Solutions for the even numbered exercises from Chapter 3

Eric A. Carlen¹ Rutgers University

October 11, 2012

3.2 A function **f** defined domain $U \subset \mathbb{R}^n$ with values in \mathbb{R} is called a *Lipschitz continuous* function in case there is some number M so that

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| \le M \|\mathbf{x} - \mathbf{y}\|$$
(0.1)

for all \mathbf{x} and \mathbf{y} in U.

(a) Show that a Lipschitz continuous function is continuous by finding a valid margin of error on the input; i.e., a valid $\delta(\epsilon)$.

(b) For R > 0, let U denote the ball of radius R about the origin; i.e., $U = B_R(\mathbf{0})$. Let $f(\mathbf{x})$ be defined on U by $f(\mathbf{x}) = ||\mathbf{x}||^2$. Using the identity

$$\|\mathbf{x}\|^2 - \|\mathbf{y}\|^2 = (\mathbf{x} - \mathbf{y}) \cdot (\mathbf{x} + \mathbf{y})$$

and the Cauchy-Schwarz inequality, show that f is Lipschitz on U with Lipschitz constant 2R. (c) Let $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ have the form $\mathbf{f}(\mathbf{x}) = (\mathbf{a}_1 \cdot \mathbf{x}, \dots, \mathbf{a}_m \cdot \mathbf{x})$ for some set of vectors $\{\mathbf{a}_1, \dots, \mathbf{a}_m\}$ in \mathbb{R}^n . Show that is Lipschitz continuous on \mathbb{R}^n .

SOLUTION If $\|\mathbf{x} - \mathbf{x}_0\| \le \epsilon/M$, and $\mathbf{x}, \mathbf{x}_0 \in U$, then $\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0\| \le M(\epsilon/M) = \epsilon$, so

$$\delta(\epsilon) = \frac{\epsilon}{M}$$

works.

Next, for $f(\mathbf{x}) = \|\mathbf{x}\|^2$, by the Cauchy-Scwarz inequality,

$$|f(\mathbf{x}) - f(\mathbf{x}_0)| = |(\mathbf{x} - \mathbf{x}_0) \cdot (\mathbf{x} + \mathbf{x}_0)| \le ||\mathbf{x} + \mathbf{x}_0|| ||\mathbf{x} - \mathbf{x}_0||.$$

Next, note that, by the triangle inequality,

$$\|\mathbf{x} + \mathbf{x}_0\| \le \|\mathbf{x}\| + \|\mathbf{x}_0\|$$

so that if $\mathbf{x}, \mathbf{x}_0 \in U$, $\|\|\mathbf{x} + \mathbf{x}_0\| \leq 2R$, and then putting things together, we have

$$|f(\mathbf{x}) - f(\mathbf{x}_0)| \le 2R \|\mathbf{x} - \mathbf{x}_0\|,$$

which means that f is Lipschitz on U with Lipschitz constant 2R.

 $^{^1 \}odot \,$ 2010 by the author.

Finally, we compute

$$\begin{aligned} \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| &= \left\| \sum_{j=1}^m \mathbf{a}_j \cdot (\mathbf{x} - \mathbf{x}_0) \right\| \\ &\leq \left(\sum_{j=1}^m (\mathbf{a}_j \cdot (\mathbf{x} - \mathbf{x}_0))^2 \right)^{1/2} \\ &\leq \left(\sum_{j=1}^m \|\mathbf{a}_j\|^2 \|\mathbf{x} - \mathbf{x}_0\|^2 \right)^{1/2} \\ &= \left(\sum_{j=1}^m \|\mathbf{a}_j\|^2 \right)^{1/2} \|\mathbf{x} - \mathbf{x}_0\| \end{aligned}$$

Thus **f** is Lipschitz with Lipschitz constant $\left(\sum_{j=1}^{m} \|\mathbf{a}_{j}\|^{2}\right)^{1/2}$. **3.4** Let f(x, y) be given by

$$f(x,y) = \begin{cases} \frac{x^2 \sin(xy)}{x^6 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(a) For any $a, b \in \mathbb{R}$, define the sequence $\{\mathbf{x}_n\}$ by $\mathbf{x}_n = (a/n, b/n)$. Compute $\lim_{n \to \infty} f(\mathbf{x}_n)$. (b) For any $a, b \in \mathbb{R}$, define the sequence $\{\mathbf{x}_n\}$ by $\mathbf{x}_n = (a/n, b/n^3)$. Compute $\lim_{n \to \infty} f(\mathbf{x}_n)$. (c) Is the function f continuous? justify your answer.

SOLUTION For (a) when $(a, b) \neq (0, 0)$,

$$f(\mathbf{x}_n) = \frac{a^2 \sin(ab/n^2)}{a^6/n^4 + b^2}$$

Since $0 \le |\sin(ab/n^2)| \le ab/n^2$, by the squeeze principle,

$$\lim_{n \to \infty} \sin(ab/n^2) = 0 \; ,$$

and clearly $\lim_{n\to\infty} a^6/n^4 = 0$. Thus, when $(a, b) \neq (0, 0)$,

$$\lim_{n \to \infty} f(\mathbf{x}_n) = 0$$

This is also true when (a, b) = (0, 0), but then because each term in the sequence is zero. For (b) when $(a, b) \neq (0, 0)$,

$$f(\mathbf{x}_n) = \frac{a^2 n^4 \sin(ab/n^4)}{a^6/b^2}$$
$$\lim_{t \to 0} \frac{\sin(t)}{t} = 1$$

Defining $t = ab/n^t$,

$$n^4 \sin(ab/n^4) = \frac{1}{ab} \frac{\sin(t)}{t}$$

Therefore,

$$\lim_{n \to \infty} n^4 \sin(ab/n^4) = \frac{1}{ab} \; .$$

Finally then

$$\lim_{n \to \infty} f(\mathbf{x}_n) = \frac{a}{b} \frac{a^6 + b^2}{b}$$

The limit is zero when (a, b) = (0, 0), but then because each term in the sequence is zero.

For (c), no, it is not continuous, since the different sequences in part (b) give different limits – although, as we saw in part (a), along all sequences that approach the origin through a *fixed direction*, the function does go to zero.

3.5 Consider the function defined by

$$f(x,y) = \begin{cases} (x+y)\ln(x^2+y^2) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Is this function is continuous? Justify your answer.

SOLUTION Since the logarithm function is continuous on $(0, \infty)$, and since products of continuous functions are continuous, and polynomials are continuous, f is clearly continuous at every \mathbf{x}_0 for $\mathbf{x}_0 \neq \mathbf{0}$.

After trying a few ways of approaching **0**, this one looks continuous at **0** too. To prove that it is, we use a squeeze principle argument. Note that $|x + y| \le \sqrt{2}(x^2 + y^2)^{1/2}$, so

$$|f(x,y)| \le \sqrt{2}(x^2 + y^2)^{1/2} \ln(x^2 + y^2) = 2^{3/2}g(||\mathbf{x}||)$$

where $g(t) = 2^{3/2} t \ln(t)$. Since $\lim_{t\to 0} g(t) = 0$, $\lim_{x\to 0} g(||\mathbf{x}||) = 0$, and then since

$$0 \le f(\mathbf{x}) \le g(\|\mathbf{x}\|) \;,$$

we have that

$$\lim_{\mathbf{x}\to 0} f(\mathbf{x}) = 0 \; ,$$

and therefore, f is continuous everywhere.

3.6 Consider the function defined by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Is this function is continuous? Justify your answer.

SOLUTION Since rational functions are continuous at all points where the denominator is not zero, f is continuous at every \mathbf{x}_0 for $\mathbf{x}_0 \neq \mathbf{0}$.

After trying a few ways of approaching **0**, this one looks continuous at **0** too. To prove that it is, we use a squeeze principle argument. Note that for $(x, y) \neq (0, 0)$,

$$|f(x,y)| = \frac{x^2|y|}{x^2 + y^4} \le \frac{x^2|y|}{x^2} = |y| \le \sqrt{x^2 + y^2} = g(||\mathbf{x}||)$$

where g(t) = t. Since $\lim_{t\to 0} g(t) = 0$, $\lim_{x\to 0} g(||\mathbf{x}||) = 0$, and then since

$$0 \le f(\mathbf{x}) \le g(\|\mathbf{x}\|)$$

we have that

$$\lim_{\mathbf{x}\to 0} f(\mathbf{x}) = 0$$

and therefore, f is continuous everywhere.

3.8 Let **a** and **b** be given vectors in \mathbb{R}^3 such that neither is a multiple of the other. Define a function $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(\mathbf{x}) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{x})$$

Define

$$\mathbf{x}_0 = \frac{1}{\|\mathbf{a} \times \mathbf{b}\|} \mathbf{a} \times \mathbf{b}$$

Show that

$$f(\mathbf{x}) \le f(\mathbf{x}_0)$$

for all unit vectors $\mathbf{x} \in \mathbb{R}^3$. In other words, show that \mathbf{x}_0 is the maximizer of f on the unit sphere in \mathbb{R}^3 .

SOLUTION By the triple product identity, and then the Cauchy-Scwarz inequality,

$$|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{x}| = |(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{x}| \le \|\mathbf{a} \times \mathbf{b}\| \|\mathbf{x}\| = \|\mathbf{a} \times \mathbf{b}\|$$

for any unit vector \mathbf{x} . On the other hand, for $\mathbf{x}_0 = \frac{1}{\|\mathbf{a} \times \mathbf{b}\|} \mathbf{a} \times \mathbf{b}$,

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{x}_0) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{x}_0 = \frac{(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{b})}{\|\mathbf{a} \times \mathbf{b}\|} = \|\mathbf{a} \times \mathbf{b}\|.$$

Thus, for all unit vectors \mathbf{x} ,

$$f(\mathbf{x}_0) = \|\mathbf{a} \times \mathbf{b}\| \ge f(\mathbf{x})$$

and so \mathbf{x}_0 maximizes f on the unit sphere in \mathbb{R}^3 .

3.10 Let **f** be any function from \mathbb{R}^n to \mathbb{R}^m . For any set $A \subset \mathbb{R}^m$, define $f^{-1}(A)$ to be the set of all points **x**, if any, in \mathbb{R}^n such that $\mathbf{f}(\mathbf{x}) \in A$. The set $f^{-1}(A)$, which may be the empty set, is called the *preimage of A under* **f**. Do not be misled by the notation: $f^{-1}(A)$ is defined whether or not the function **f** itself is invertible.

(a) Prove that **f** is continuous if and only if whenever A is an open set in \mathbb{R}^m , then $f^{-1}(A)$ is an open set in \mathbb{R}^n . This result provides a way to talk about continuity without explicitly bringing ϵ and δ into the discussion. It also has other uses:

(b) Use the result of part (a) to give a short proof that whenever \mathbf{f} is a continuous function from \mathbb{R}^n to \mathbb{R}^n , and \mathbf{g} is a continuous function from \mathbb{R}^m to \mathbb{R}^ℓ , then $\mathbf{g} \circ \mathbf{f}$ is a continuous function from \mathbb{R}^n to \mathbb{R}^ℓ .

SOLUTION For (a), suppose first that **f** is continuous. Let A be any open set in \mathbb{R}^m . We must show that $\mathbf{f}^{-1}(A)$ is open, which means that for each $\mathbf{x} \in \mathbf{f}^{-1}(A)$, there is an r > 0 so $B_r(\mathbf{x}) \subset \mathbf{f}^{-1}(A)$.

Therefore, consider any $\mathbf{x}_0 \in \mathbf{f}^{-1}(A)$. Then $\mathbf{f}(\mathbf{x}_0) \in A$. Since A is open, there is some $\epsilon > 0$ so that $B_{\epsilon}(\mathbf{f}(\mathbf{x}_0)) \subset A$. Then since **f** is continuous, there is a $\delta_{\epsilon} > 0$ such that

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta_{\epsilon} \quad \Rightarrow \quad \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| < \epsilon$$

Therefore

 $\|\mathbf{x} - \mathbf{x}_0\| < \delta_{\epsilon} \quad \Rightarrow \quad \mathbf{f}(\mathbf{x}) \in A , \text{ and hence } \mathbf{x} \in \mathbf{f}^{-1}(A) .$

Therefore, with $r := \delta_{\epsilon}$, $B_r(\mathbf{x}) \subset \mathbf{f}^{-1}(A)$.

Conversely, suppose that whenever $A \subset of \mathbb{R}^m$ is open, so is $\mathbf{f}^{-1}(A)$. We must show that for all \mathbf{x}_0 , and all $\epsilon > 0$, there exists a $\delta_{\epsilon} > 0$ such that

$$\|\mathbf{x} - \mathbf{x}_0\| < \delta_{\epsilon} \quad \Rightarrow \quad \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| < \epsilon$$

Fix any \mathbf{x}_0 and any $\epsilon > 0$. The set $B_{\epsilon}(\mathbf{f}(\mathbf{x}_0))$, the open ball of radius ϵ about $\mathbf{f}(\mathbf{x}_0)$, is open. By hypothesis, $\mathbf{f}^{-1}(B_{\epsilon}(\mathbf{f}(\mathbf{x}_0)))$ is open, and it contains \mathbf{x}_0 . Hence, by the definition of "open", there is an r > 0 so that

$$B_r(\mathbf{x}_0) \subset \mathbf{f}^{-1}(B_\epsilon(\mathbf{f}(\mathbf{x}_0)))$$
.

But this mean that whenever $\|\mathbf{x} - \mathbf{x}_0\| < r$, then $\|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)\| < \epsilon$, and so with $\delta_{\epsilon} := r$, we have what we require, and \mathbf{f} is continuous at \mathbf{x}_0 . Since \mathbf{x}_0 was an arbitrary point, \mathbf{f} is continuous.

For (b), if **f** and **g** are both continuous, and A is any open set in \mathbb{R}^{ℓ} , then

$$(\mathbf{g} \circ \mathbf{f})^{-1}(A) = \mathbf{f}^{-1}(\mathbf{g}^{-1}(A))$$

This is open since $\mathbf{g}^{-1}(A)$ is open by the continuity of \mathbf{g} , and then $\mathbf{f}^{-1}(\mathbf{g}^{-1}(A))$ is open by the continuity of \mathbf{f} . But then since $(\mathbf{g} \circ \mathbf{f})^{-1}(A)$ is open whenever A is open, $\mathbf{g} \circ \mathbf{f}$ is continuous.

3.12 Let $K \subset \mathbb{R}^n$ be compact, and let **f** be a continuous function from \mathbb{R}^n to \mathbb{R}^m . Define $L \subset \mathbb{R}^m$ by

$$L := \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{f}(\mathbf{x}) \text{ for some } \mathbf{x} \in K \}$$

Is L necessarily compact? Justify your answer.

SOLUTION By the definition of "compact" we must show that L is both bounded and closed.

To show that L is bounded, consider the function

$$g(\mathbf{x}) := \|\mathbf{f}(\mathbf{x})\|$$

Since **f** is continuous, and since the length function $\mathbf{y} \to ||\mathbf{y}||$ is continuous, and since the composition of continuous functions is continuous, g is continuous. Since K is compact, by the theorem on existence of maximizers, there is an \mathbf{x}_0 in K so that $g(\mathbf{x}) \leq g(\mathbf{x}_0)$ for all $\mathbf{x} \in K$. That is

$$\|\mathbf{f}(\mathbf{x})\| \le \|\mathbf{f}(\mathbf{x}_0)\|$$

for all $\mathbf{x} \in K$. But $\mathbf{y}_0 := \mathbf{f}(\mathbf{x}) \in L$ and by the definition of L, every $\mathbf{y} \in L$ has the form $\mathbf{y} = \mathbf{f}(\mathbf{x})$ for some $\mathbf{x}inK$. Hence

$$\|\mathbf{y}\| \le \|\mathbf{y}_0\| := R$$

for all $\mathbf{y} \in L$. This shows that L is bounded: It is contained in $B_R(\mathbf{0})$.

To show that L is closed, let $\{\mathbf{y}_n\}$ be any convergent sequence in L such that

$$\mathbf{z} = \lim_{n \to \infty} \mathbf{y}_n$$

We must show that $\mathbf{z} \in L$. By the definition of L, every $\mathbf{y} \in L$ has the form $\mathbf{y} = \mathbf{f}(\mathbf{x})$, and hence there is a sequence $\{\mathbf{x}_n\}$ in K such that $\mathbf{y}_n = \mathbf{f}(\mathbf{x}_n)$ for all n.

Since every sequence in a compact set has a subsequence converging to an element of that compact set, there is a subsequence $\{\mathbf{x}_{n_k}\}$ of $\{\mathbf{x}_n\}$ that converges to some \mathbf{w} in K. That is

$$\lim_{k \to \infty} \mathbf{x}_{n_k} = \mathbf{w} \in K$$

But then since \mathbf{f} is continuous,

$$\lim_{k \to \infty} \mathbf{y}_{n_k} = \lim_{k \to \infty} \mathbf{f}(\mathbf{x}_{n_k}) \mathbf{f}\left(\lim_{k \to \infty} \mathbf{x}_{n_k}\right) = \mathbf{f}(\mathbf{w}) \in L$$

But since $\lim_{n\to\infty} \mathbf{y}_n$, $\lim_{k\to\infty} \mathbf{y}_{n_k} = \mathbf{z}$ also, and so $\mathbf{z} = \mathbf{f}(\mathbf{w}) \in L$. This proves L is closed, and completes the proof that L is compact.