Φt(x0, y0) = (x(t), y(t)) = (x0, y0)
[

cosh t sinh t
sinh t cosh t

]
.

9.4. (a) One computes that (
3t

1 + t3

)3

+
(

3t2

1 + t3

)3

= 3
(

3t

1 + t3

) (
3t2

1 + t3

)
It is easy to check x(0) = (0, 0) = limt→∞ x(t).

(b) There seems to be a minus sign missing.

dx⊥(t) = (−y′(t), x′(t) dt. x(t) • dx⊥(t) = (x, y) • (−y′, x′) dt can be computed directly or by the
observations x/y = 1/t, and

x′y − xy′ dt = y2 x′y − xy′

y2
dt = y2 d

(
x

y

)
= y2

(
− 1

t2

)
dt = − 9t2

(1 + t3)2
.

To compute the area of the leaf, note that div(x, y) = 2.

By the divergence theorem if N is the outward pointing unit normal, and D is the leaf-region enclosed
by C, ∫

C

x •N ds =
∫

D

div x dA = 2
∫

D

dA = 2 · area of D.

Now N ds = ±dx⊥ so x •N ds = ±x • dx⊥ = ±9t2/(1 + t3)2 dt. So using the substitution u = 1 + t3,

area of D =
1
2

∫
C

x •N ds = ±1
2

∫ ∞

0

9t2

(1 + t3)2
dt = ±1

2

∫ ∞

1

3 du

u2
= ±3

2
.

Obviously the + sign is the right choice.

(c) At the furthest out point of the loop, N should be (1/
√

2, 1/
√

2) and in particular should have positive
coordinates. Now N ds = ±(−y′, x′)dt and x is decreasing at that point of the loop, so x′ is negative.
The result is that the proper sign is given by N ds = (y′,−x′). Then∫

C

F •N ds =
∫ ∞

0

(x2 − y2)y′ − 2xyx′
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9.6. Left side: The curve C is the intersection of z = x2 + y2 with the plane z = 1, so it’s the unit circle in
the plane z = 1. Since N points up, C is traversed counterclockwise when viewed from above. So C is
parametrized by

x(t) = (cos t, sin t, 1), 0 ≤ t ≤ 2π.

Then ∫
C

F ·T ds =
∫ 2π

0

(sin2 t, cos t, 1) • (− sin t, cos t, 0) dt =
∫ 2π

0

− sin3 t + cos2 t dt = π.

Right side: parametrize S by x and y,

x = (x, y, x2 + y2), Tx = (1, 0, 2x), Ty = (0, 1, 2y), Tx ×Ty = (−2x,−2y, 1)

Because the z coordinate of Tx × Ty is positive, Tx × Ty gives the preferred direction of the normal
vector.

Next, curlF = (0, 0, 1− 2y). So letting D be the unit disk in the x, y-plane,∫
S

curlF •N dS =
∫

D

(0, 0, 1− 2y) • (−2x,−2y, 1) dx dy =
∫

D

dx dy −
∫

D

2y dx dy = π − 0 = π.

9.8. curlF = 0, curlG = (0, xy, ∗), curlH = (0, y − 1, ∗). Only F is a gradient. F = ∇ϕ where ϕ(x, y, z) =
xy3 + xyz2. ϕ can be found by a good guess and check, or systematically as follows.

In detail, (where ∗ means “it doesn’t matter what it is”),

ϕ(x, y, z) =
∫ x

0

F(t, 0, 0) • e1 dt +
∫ y

0

F(x, t, 0) • e2 dt +
∫ z

0

F(x, y, t) • e3 dt

=
∫ x

0

(0, 0, 0) • e1 dt +
∫ y

0

(∗, 3t2x, 0) • e2 dt +
∫ z

0

(∗, ∗, 2xyt) • e3 dt =
∫ x

0

0 dt +
∫ y

0

3t2x dt +
∫ z

0

2xyt dt

= xy3 + xyz2

9.10. By the Divergence Theorem, the outward flux equals

∫
V

div F dV =
∫
V
(x2 + y + 3z) dV =

∫ 1

x=0

∫ 4

y=2

∫ 5

z=1

(x2 + y + 3z) dz dy dx

=
∫ 1

x=0

∫ 4

y=2

∫ 5

z=1

x2 dz dy dx +
∫ 1

x=0

∫ 4

y=2

∫ 5

z=1

y dz dy dx +
∫ 1

x=0

∫ 4

y=2

∫ 5

z=1

3z dz dy dx

=
8
3

+ 24 + 72

9.12. div F = 2 so the divergence theorem may be useful.
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Let S1 be the elliptical disk 4x2 + 9y2 = 27 in the plane z = 3 and let V be the solid between S and S1.
(This is the same V as in problem 14.) Using the upward pointing normal N on S1, so that both N’s
point into V, the divergence theorem gives∫

S
F •N dS +

∫
S1

F •N dS = −
∫
V

2 dV = −2(volume of V).

Next, parametrize S1 by x and y, so that N dS = e3 dx dy. On S1, F • N dS = (x, 0, z) • e3 dx dy =
z dx dy = 3 dx dy so ∫

S1

F •N dS =
∫
S1

3 dx dy = 3(area of S1), and therefore∫
S
F •N dS = −3A− 2V

where A and V are the area of S1 and the volume of V, respectively.

To calculate A, S1 is an ellipse with major and minor axes a =
√

27/2 and b =
√

27/3 so A = πab =
π(27/6) = (9/2)π.

To calculate V , let D be the ellipse 4x2+9y2 = 27 in the x, y-plane. Then, making the change of variables
u = 2x, v = 3y, so that x = u/2 and y = v/3, we have a Jacobian factor of 1/6:

V =
∫

D

(
√

36− 4x2 − 9y2 − 3) dA =
∫

D′
(
√

36− u2 − v2 − 3) · 1
6

du dv

where D′ is the disk u2 + v2 = 27 in the (u, v)-plane.

Switching to polar coordinates via u = r cos θ, v = r sin θ we have

V =
1
6

∫ 2π

θ=0

∫ √
27

r=0

(
√

36− r2 − 3)r dr dθ =
2π

6

(
−1

3
(36− r2)3/2 − 3r2

2

) ∣∣∣∣∣
√

27

0

=
π

3

(
63− 81

2

)
=

15π

2
.

Putting it all together,
∫
S
F •N dS = −3A− 2V = −π((27/2) + 15) = −57π/2.

9.14. div F = 2 and curlF = (0, 0, 1) = e3 so the divergence theorem and Stokes’ theorem may be useful.

(a) By the divergence theorem,
∫
S
F ·N dS =

∫
V

2 dV .

The change of coordinates u = 2x, v = 3y, w = z transforms the ellipsoid into the sphere u2 + v2 + w2 =
36 in u, v, w-space, and transforms V into the part V ′ of that sphere above the plane w = 3. Also

[Dx(u)] =

 1/2 0 0
0 1/3 0
0 0 1

 so det[Dx(u)] = 1/6. The corresponding u, v, w-integral can be evaluated by

cylindrical or spherical coordinates, we use cylindrical, i.e., u = r cos θ and v = r sin θ, w = w:∫
V

2 dV =
∫
V′

2 · (1/6) du dv dw =
∫ 2π

θ=0

∫ 3
√

2

r=0

∫ √
36−r2

w=3

(1/3)r dw dr dθ = 2π

∫ 3
√

2

r=0

(1/3)(
√

36− r2− 3)r dr
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Substituting t = 36− r2 gives

2π

3
(−1)

2

∫ 18

36

(
√

t− 3) dt =
π

3

(
2
3
t3/2 − 3t

) ∣∣∣∣∣
36

18

=
π

3
(90− 36

√
2)

(b) We use Stokes’ Theorem; the oriented surface in Stokes’ Theorem, S1, whose boundary is C, can be
taken to be the ellipse S1 defined by 4x2 + 9y2 ≤ 27 in the plane z = 3, with N pointing up, so that
N = e3. Since also curlF = e3, curlF ·N dS = e3 · e3 dx dy = dx dy and so∫

C

F ·T ds =
∫
S

dx dy = area of S = π(
√

27/2)(
√

27/3) = 9π/2.

9.16. (a) div F = 2(x + y), curlF = 0, div G = 0, curlG = (2− 2z, 2z − 2, 0).

(b) Let V be the solid unit sphere. Then by the Divergence Theorem,∫
S
G ·N dS =

∫
V

div G dV = 0.

(c) F is a gradient since curlF = 0 in all of R3. By the method of Example 150, or by inspired guessing
F = ∇ϕ for ϕ(x, y, z) = xy + xz2 + yz2.

(d) Since F is a gradient, its circulation around any closed path is 0.

9.18. See 9.24.

9.20. We assume S is the part of the cone lying inside the cylinder. Notice that div G = 0 (!). So we replace
S by an easier surface S1 with the same boundary curve, namely S1 is the circular disk x2 + y2 ≤ 4 in
the plane 8− z = 2, i.e. the plane z = 6. Together S and S1 form the boundary of a solid cone V resting
on the base S1. By the divergence theorem∫

S
G •N dS +

∫
S1

G •N dS =
∫
V

div G dV = 0,

where N is the outward normal; thus in the second surface integral, N points down.

Using the parametrization x = x, y = y, z = 6 for S1 gives N = ±e3, so N = −e3. Let D be the disk
x2 + y2 ≤ 4 in the x, y-(parameter) plane. Then putting it all together,∫

S
G •N dS = −

∫
S1

G • (−e3) dS =
∫

D

x2y dx dy = 0,

the last equality because D is symmetric with respect to the x-axis but the integrand is odd (changes
sign) with respect to y.
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9.22. (a) curlF = (−8y, 0, 4) and curlG = 0.

(b) G is a gradient because its curl is 0 on all of R3 (and R3 is simply connected). To find ϕ such that
G = ∇ϕ, use the method of 9.8 above or a good guess to get ϕ(x, y, z) = 2xy + xz − 2y2z.

(c) Let D be the unit disk in the x, y-plane. Given the usual counterclockwise orientation of the boundary
C of D, it must be that N, the preferred normal for Stokes’ Theorem, points in the positive z-direction,
i.e., N = (0, 0, 1). Then N dS = (0, 0, 1) dx dy. By Stokes’ Theorem the requested circulation is∫

C

F •T ds =
∫

D

curlF •N dS =
∫

D

(−8y, 0, 4) • (0, 0, 1) dx dy =
∫

D

4 dx dy = 4π.

Of course the line integral could be evaluated directly, but it would be a longer calculation.

9.24. curlG = (2 − 2z, 2z − 2, 0). Use Stokes’ Theorem, with the surface S being the triangle with the three
given vertices, part of the plane x + y + z = 1. With the given direction of circulation the normal N
should point in the direction of increasing x, y, and z, so N = (1/

√
3)(1, 1, 1). But then curlG •N = 0.

By Stokes’ Theorem, ∫
C

G •T ds =
∫
S

curlG •N dS = 0.

9.26. On the intersection x2 = 4−y2, so we can use the polar coordinate θ to parametrize x and y, and z = x2:
x = 2 cos θ, y = 2 sin θ, z = 4 cos2 θ, 0 ≤ θ ≤ 2π. With this x = x(θ),

∫
C

F •T ds =
∫ 2π

0

F(x(θ)) • x′(θ) dθ =
∫ 2π

0

(2 cos θ, 2 cos θ, 4 cos2 θ) • (−2 sin θ, 2 cos θ,−8 cos θ sin θ) dθ

= 4
∫ 2π

0

− cos θ sin θ + cos2 θ − 8 cos3 θ sin θ dθ = 0 + 4π + 0 = 4π.

9.28. curlF = (0, 0, 1). We’ll use Stokes’ Theorem.

Let S be the triangle surrounded by C. The plane in which S lies contains (0, 0, 1)− (0, 0, 0) = (0, 0, 1).
Therefore curlF is parallel to S. So curlF•N = 0 for any normal vector N to S. With Stokes’ Theorem,∫

C

F •T ds =
∫
S

curlF •N dS = 0.
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