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3.2 A function f defined domain U C R™ with values in R is called a Lipschitz continuous function
in case there is some number M so that

[£(x) = £(y)[| < M[}x —y] (0.1)

for all x and y in U.

(a) Show that a Lipschitz continuous function is continuous by finding a valid margin of error on
the input; i.e., a valid d(e).

(b) For R > 0, let U denote the ball of radius R about the origin; i.e., U = Bgr(0). Let f(x) be
defined on U by f(x) = ||x||?. Using the identity

Ix[* = Iy ll* = (x —y) - (x +)

and the Cauchy-Schwarz inequality, show that f is Lipschitz on U with Lipschitz constant 2R.

(c) Let £ : R™ — R™ have the form f(x) = (a; - x,...,a,, - x) for some set of vectors {ay,...,an}
in R™. Show that is Lipschitz continuous on R".
SOLUTION If ||x — xo|| < ¢/M, and x,x¢ € U, then [|f(x) — f(xo|| < M(e/M) = ¢, so
€
5le) = —
©=
works.
Next, for f(x) = ||x||?, by the Cauchy-Scwarz inrqality,

|f(x) = f(x0)| = |(x = %0) - (x +x0)| < [[x + x0l[[[x — x0l|-
Next, note that, by the triangle inequality,
[Ix + %ol < [Ix]l + [Ixoll
so that if x,xg € U, ||||x + xo|| < 2R, and then putting things together, we have
|f(x) = f(x0)| < 2R|Ix — 0|,

which means that f is Lipschitz on U with Lipschitz constant 2R.
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Finally, we compute

If(x) — f(xo)| = |[>_ay - (x—x0)
j=1

. 1/2
> (@ (x = x0))?

Jj=1

m
> llayllx = o
j=1

IN

1/2

IN

1/2

m
= | D llayl® [Ix = xol| -
j=1

1/2
Thus f is Lipschitz with Lipschitz constant (Z’anl ||aj\|2> :
3.4 Let f(x,y) be given by

22 sin(xy)

flo,y)={ a0+y2 (z,y) # (0,0)
0 (z,y) = (0,0) .

(a) For any a,b € R, define the sequence {x,} by x,, = (a/n,b/n) . Compute nh_)rgo f(xp).
(b) For any a,b € R, define the sequence {x,} by x, = (a/n,b/n?) . Compute nh_)ng@ f(xn).
(c) Is the function f continuous? justify your answer.

SOLUTION For (a) when (a,b) # (0,0),

a’®sin(ab/n?)

fxn) = ab/n* + b2

Since 0 < |sin(ab/n?)| < ab/n?, by the squeeze principle,

. . 2\
T}Ln;o sin(ab/n*) =0,

and clearly lim,, .o, a®/n* = 0. Thus, when (a, b) # (0,0),

lim f(x,)=0.

n—oo
This is also true when (a,b) = (0,0), but then because each term in the sequence is zero.
For (b) when (a,b) # (0,0),
a’n*sin(ab/n*)
a®/ 4 b2

lim sin(t)
t—0 t

f(xn) =

=1




Defining t = ab/n!,

) 1 sin(t)
4 4
b =——"7.
n”sin(ab/n") p—
Therefore,
1
. 4 . 4y L
nlLIQOn sin(ab/n*) = =5
Finally then
6 2
. aa’+b
5 SO =5

The limit is zero when (a,b) = (0,0), but then because each term in the sequence is zero.

For (c), no, it is not continuous, since the different sequences in part (b) give different limits
— although, as we saw in part (a), along all sequences that approach the origin through a fized
direction, the function does go to zero.

3.5 Consider the function defined by

fla,y) = {(Hy) n(z* 4+ 4% (29) # (0,0)
| 0 (z,y) = (0,0).

Is this function is continuous? Justify your answer.

SOLUTION Since the logarithm function is continuous on (0, c0), and since products of continuous
functions are continuous, and polynomials are continuous, f is clearly continuous at every xq for
X0 75 0.

After trying a few ways of approaching 0, this one looks continuous at 0 too. To prove that it

1/2
b

is, we use a squeeze principle argument. Note that |z + y| < v/2(2? + y?) SO

|/ (@,9)] < V2(a? + %) 2 In(a? +y?) = 2°(|Ix])
where g(t) = 23/%tIn(t). Since limy_o g(t) = 0, lim,_,0 g(||x||) = 0, and then since

0< f(x)<g(lxl),

we have that
lim f(x) =0,

x—0

and therefore, f is continuous everywhere.
3.6 Consider the function defined by
2

flz,y) = ﬁ (z,y) # (0,0)

0 (z,9)=1(0,0).
Is this function is continuous? Justify your answer.

SOLUTION Since rational functions are continuous at all points where the denominator is not
zero, f is continuous at every xq for xg # 0.



After trying a few ways of approaching 0, this one looks continuous at 0 too. To prove that it
is, we use a squeeze principle argument. Note that for (z,y) # (0,0),

$2’y‘ x2|y] 2 2
|f(x,y)| = 1 < = Jy| < Va2 +y% = g(||x|)

T2

where g(t) = t. Since lim;_,0 ¢g(t) = 0, lim,_,0 g(||x||) = 0, and then since

0< f(x)<g(lx[),

we have that
lim f(x) =0,

x—0

and therefore, f is continuous everywhere.

3.8 Let a and b be given vectors in R3 such that neither is a multiple of the other. Define a function
f:R®> =R by
f(x)=a-(bxx).
Defi
efine )

=———axb.
la < bl

X0

Show that
f(x) < f(x0)

for all unit vectors x € R3. In other words, show that xg is the maximizer of f on the unit sphere
in R3.

SOLUTION By the triple product identity, and then the Cauchy-Scwarz inequality,

la- (b x x| =[(axb) x| <l[axb|x]|=[axb]|
. 1
for any unit vector x. On the other hand, for x¢ = ma x b,
a

(axb)-(axDb)
la > b

a-(bxxg)=(axb) xo= = |la x b|.

Thus, for all unit vectors x,
f(xo) = llax bl = f(x),
and so X¢ maximizes f on the unit sphere in R3.

3.10 Let f be any function from R™ to R™. For any set A C R™, define f~!(A) to be the set of all
points x, if any, in R™ such that f(x) € A. The set f~!(A), which may be the empty set, is called
the preimage of A under f. Do not be misled by the notation: f~!(A) is defined whether or not
the function f itself is invertible.

(a) Prove that f is continuous if and only if whenever A is an open set in R™, then f~!(A) is an
open set in R™. This result provides a way to talk about continuity without explicitly bringing e
and J into the discussion. It also has other uses:



(b) Use the result of part (a) to give a short proof that whenever f is a continuous function from
R™ to R™, and g is a continuous function from R™ to R’, then g o f is a continuous function from
R™ to R
SOLUTION For (a), suppose first that f is continuous. Let A be any open set in R™. We
must show that f~1(A) is open, which means that for each x € f~1(4), there is an 7 > 0 so
B.(x) C f71(A).

Therefore, consider any xo € f~1(A4). Then f(xg) € A. Since A is open, there is some € > 0 so
that B¢(f(x0)) C A. Then since f is continuous, there is a §. > 0 such that

[x =xol| <de = [If(x) —f(xo)] <€,
Therefore
|x —xo|| <d = f(x)€A, andhence xef '(A).

Therefore, with r := &, B.(x) C f~1(A).
Conversely, suppose that whenever A C ofR™ is open, so is f~}(A). We must show that for all
Xg, and all € > 0, there exists a d. > 0 such that

[x =xof <0 = [If(x) —f(xo)] <€.

Fix any x and any € > 0. The set B.(f(xp), the open ball of radius € about f(xg), is open. By
hypothesis, f~(B.(f(x0)) is open, and it contains xq. Hence, by the definition of “open”, there is
an r > 0 so that
B,(x0) C £ Y(B.(f(x0)) .
But this mean that whenever ||x — x¢|| < r, then ||f(x) — f(x¢)|| < €, and so with J. := r, we have
what we require, and f is continuous at xg. Since xy was an arbitrary point, f is continuous.
For (b), if f and g are both continuous, and A is any open set in RY, then

(gof)™'(A) =" (g7'(4)) .
This is open since g~!(A) is open by the continuity of g, and then f~!(g=!(A)) is open by the
continuity of f. But then since (g o f)™!(A) is open whenever A is open, g o f is continuous.

3.12 Let K C R™ be compact, and let f be a continuous function from R™ to R™. Define L C R™
by

L:={yeR"™ : y=f(x) forsomex € K } .
Is L necessarily compact? Justify your answer.

SOLUTION By the definition of “compact” we must show that L is both bounded and closed.
To show that L is bounded, consider the function

9(x) = [If)]l -

Since f is continuous, and since the length function y — ||y|| is continuous, and since the compo-
sition of continuous functions is continuous, ¢ is continuous. Since K is compact, by the theorem
on existence of maximizers, there is an x¢ in K so that g(x) < g(xg) for all x € K. That is

IEGO < [[£ (o)l



for all x € K. But yo := f(x) € L and by the definition of L, every y € L has the form y = f(x)
for some xinK. Hence

Iyl < llyoll := R

for all y € L. This shows that L is bounded: It is contained in Br(0).
To show that L is closed, let {y,} be any convergent sequence in L such that

z = lim y,
n—oo

We must show that z € L. By the definition of L, every y € L has the form y = f(x), and hence
there is a sequence {x,} in K such that y, = f(x,) for all n.

Since every sequence in a compact set has a subsequence converging to an element of that
compact set, there is a subsequence {xy, } of {x,} that converges to some w in K. That is

lim x,, =we K .

k—o0

But then since f is continuous,
lim y,, = lim f(x,,)f < lim xnk> =f(w)e L.
k—o0 k—o0 k—o0

But since limy, 00 Y, limg_y00 Yn, = 2 also, and so z = f(w) € L. This proves L is closed, and
completes the proof that L is compact.



