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4.2 Let v1 = (1, 1) and v2 = (3, 1). Let f : R2 → R be differentiable, and suppose that for some

x0 ∈ R2, v1 · ∇f(x0) = −2 and v2 · ∇f(x0) = 3.

For v = (1,−1), compute v · ∇f(x0).

SOLUTION We will use the information v1 · ∇f(x0) = −2 and v2 · ∇f(x0) = 3 to determine

∇f(x0). Let a and b be such that ∇f(x0) = (a, b). Then these equations become

a + b = −2

3a + b = 3 .

Subtracting the first equation from the second, 2a = 5 so a = 5/2 and then b = −9/2. Thus,

∇f(x0) =
1

2
(5,−9) .

Thus,

(1,−1) · ∇f(x0) =
1

2
(1,−1) · (5,−9) = 7 .

4.4 Let f : R2 → R be given by f(x, y) = x2y + yx − xy2. Let x(t) b given by x(t) = (t, t2)

Compute
d

dt
f(x(t))

∣∣∣∣
t=1

.

SOLUTION We us the chain rule:

d

dt
f(x(t))

∣∣∣∣
t=1

= ∇f(x(1)) · x′(1) .

We then compute

x(1) = (1, 1) and x′(t) = (1, 2) ,

and then

∇f(x, y) = (2xy + y − y2, x2 + x− 2xy) ,

so that

∇f(x(1)) = (2, 0) .

Therefore,
d

dt
f(x(t))

∣∣∣∣
t=1

= (2, 0) · (1, 2) = 2 .
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4.6 Let f : R2 → R be given by f(x, y) = x2y + yx− xy2.

(a) Compute the gradient of f , and find all critical points of f ..

(b) Find the equation of the tangent plane to the graph f at the point (1, 1).

SOLUTION We compute, as above, ∇f(x, y) = (2xy + y − y2, x2 + x − 2xy). Thus, is (x, y) a

critical point when

2xy + y − y2 = 0

x2 + x− 2xy = 0 .

To solve this system, suppose that x = 0. Then, from the first equation, y = y2, so either y = 0

or y = 1. This gives us two solutions so far: (0, 0) and (0, 1).

Now let us look for solutions with x 6= 0. Then we may divide the second equation through by

x to obtain x + 1− 2y = 0, or

x = 2y − 1 . (0.1)

Using this to eliminate x from the first equation, we obtain

3y2 − 2y + y = 0 .

This quadratic equation has two roots, namely, 2/3 and −1. For these values of y, we use (0.1)

to determine the corresponding x values. Thus we get the two additional solutions (1/3, 2/3) and

(− 3,−1). Altogether, we have four critical points which are

(0, 0) , (0, 1) , (1/3, 2/3) , (− 3,−1) .

Next, since f(1, 1) = 1 and ∇f(1, 1) = (2, 0), the best affine approximation of f at (1, 1) is

given by

h(x, y) = f(1, 1) +∇f(1, 1) · (x− 1, y − 1) = 1 + (2, 0) · (x− 1, y − 1) = 2x− 1 .

The tangent plane is the graph of z = h(x, y), so it has the equation z = 2x− 1, or 2x− z = 1.

4.8 Let f : R2 → R be given by f(x, y) = x3 + y3 + 3xy.

(a) Compute the gradient of f , and find all points (x, y) at which the tangent plane to the graph

of f is horizontal.

(b) Find the equation of the tangent plane to the graph of f at the point (1, 2).

(c) If you were standing at the point (1, 1) and wanted to climb uphill as directly as possible, in

which compass direction would you head? For purposes of this question, take the direction e1 to

be East, and the direction e2 to be North.

SOLUTION We compute ∇f(x, y) = 3(x2 + y, y2 + x). The tangent plane at (x, y) is horizontal

if and only if ∇(x, y) = 0, so we have to find the critical points of f . That is, we have to solve

x2 + y = 0

x + y2 = 0 .
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From the first equation y = −x2. Using this to eliminate y from the second equation, we get

x + x4 = 0. Since x + x4 = x(1 + x3), the two real solutions are x = 0 and x = −1. Then from

y = −x2, we get the two critical points

(0, 0) and (− 1,−1) .

Next, we compute

f(1, 2) = 15 and ∇f(1, 2) = (9, 15) .

Thus, near (1, 2),

f(x, y) ≈ 15 + (9, 15) · (x− 1, y − 2) = 9x + 15y − 24 .

The equation of the tangent plane then is

9x + 15y − z = 24 .

Finally, the steepest downhill direction is the direction of −∇f(1, 1) = (− 6,−6), which points

Southwest.

4.10 Let A :=

[
5 2

2 1

]
.

(a) Compute det(A) and the matrix inverse of A.

(b) Find all solutions of the equation Ax = (1, 2).

SOLUTION We compute det(A) = 5− 4 = 1, and

A−1 =

[
1 −2

−2 5

]
.

Since A is invertible, there is exactly one solution of Ax = (1, 2), which is

A−1(1, 2) =

[
1 −2

−2 5

]
(1, 2) = (− 3, 8) .

You can easily check that this is a solution.

4.12 Let A :=

 2 0 3

−1 2 1

1 1 3

.

(a) Compute det(A) and the matrix inverse of A.

(b) Find all solutions of the equation Ax = (1, 2, 3).

SOLUTION We define {v1,v2,v3} to be the columns of A so that A = [v1,v2v3]. We then

compute

v2 × v3 = (5, 3,−6) v3 × v1 = (4, 3,−5) and v1 × v2 = (− 3,−2, 4) .

It then follows that

det(A) = v1 · v2 × v3 = 1 ,
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and then that

A−1 =

 5 2 −6

4 3 −5

−3 −2 4

 .

Since A is invertible, there is exactly one solution of Ax = (1, 2, 3brp, which is

A−1(1, 2, 3) =

 5 2 −6

4 3 −5

−3 −2 4

 (1, 2, 3) = (− 7,−5, 5) .

You can easily check that this is a solution.

4.14 Let f(x, y) = x2y + (x− 1)(y − 1)2.

(a) Find the equations for the tangent planes to the graph of z = f(x, y) at x1 = (2,−1) and at

x2 = (− 1, 1).

(b) Parameterize the line that is the intersection of the two planes found in (a).

(c) Let x0 = ( − 3, 0, 5). Compute the distance from x0 to the line found in (b), and from x0

to the second tangent plane found in (a). The distance to the plane should be smaller than the

distance to the line. Explain why.

SOLUTION For (a), we compute ∇f(x, y) = (2xy + (y − 1)2 , x2 + 2(x − 1)(y − 1)). We the

evaluate

∇f(2,−1) = (0, 0) and ∇f(−1, 1) = (− 2, 1)

and

f(2,−1) = 0 and f(−1, 1) = 1 .

Thus the equation for the tangent plane at (2,−1) is

z = 0

and the equation for the tangent plane at (− 1, 1) is

z = 1 + (− 2, 1) · (x + 1, y − 1) = −2x + y − 2 .

For (b), we substitute z = 0 into z = −2x + y − 2 to learn y = 2(x + 1). Thus every point on

the line has the form (x, 2(x + 1), 0), and the parameterization is

x(t) = (t, 2(t + 1), 0) .

For (c), Note the x(0) := (0, 2, 0) is on the plane, and therefore on both lines. We may take

this as the base point for both the plane and the line. Since the normal vector to the plane is

(− 2, 1,−1), the distance from (− 3, 0, 5) to the plane is

|((− 3, 0, 5)− (0, 2, 0)) · (− 2, 1,−1)|
‖(− 2, 1,−1)‖

=
1√
6
.

Since the direction vector of the line is (1, 2, 0), the distance from (− 3, 0, 5) to the line is

|((− 3, 0, 5)− (0, 2, 0))× (2, 1, 0)|
‖(2, 1, 0)‖

=
‖(− 10, 5,−4)‖
‖(1, 2, 0)‖

=

√
141√
5

.
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The distance to the plane is smaller. This is because the distance to plane is them minimum of

‖x− ((− 3, 0, 5)‖ =
√

(x + 3)2 + y2 + (z − 5)2 ,

where (x, y, z) ranges over the plane, while the distance to the line is the minimum of the same

function over the line only, which is a subset of the plane. For any non-emety sets A ⊂ B on which

any real valued function f is defined, the greatest lower bound of f on B is certainly a lower bound

of f on the smaller set A, and hence is no greater than the gretest lower bound of f on A. If f

has minimizers in both A and B, this means that the minimum of f on B is no greater than the

minimum of f on A.

4.16 Let f(x) = (f(x), g(x)) where f(x, y) = x3 + xy, and g(x, y) = 1− 4y2 − x2. Let x0 = e1.

(a) Compute [Df (x)] and [Df (x0)].

(b) Use x0 as a starting point for Newton’s method, and compute the next approximate solution

x1.

(c) Evaluate f(x1), and compare this with f(x0).

SOLUTION We compute ∇f(x, y) = (3x2 + y, x) and ∇g(x, y) = (− 2x ,−8y). Therefore

[Df (x)] =

[
∇f(x)

∇g(x)

]
=

[
3x2 + y x

−2x −8y

]
.

Evaluating at x = 1, y = 0, we find

[Df (x0)] =

[
3 1

−2 0

]
.

We next compute f(x0) = (f(1, 0), g(1, 0)) = (1, 0), which is not really close to 0. To (hopefully)

get a better approximation, we solve for

x1 = (1, 0)−

[
3 1

−2 0

]−1
(1, 0)

= (1, 0)− 1

2

[
0 −1

2 3

]
(1, 0)

= (1,−1) .

We now evaluate f(x1) = (f(1,−1), g(1,−1)) = (0,−4). This is not great. Getting a reasonably

good starting point, by graphical methods for example, is important.

4.17 Let f(x) = (f(x), g(x)) where f(x, y) =
√
x +
√
y − 3, and g(x, y) = x2 + y2 − 18. Compute

f(x0) for x0 = (3, 3). Does this look like a reasonable starting point? Compute [Df (x0)]. What

happens if you try to use x0 as your starting point for Newton’s method?

SOLUTION We compute f(3, 3) = (2
√

3− 3, 0). Since 2
√

3− 3 ≈ 0.54, this looks reasonable.

Writing f = (f, g), we compute ∇f(x, y) = (x−1/2/2, y−1/2/2) and ∇g(x, y) = (2x, 2y). Thus,

∇f(3, 3) = (3−1/2/2, 3−1/2/2) and ∇g(3, 3) = (6, 6), and

[Df (x0)] =

[
3−1/2/2 3−1/2/2

6 6

]
.
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The determinant of this matrix is zero, and even worse,

[Df (x0)] (x− x0) = −f(x0)

has no solution. So for this starting point, Newton’s method breaks down at the first step. It was

not a good starting point after all.

The reason for this is not hard to see. Both functions f and g are symmetric in x and y: That

is, for all (a, b) ∈ R2, f(a, b) = f(b, a) and g(a, b) = g(b, a). Therefore, if (a, b) is a solution of the

system, so is (b, a), its reflection about the line y = x. Indeed, here is a plot of the solutions sets

of f(x, y) = 0, g(x, y) = 0 nad the line y = x.

You see there are exactly two solutions, where the two curves intersect. Both of them are

equidistant form the starting point (3, 3) which is here the line intersects the circle. There is a

dilemma: Should then next point move closer to the solution above the line y = x, or the solution

below this line?

This dilemma is seen to be unresolvable, since again by symmetry it is clear the the gradients

of both f and g at any point along the line y = x are multiples of (1, 1). Hence the Jacobian of f

cannot be invertible.

4.18: Let f(x, y) and g(x, y) be given by

f(x, y) = (x + 1)2 + (y + 1)2 − 4 and g(x, y) = 4(x− 1)2 + (y − 1)2 − 5 .

(a) The equation f(x, y) = 0 describes a circle. The equation g(x, y) = 0 describes an ellipse.

Sketch a plot of the circle and the ellipse, and determine how many solutions there are of the

system

f(x, y) := (f(x, y), g(x, y)) = 0 .

Note: It is possible to exactly solve this system by algebraic means, but that is not what is being

asked for here.

(b) Your sketch should show one solution of the system in the lower right hand quadrant not too

far from (1,−1). Use x0 = (1,−1) as a starting point, and apply one step of Newton’s method to

find x1, a better approximate solution, and compute f(x1) and g(x1).
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SOLUTION It is easy to plot ellipses, and even easier when they are circles: Mark the points

where the major and minor axes cross the ellipse, and draw an ellipse through these four points.

Here is what you get in the case at hand:

Since there are two points of intersection, there are two solutions to the system of equations.

This can be seem from even a rather rough sketch.

For (b), indeed we see one point of intersection close to x0 := (1,−1). We compute

∇f(x, y) = 2(x + 1, y + 1) and ∇g(x, y) = 2(4x− 4, y − 1) ,

and evaluate

∇f(1,−1) = (4, 0) and ∇g(1,−1) = (0,−4) .

Hence

[Df (1,−1)] =

[
4 0

0 −4

]
and [Df (1,−1)]−1 =

1

4

[
1 0

0 −1

]
.

We then evaluate

f(x0) = (f(1,−1), g(1,−1)) = (0,−1) ,

and

x1 = x0 − [Df (1,−1)]−1f(x0) = (1,−5/4) .

Note from the graph that x1 is much closer to the solution closest to x0 than x0 is. Indeed,

f(x1) = g(x1) = 1/16.


