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3.2 A function f defined domain U ⊂ Rn with values in R is called a Lipschitz continuous function

in case there is some number M so that

‖f(x)− f(y)‖ ≤M‖x− y‖ (0.1)

for all x and y in U .

(a) Show that a Lipschitz continuous function is continuous by finding a valid margin of error on

the input; i.e., a valid δ(ε).

(b) For R > 0, let U denote the ball of radius R about the origin; i.e., U = BR(0). Let f(x) be

defined on U by f(x) = ‖x‖2. Using the identity

‖x‖2 − ‖y‖2 = (x− y) · (x + y)

and the Cauchy-Schwarz inequality, show that f is Lipschitz on U with Lipschitz constant 2R.

(c) Let f : Rn → Rm have the form f(x) = (a1 · x, . . . ,am · x) for some set of vectors {a1, . . . ,am}
in Rn. Show that is Lipschitz continuous on Rn.

SOLUTION If ‖x− x0‖ ≤ ε/M , and x,x0 ∈ U , then ‖f(x)− f(x0‖ ≤M(ε/M) = ε, so

δ(ε) =
ε

M

works.

Next, for f(x) = ‖x‖2, by the Cauchy-Scwarz inrqality,

|f(x)− f(x0)| = |(x− x0) · (x + x0)| ≤ ‖x + x0‖‖x− x0‖.

Next, note that, by the triangle inequality,

‖x + x0‖ ≤ ‖x‖+ ‖x0‖

so that if x,x0 ∈ U , ‖‖x + x0‖ ≤ 2R, and then putting things together, we have

|f(x)− f(x0)| ≤ 2R‖x− x0‖,

which means that f is Lipschitz on U with Lipschitz constant 2R.
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Finally, we compute

‖f(x)− f(x0)‖ =

∥∥∥∥∥∥
m∑
j=1

aj · (x− x0)

∥∥∥∥∥∥
≤

 m∑
j=1

(aj · (x− x0))
2

1/2

≤

 m∑
j=1

‖aj‖2‖x− x0‖2
1/2

=

 m∑
j=1

‖aj‖2
1/2

‖x− x0‖ .

Thus f is Lipschitz with Lipschitz constant
(∑m

j=1 ‖aj‖2
)1/2

.

3.4 Let f(x, y) be given by

f(x, y) =


x2 sin(xy)

x6 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0) .

(a) For any a, b ∈ R, define the sequence {xn} by xn = (a/n, b/n) . Compute lim
n→∞

f(xn).

(b) For any a, b ∈ R, define the sequence {xn} by xn = (a/n, b/n3) . Compute lim
n→∞

f(xn).

(c) Is the function f continuous? justify your answer.

SOLUTION For (a) when (a, b) 6= (0, 0),

f(xn) =
a2 sin(ab/n2)

a6/n4 + b2
.

Since 0 ≤ | sin(ab/n2)| ≤ ab/n2, by the squeeze principle,

lim
n→∞

sin(ab/n2) = 0 ,

and clearly limn→∞ a
6/n4 = 0. Thus, when (a, b) 6= (0, 0),

lim
n→∞

f(xn) = 0 .

This is also true when (a, b) = (0, 0), but then because each term in the sequence is zero.

For (b) when (a, b) 6= (0, 0),

f(xn) =
a2n4 sin(ab/n4)

a6/+ b2
.

lim
t→0

sin(t)

t
= 1
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Defining t = ab/nt,

n4 sin(ab/n4) =
1

ab

sin(t)

t
.

Therefore,

lim
n→∞

n4 sin(ab/n4) =
1

ab
.

Finally then

lim
n→∞

f(xn) =
a

b

a6 + b2
.

The limit is zero when (a, b) = (0, 0), but then because each term in the sequence is zero.

For (c), no, it is not continuous, since the different sequences in part (b) give different limits

– although, as we saw in part (a), along all sequences that approach the origin through a fixed

direction, the function does go to zero.

3.5 Consider the function defined by

f(x, y) =

{
(x+ y) ln(x2 + y2) (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Is this function is continuous? Justify your answer.

SOLUTION Since the logarithm function is continuous on (0,∞), and since products of continuous

functions are continuous, and polynomials are continuous, f is clearly continuous at every x0 for

x0 6= 0.

After trying a few ways of approaching 0, this one looks continuous at 0 too. To prove that it

is, we use a squeeze principle argument. Note that |x+ y| ≤
√

2(x2 + y2)1/2, so

|f(x, y)| ≤
√

2(x2 + y2)1/2 ln(x2 + y2) = 23/2g(‖x‖)

where g(t) = 23/2t ln(t). Since limt→0 g(t) = 0, limx→0 g(‖x‖) = 0, and then since

0 ≤ f(x) ≤ g(‖x‖) ,

we have that

lim
x→0

f(x) = 0 ,

and therefore, f is continuous everywhere.

3.6 Consider the function defined by

f(x, y) =


x2y

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Is this function is continuous? Justify your answer.

SOLUTION Since rational functions are continuous at all points where the denominator is not

zero, f is continuous at every x0 for x0 6= 0.
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After trying a few ways of approaching 0, this one looks continuous at 0 too. To prove that it

is, we use a squeeze principle argument. Note that for (x, y) 6= (0, 0),

|f(x, y)| = x2|y|
x2 + y4

≤ x2|y|
x2

= |y| ≤
√
x2 + y2 = g(‖x‖)

where g(t) = t. Since limt→0 g(t) = 0, limx→0 g(‖x‖) = 0, and then since

0 ≤ f(x) ≤ g(‖x‖) ,

we have that

lim
x→0

f(x) = 0 ,

and therefore, f is continuous everywhere.

3.8 Let a and b be given vectors in R3 such that neither is a multiple of the other. Define a function

f : R3 → R by

f(x) = a · (b× x) .

Define

x0 =
1

‖a× b‖
a× b .

Show that

f(x) ≤ f(x0)

for all unit vectors x ∈ R3. In other words, show that x0 is the maximizer of f on the unit sphere

in R3.

SOLUTION By the triple product identity, and then the Cauchy-Scwarz inequality,

|a · (b× x| = |(a× b) · x| ≤ ‖a× b‖‖x‖ = ‖a× b‖

for any unit vector x. On the other hand, for x0 =
1

‖a× b‖
a× b,

a · (b× x0) = (a× b) · x0 =
(a× b) · (a× b)

‖a× b‖
= ‖a× b‖.

Thus, for all unit vectors x,

f(x0) = ‖a× b‖ ≥ f(x) ,

and so x0 maximizes f on the unit sphere in R3.

3.10 Let f be any function from Rn to Rm. For any set A ⊂ Rm, define f−1(A) to be the set of all

points x, if any, in Rn such that f(x) ∈ A. The set f−1(A), which may be the empty set, is called

the preimage of A under f . Do not be misled by the notation: f−1(A) is defined whether or not

the function f itself is invertible.

(a) Prove that f is continuous if and only if whenever A is an open set in Rm, then f−1(A) is an

open set in Rn. This result provides a way to talk about continuity without explicitly bringing ε

and δ into the discussion. It also has other uses:
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(b) Use the result of part (a) to give a short proof that whenever f is a continuous function from

Rn to Rm, and g is a continuous function from Rm to R`, then g ◦ f is a continuous function from

Rn to R`.

SOLUTION For (a), suppose first that f is continuous. Let A be any open set in Rm. We

must show that f−1(A) is open, which means that for each x ∈ f−1(A), there is an r > 0 so

Br(x) ⊂ f−1(A).

Therefore, consider any x0 ∈ f−1(A). Then f(x0) ∈ A. Since A is open, there is some ε > 0 so

that Bε(f(x0)) ⊂ A. Then since f is continuous, there is a δε > 0 such that

‖x− x0‖ < δε ⇒ ‖f(x)− f(x0)‖ < ε .

Therefore

‖x− x0‖ < δε ⇒ f(x) ∈ A , and hence x ∈ f−1(A) .

Therefore, with r := δε, Br(x) ⊂ f−1(A).

Conversely, suppose that whenever A ⊂ ofRm is open, so is f−1(A). We must show that for all

x0, and all ε > 0, there exists a δε > 0 such that

‖x− x0‖ < δε ⇒ ‖f(x)− f(x0)‖ < ε .

Fix any x0 and any ε > 0. The set Bε(f(x0), the open ball of radius ε about f(x0), is open. By

hypothesis, f−1(Bε(f(x0)) is open, and it contains x0. Hence, by the definition of “open”, there is

an r > 0 so that

Br(x0) ⊂ f−1(Bε(f(x0)) .

But this mean that whenever ‖x− x0‖ < r, then ‖f(x)− f(x0)‖ < ε, and so with δε := r, we have

what we require, and f is continuous at x0. Since x0 was an arbitrary point, f is continuous.

For (b), if f and g are both continuous, and A is any open set in R`, then

(g ◦ f)−1(A) = f−1(g−1(A)) .

This is open since g−1(A) is open by the continuity of g, and then f−1(g−1(A)) is open by the

continuity of f . But then since (g ◦ f)−1(A) is open whenever A is open, g ◦ f is continuous.

3.12 Let K ⊂ Rn be compact, and let f be a continuous function from Rn to Rm. Define L ⊂ Rm

by

L := {y ∈ Rm : y = f(x) for some x ∈ K } .

Is L necessarily compact? Justify your answer.

SOLUTION By the definition of “compact” we must show that L is both bounded and closed.

To show that L is bounded, consider the function

g(x) := ‖f(x)‖ .

Since f is continuous, and since the length function y → ‖y‖ is continuous, and since the compo-

sition of continuous functions is continuous, g is continuous. Since K is compact, by the theorem

on existence of maximizers, there is an x0 in K so that g(x) ≤ g(x0) for all x ∈ K. That is

‖f(x)‖ ≤ ‖f(x0)‖
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for all x ∈ K. But y0 := f(x) ∈ L and by the definition of L, every y ∈ L has the form y = f(x)

for some xinK. Hence

‖y‖ ≤ ‖y0‖ := R

for all y ∈ L. This shows that L is bounded: It is contained in BR(0).

To show that L is closed, let {yn} be any convergent sequence in L such that

z = lim
n→∞

yn

We must show that z ∈ L. By the definition of L, every y ∈ L has the form y = f(x), and hence

there is a sequence {xn} in K such that yn = f(xn) for all n.

Since every sequence in a compact set has a subsequence converging to an element of that

compact set, there is a subsequence {xnk
} of {xn} that converges to some w in K. That is

lim
k→∞

xnk
= w ∈ K .

But then since f is continuous,

lim
k→∞

ynk
= lim

k→∞
f(xnk

)f

(
lim
k→∞

xnk

)
= f(w) ∈ L .

But since limn→∞ yn, limk→∞ ynk
= z also, and so z = f(w) ∈ L. This proves L is closed, and

completes the proof that L is compact.


