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We introduce the tensor product ‘⌦’ and the exterior (or wedge) product ‘^’
and briefly discuss their roles in representation theory.



THE SETTING

Let F be a field such as R or C.

Let U and V be vector spaces over F with dual spaces U

⇤
and V

⇤
.

We assume for now that U and V are finite dimensional, though much of what

we discuss will be true for infinite dimensional vector spaces.

More generally, we may take U and V to be modules over a ring such as Z.

We recall that a module over a ring is a generalization of the notion of a vector

space, where the scalars lie in a ring rather than a field.

A left R-module V over a ring R with identity element consists of an abelian

group (V,+) and an operation R⇥V ! V such that for all r, s 2 R and x, y 2 V ,

we have

r(x+ y) = rx+ ry, (r + s)x = rx+ sx, (rs)x = r(sx), 1Rx = x

Today we will introduce two types of products of modules: the tensor product

‘⌦ ’and the exterior (or wedge) product ‘^’ and give examples of their roles in

representation theory.

Roughly speaking, we will view x ⌦ y as a formal noncommutative product of

vectors x, y 2 V and x ^ y as a formal antisymmetric product of vectors x,

y 2 V .



BILINEAR AND MULTILINEAR MAPS

Let U , V and W be vector spaces (or modules) over the same base field F. A

bilinear map is a function

B : U ⇥ V ! W

such that for any v 2 V the map

u 7! B(u, v)

is a linear map from U to W , and for any u 2 U , the map

v 7! B(u, v)

is a linear map from V to W .

In other words, if we hold the first entry of the bilinear map fixed, while letting

the second entry vary, the result is linear and similarly if we hold the second

entry fixed. We say that B is linear in each variable.

More generally, a multilinear map is a function of several variables that is linear

in each variable. More precisely, a multilinear map is a function

f : U1 ⇥ · · ·⇥ Un ! V

where Ui, V are vector spaces (or modules) and for each i, if each variable except

for ui 2 Ui is held constant, then f is linear in ui.



TENSOR PRODUCTS

Let R be a commutative ring and U and V be R-modules. You are familiar
with the direct sum U � V which is an addition operation on modules.

Here we describe a product operation, called the tensor product U ⌦ V , which
is a formal bilinear multiplication of two modules or vector spaces.

This notion first arose in di↵erential geometry and physics in order to accurately
define the stress and curvature tensors.

Let R be a commutative ring, and let U, V be R-modules. There is an R-module
U ⌦ V , called the tensor product of U and V over R, together with a canonical
bilinear homomorphism

⌦ : U ⇥ V ! U ⌦ V,

which is characterized up to isomorphism by the following universal property.
For every other R-module W , the bilinear R-module homomorphism ⇡

⇡ : U ⇥ V ! W,

lifts to a unique R-module homomorphism

⇡̃ : U ⌦ V ! W,

such that
⇡(u, v) = ⇡̃(u⌦ v)

for all u 2 U, v 2 V.



CONSTRUCTION OF TENSOR PRODUCTS

Let R be a commutative ring and U and V be R-modules. The tensor product

U ⌦V can be constructed by taking the free R -module generated by all formal

symbols

u⌦ v, u 2 U, v 2 V

modulo the bilinear relations:

(u1 + u2)⌦ v = u1 ⌦ v + u2 ⌦ v, u1, u2 2 U, v 2 V

u⌦ (v1 + v2) = u⌦ v1 + u⌦ v2, u 2 U, v1, v2 2 V

r(u⌦ v) = (ru)⌦ v = u⌦ (rb), r 2 R, u 2 U, v 2 V

In particular, if U and V are finite dimensional vector spaces with bases {ui},
{vj} respectively, then ui ⌦ vj is a basis for U ⌦ V and an element x of U ⌦ V

looks like

x =

X

i,j

aij ui ⌦ vj ,

where aij 2 R.

In order to stress the choice of base ring R, the tensor product U ⌦ V is often

written as U ⌦R V .



BASIC PROPERTIES OF TENSOR PRODUCTS

Let R be a commutative ring and U, V,W be R-modules. Since the tensor
product U ⌦ V is a bilinear homomorphism ⌦ : U ⇥ V ! U ⌦ V that uses the
direct product (ordered pairs), in general

u⌦ v 6= v ⌦ u

for u 2 U , v 2 V . However, we have the following isomorphisms of modules:

(1) R⌦ V ⇠= V , invariance under tensoring by scalars

(2) U ⌦ V ⇠= V ⌦ U , commutative up to isomorphism

(3) (U ⌦ V )⌦W ⇠= U ⌦ (V ⌦W ), associative

(4) (U � V )⌦W ⇠= (U ⌦W )� (V ⌦W ), distributive over addition

If U and V are finite dimensional, then dim(U ⌦ V ) = dim(U)⇥ dim(V ).



WARNING: COLLAPSING OF TENSOR PRODUCTS

Lemma. If gcd(m,n) = 1 then Z/nZ⌦ Z/mZ = 0.

Proof: Since gcd(m,n) = 1, we have

n(x⌦ y) = (nx)⌦ y = 0

m(x⌦ y) = x⌦ (my) = 0.

Hence x⌦y = 0 for all x 2 Z/nZ, y 2 Z/mZ. But x⌦y generate Z/nZ⌦Z/mZ.
Hence the tensor product is zero. ⇤



EXAMPLE: EXTENSION OF SCALARS

Let R be a commutative ring with identity and let V be an R-module.

If f : R ! R

0
be a ring homomorphism then R

0
is an R-module.

The tensor product V ⌦R

0
is an R

0
-module, called the extension of V over R

0
.

Given any field extension K < K

0
, one can extend scalars from K to K

0
.

For example, if VR is a vector space over R, then VR ⌦ C is a vector space over

C.

If dim(VR) = n and VR has basis v1, . . . , vn then an element x⌦ c 2 VR ⌦C has

a unique expression

x⌦ c =

nX

i=1

aivi ⌦ ci

where ai 2 R, ci 2 C.



GROUP REPRESENTATIONS

� G = SLn(F) the group of n⇥ n matrices of determinant 1

� V a finite dimensional vector space over F

� � : SLn(F) ! GL(V ), a group homomorphism, gives a representation of

SLn(F) on V

� GL(V ), the general linear group of V , is the group of all bijective linear

transformations V ! V where the group operation is composition of functions

We note that G = SLn(F) has a natural representation on Fn
, but representa-

tions on more general finite dimensional vector spaces V also arise.



LIE ALGEBRAS

A Lie algebra is a vector space g over a field F together with a binary operation

[·, ·] : g⇥ g ! g

called the Lie bracket, which satisfies the following axioms:

Bilinearity:

[ax+ by, z] = a[x, z] + b[y, z], [z, ax+ by] = a[z, x] + b[z, y]

for all scalars a, b in F and all x, y, z in g

Alternating on g: [x, x] = 0 for all x in g

The Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z in g.



REPRESENTATIONS OF LIE ALGEBRAS

Let g = sln(F) be the Lie algebra of n⇥ n matrices of trace 0. The Lie bracket

can be interpreted here as the matrix operation

[x, y] = xy � yx.

Let V be a finite dimensional vector space over F.

Then ⇢ : sln(F) ! End(V ), a Lie algebra homomorphism, gives a representation

of sln(F) on V .

The algebra End(V ) is the commutator Lie algebra of V . That is, ⇢ 2 End(V )

is a linear map satisfying the commutator relation

⇢([x, y]) = ⇢(x)⇢(y)� ⇢(y)⇢(x)

for x, y 2 g.



ACTION OF SYMMETRIC GROUP ON ITERATED TENSORS

Let R be a commutative ring with identity and let V be an R-module.

Let Tn
(V ) = V ⌦ · · ·⌦ V = V ⌦n

be the iterated tensor product.

Let Sn be the symmetric group acting as permutations on a set of n letters

{1, 2, . . . , n}.

Then Sn acts on V ⌦n
by permuting the indices.

If � 2 Sn, then � acts on v1 ⌦ · · ·⌦ vn as v�(1) ⌦ · · ·⌦ v�(n).



REPRESENTATIONS USING TENSOR PRODUCTS

Let g be a Lie algebra and let

⇢1 : g ! End(V1)

⇢2 : g ! End(V2)

be representations of g on vector spaces V1 and V2 respectively.

Then there is a representation ⇢3 = ⇢1 ⌦ ⇢2 : g ! End(V1 ⌦ V2) given by

⇢3(x)(v1 ⌦ v2) = ⇢1(x)(v1)⌦ v2 + v1 ⌦ ⇢2(x)(v2),

x 2 g, vi 2 Vi, called the tensor product of the representations.

An example is given by the vector-spinor representation of so(2k) which is de-

scribed as follows.

Take the standard representation of so(2k) on V1 = R2k
and the spin represen-

tation on V2 = R2k
. Then the tensor product is a representation on the 2k⇥ 2

k

dimensional vector space V1 ⌦ V2.



EXTERIOR POWERS

Let R be a commutative ring with identity and let V be an R-module of dimen-

sion n. Let e1, . . . , en be a basis for V .

A multilinear map f : V

⌦n ! W is called alternating if for xi 2 V

f(x1, . . . , xn) = 0

whenever xi = xj for some i 6= j.

Let Un be the submodule of T

n
(V ) = V

⌦n
generated by all elements of the

form

x1 ⌦ · · ·⌦ xn

where xi 2 V , xi = xj for some i 6= j.

Define

⇤

n
V = V

⌦n
/Un.

For k  n, a basis of ⇤

k
V consists of the vectors

ei1 ^ . . . ^ eik =

X

�2Sk

"(�) ei�(1)
⌦ . . .⌦ ei�(k)

,

with 1  i1 < i2 < · · · < ik  n, where Sk is the permutation group on k letters

and "(�) is the signature of �.



EXTERIOR (WEDGE) PRODUCT

Let R be a commutative ring with identity and let V be an R-module. Given

u, v 2 V , the exterior product u ^ v 2 ⇤

2 V has the defining properties

u ^ u = 0

which is equivalent to

u ^ v = �v ^ u

and for a1, a2 2 R, u1, u2 2 V

(a1u1 + a2u2) ^ v = a1u1 ^ v + a2u2 ^ v.

If u 2 V is non zero, then u ^ v = 0 if and only if v = �u for some � 2 R.

In general, for u1, . . . , un 2 V , an element u1 ^ · · ·^ un 2 ⇤

n V is linear in each

variable ui and interchanging two variables changes the sign of the product.



REPRESENTATIONS USING EXTERIOR PRODUCTS

Let g be a Lie algebra. A fundamental representation is an irreducible finite-

dimensional representation whose highest weight is a fundamental weight.

Let V be a fundamental representation for sln(R). Then other fundamental

representations can be constructed from V by using the exterior product. For

instance, if {v1, . . . , vn} is a basis for V , then

{v1 ^ v2, v1 ^ v3, . . . , v1 ^ vn}

is the basis of another fundamental representation.

For finite dimensional simple Lie algebras, all fundamental representations can

be obtained from a subset of given ones, called basic modules.

Tensor products and exterior products are built into nature!.


