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ABSTRACT. We study saturation properties of 𝜎-complete measures on 𝑃𝜅(𝜆),
where 𝜆 can be either regular or singular. In particular, we prove that in contrast
to Galvin’s theorem, the Galvin property from [5] fails for normal fine ultrafilters
on 𝑃𝜅(𝜆), answering a question of the first author and Goldberg from [9]. We then
provide several applications of our results: to ultrafilters on successors under
𝑈𝐴, we generalize a result of Gitik regarding density of ground model sets in
supercompact Prikry extensions, and to generating sets of 𝑃𝜅(𝜆) measures. In the
second part of the paper, we study variations of the Galvin property suitable for
ultrafilters over 𝑃𝜅(𝜆), and generalize a result of Foreman-Magidor-Zeman [17,
Thm. 1.2] on determinacy of filter games to the two-cardinal setting, answering
a question of the first author and Gitman from [8].

INTRODUCTION

The motivation for this paper arises from a theorem of F. Galvin (see Theo-
rem 2.1), first published in [1], which states that whenever 𝜅<𝜅 = 𝜅, 𝐹 is a normal
filter over 𝜅, and ⟨𝐴𝑖 ∶ 𝑖 < 𝜅+

⟩ is a sequence of sets in 𝐹 , there is some 𝐼 of
size 𝜅 such that

⋂

𝑖∈𝐼 𝐴𝑖 ∈ 𝐹 . For example, Galvin’s theorem applies if 𝐹 is the
club filter on 𝜅 and GCH holds, or 𝐹 is a normal measure over a measurable cardi-
nal 𝜅. Parameterizing the combinatorial property from Galvin’s theorem yields the
following definition:

Definition. [The Galvin Property] Let 𝑋 be a set and 𝐹 a filter on 𝑋 and 𝜅 ≤ 𝜆
cardinals. We say Gal(𝐹 , 𝜅, 𝜆) holds iff whenever ⟨𝐴𝑖 ∶ 𝑖 < 𝜆⟩ is a sequence of
sets in 𝐹 of length 𝜆, there is some 𝐼 ∈ [𝜆]𝜅 such that

⋂

𝑖∈𝐼 𝐴𝑖 ∈ 𝐹 .

This is a regularity-like property in the sense of Keisler [13] that has been consid-
ered in other contexts as well. Kanamori [24] called it cohesiveness, while Tukey
and Isbell [32, 19] and more recently in work of Todorcevic, Dobrinen, Milovich,
and the first author [31, 15, 27, 4] used it in connection to the Tukey order.

Interest in the Galvin property has had a recent resurgence due to its relevance to
Prikry-type forcing theory [20, 6, 7]. Gitik [20] used the Galvin property to prove
the following:
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Theorem (Gitik, [20]). Suppose 2𝜅 = 𝜅+ and 𝑈 is a normal ultrafilter on 𝜅. Then
in a generic extension by Prikry forcing with 𝑈 , every subset of 𝜅+ such that con-
tains a ground model subset of the size 𝜅.

In [7] it was then proven that the Galvin property of a general 𝜅-complete ul-
trafilter over 𝜅 is equivalent to the density of ground model sets of the tree-Prikry
forcing analogous to the one described in Gitik’s theorem. The first author and Gi-
tik further extend this analysis in [7] to study ultrafilters 𝑈 such that Prikry forcing
with 𝑈 adds a generic for the Cohen forcing at 𝜅.

In [9] the first author and Goldberg use a ♢-like principle, which also inspired
the one introduced in [11], to show that under the Ultrapower Axiom (UA) if 𝑈 is
a 𝜎-complete ultrafilter on 𝜅+ then Gal(𝑈, 𝜅+, 𝜅++) must fail. In the same paper,
they ask the following question:

Question. ([9, Question 7.4]) Suppose 𝑈 is a normal, fine ultrafilter on 𝑃𝜅(𝜅+).
Must Gal(𝑈, 𝜅, (2𝜅)+) hold?

Here we answer this question negatively. In fact, not only does the Galvin prop-
erty need not hold, it never holds in this case:

Theorem 2.6. Let 𝑈 be a normal, fine ultrafilter on 𝑃𝜅(𝜆). Suppose that 2<𝜆 = 𝜆
and cf(𝜆) ≠ 𝜅. Then ¬Gal(𝑈, 𝜅, 2𝜆).

The situation when cf(𝜆) = 𝜅 is more subtle. In this case, the proof of Galvin’s
original theorem generalizes using tools of Goldberg’s book [22].

Theorem 2.16. Let 𝑈 be a normal, fine ultrafilter on 𝑃𝜅(𝜆). Suppose that 2<𝜆 = 𝜆
and cf(𝜆) = 𝜅. Then Gal(𝑈, 𝜅, 2𝜆).

We then investigate the extent to which this theorem can be improved, and show
the following:

Theorem 2.18. Let 𝑈 be a normal, fine ultrafilter on 𝑃𝜅(𝜆). Suppose that 2<𝜆 = 𝜆
and cf(𝜆) = 𝜅. ¬Gal(𝑈, (2𝜅)+, 2𝜆).

This leaves (at least) one case open, namely Gal(𝑈, 2𝜅 , 2𝜆) (see Question 2.19).
Our results have several applications to the theory of ultrafilters. First, the failure

of Galvin’s property for cf(𝜆) ≠ 𝜅 shows that normal, fine ultrafilters on 𝑃𝜅(𝜆) are
𝜅-Tukey-top, namely Tukey-maximal among 𝜅-complete ultrafilters 𝑈 over 𝑃𝜅(𝜆),
whereas Galvin’s theorem says that normal ultrafilters on cardinals are necessarily
non-𝜅-Tukey-top.

Secondly, we can improve the Theorem from [9] regarding ultrafilter on succes-
sor cardinals under UA:

Corollary 3.3. (UA) Let 𝑈 be a 𝜎-complete ultrafilter on 𝜅+. If 2𝜅 = 𝜅+ then
¬Gal(𝑈, 𝜅, 2𝜅+).

Then, using our theorem, we generalize Gitik’s result on the density of old sets in
generic extensions by Prikry forcing to the case of the supercompact Prikry forcing:
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Theorem 3.6. Suppose 𝑈 is a normal 𝑃𝜅(𝜆) ultrafilter where cf(𝜆) ≠ 𝜅 and 2<𝜆 =
𝜆. Let𝐺 be generic for the supercompact Prikry forcing with respect to𝑈 . In 𝑉 [𝐺],
there is a set 𝑆 ⊆ 2𝜆 that contains no ground model set of size 𝜅.

Finally, we use these results to study generating sets of 𝑃𝜅(𝜆)-measure and con-
clude the following:
Corollary 3.11. If 𝑈 is a 𝜎-complete (𝜅, 𝜆)-regular ultrafilter over 𝜆, 𝜅 being a
strong limit and 2<𝜆 = 𝜆, then 𝜒(𝑈 ) = 2𝜆.

In the last section of this paper, we consider the revised Galvin property defined
using inclusion modulo the fine filter which is the filter generated by cones, i.e.
sets of the form 𝛼̌ = {𝑥 ∈ 𝑃𝜅(𝜆) ∶ 𝛼 ∈ 𝑥}. In Theorem 4.10 prove a variation of
Galvin’s theorem using inclusion modulo this filter. We then use the inclusion mod-
ulo the fine filter to study variation of the filter games introduced in [28] by Nielsen
and Welch, which were used to characterize small large cardinals. Foreman, Magi-
dor, and Zeman in [17] call these games Welch games and use their determinacy to
construct interesting ideals. In particular, they prove:
Theorem ([17], Theorem 1.4). Assume 2𝜅 = 𝜅+ and 𝜅 does not carry a saturated
ideal. Let 𝛾 be an infinite regular cardinal below 𝜅+. If player II has a winning
strategy in the Welch game of length 𝛾 , then there is a uniform normal ideal 𝐼 on 𝜅
with a dense set 𝐷 ⊆ 𝐼+ such that:

(1) (𝐷,⊆∗) is a downwards-growing tree of height 𝛾
(2) 𝐷 is closed under ⊆𝐼 -decreasing sequences of length 𝛾
(3) 𝐷 is dense in 𝑃 (𝜅)∕𝐼 .

From the ideal 𝐼 , a precipitous ideal can be constructed, given that 𝛾 > 𝜔, show-
ing the equiconsistency of a winning strategy for Player II in the game of length
𝜔 + 1 and the existence of a measurable cardinal.

This result was generalized to some extent by the second author and Gitman in
[8] to filter games in the two-cardinal settings. Also, it was noticed in [8] that an ad-
ditional property of the constructed ideal, named 𝜇-measuring1 could be extracted,
with which Theorem could be reversed. However, the generalization was not fully
satisfactory as the dense tree did not consist of positive sets from the constructed
ideal. In an attempt to find a direct generalization to Theorem , it was then asked:
Question ([8, Question 9.8]). Is there an equivalent version of the two-cardinal
games where sets are played instead of ultrafilters?

In the last part of the paper, we answer this question and generalize Theorem to
the setting of ideals on 𝑃𝜅(𝜆), using two-cardinals filter games where sets are played
in analogy to the Welch games. This enables us to construct dense trees consisting
of sets.
Theorem 4.19. Suppose that 2𝜆 = 𝜆+, there is no saturated ideal on 𝑃𝜅(𝜆), and
that the Judge has a winning strategy for the game 𝐺𝛾

2 for some regular 𝜔 < 𝛾 ≤ 𝜆.
Then there is an ideal 𝐼 on 𝑃𝜅(𝜆) such that:

1We say that an ideal 𝐼 is 𝜇-measuring if given any collection  = {𝐴𝑖 ∣ 𝑖 < 𝜇} ⊆ 𝑃 (𝜅), and a
positive set 𝐵 ∈ 𝐼+, there is 𝐵′ ⊆ 𝐵, 𝐵′ ∈ 𝐼+ such that for every 𝑖 < 𝜇, 𝐵′ ⊆𝐼 𝐴𝑖 or 𝐵′ ⊆𝐼 𝜅 ⧵ 𝐴𝑖.
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(1) 𝐼 is normal.
(2) 𝐼 is precipitous.
(3) 𝐼+ has a dense subtree (ordered by ⊇ ) 𝑇 which is 𝛾-closed.
(4) 𝐼 is 𝜆-measuring. That is, for any ⟨𝐴𝛼 ∣ 𝛼 < 𝜆⟩ ⊆ 𝑃𝜅(𝜆) and any 𝑆 ∈ 𝐼+

there is 𝑆′ ⊆ 𝑆, 𝑆′ ∈ 𝐼+ such that for any 𝛼 < 𝜆, 𝑆′ ⊆ 𝐴𝛼 or 𝑆′ ⊆
𝑃𝜅(𝜆) ⧵ 𝐴𝛼.

The paper is organized as follows:
(1) Section § 1: We begin with some preliminary definitions related to the

Galvin property. We introduce other combinatorial properties of ultrafil-
ters and show some basic relations between these properties, the Galvin
property, and the Rudin-Keisler order.

(2) Section § 2: Here we prove the main result of the paper and other results on
the Galvin property on fine two-cardinal ultrafilters. We also prove some
results about the Galvin property on ultrafilters on successor cardinals un-
der the Ultrapower Axiom.

(3) Section § 3: We show some applications of our results on Galvin’s prop-
erty from the previous section: We consider the Galvin property under the
Ultrapower Axiom, density of ground model sets after the supercompact
Prikry forcing, and generating sets of 𝑃𝜅(𝜆) measures.

(4) Section § 4: We analyze filter combinatorics modulo the filter 𝐹 𝑖𝑛𝑒𝜅,𝜆:
We consider a revised Galvin property with respect to this ideal, define a
version of 𝑃 -point filters, define a modification of the diagonal intersection,
and we construct a two-cardinal analog of the ideal constructed in section
5 of [17].

1. PRELIMINARIES

1.1. Ultrafilters and Ultrapowers. Here we collect some definitions and basic
facts about ultrafilters. Let 𝑈 be an ultrafilter over a set 𝑋. We let 𝑀𝑈 denote the
class of equivalence classes of functions 𝑓 with domain 𝑋 and let 𝑗𝑈 denote the
usual ultrapower construction of the set-theoretic universe 𝑉 . Namely, 𝑗𝑈 ∶ 𝑉 →
𝑀𝑈 is defined by 𝑗𝑈 (𝑥) = [𝑐𝑥]𝑈 , where 𝑐𝑥 is the constant function with value 𝑥.
We denote by id the identity function and we use id𝑈 as shorthand for the class
of the identity function id𝑈 . When 𝑀𝑈 is well-founded, we identify 𝑀𝑈 with its
Mostowski collapse, and do the same with id𝑈 .

Definition 1.1. Let 𝑈,𝑊 be ultrafilters over 𝑋, 𝑌 respectively. We say 𝑈 is Rudin-
Keisler below 𝑊 , written 𝑈 ≤𝑅𝐾 𝑊 , if there is 𝑓 ∶ 𝑌 → 𝑋 such that 𝑈 = 𝑓∗(𝑊 ),
where

𝑓∗(𝑊 ) = {𝐴 ⊆ 𝑋 ∣ 𝑓−1𝑋 ∈ 𝑊 }.
We say 𝑈 is Rudin-Keisler equivalent to 𝑊 , written 𝑈 ≅𝑅𝐾 𝑊 if 𝑈 ≤𝑅𝐾 𝑊 and
𝑊 ≤𝑅𝐾 𝑈 .

It is well known (see for example [14]) that 𝑈 ≅𝑅𝐾 𝑊 if and only if there is
𝑓 ∶ 𝑌 → 𝑋 which is one-to-one and 𝑓∗(𝑊 ) = 𝑈 . The following facts about the
Rudin-Keisler order are standard, see for example [22].
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Proposition 1.2. Let 𝑈 and 𝑊 be ultrafilters. Then 𝑈 ≤𝑅𝐾 𝑊 if and only if there
is an elementary 𝑘∶ 𝑀𝑈 → 𝑀𝑊 such that 𝑘◦𝑗𝑈 = 𝑗𝑊 . If 𝑘 is also a surjection,
then also 𝑈 ≅𝑅𝐾 𝑊 .

Let 𝜅 and 𝜆 be cardinals. We set
𝑃𝜅(𝜆) = {𝑥 ⊆ 𝜆 ∶ |𝑥| < 𝜅}.

The ultrafilters in this paper all have 𝑃𝜅(𝜆) as an underlying set.
Definition 1.3. Let 𝑈 be an ultrafilter on 𝑃𝜅(𝜆). We say 𝑈 is fine if for all 𝛼 < 𝜆
we have {𝑥 ∈ 𝑃𝜅(𝜆) ∶ 𝛼 ∈ 𝑥} ∈ 𝑈 . We say 𝑈 is normal if whenever 𝑋𝛼 ∈ 𝑈 for
𝛼 < 𝜆 then the diagonal intersection △𝛼<𝜆𝑋𝛼 ∈ 𝑈 where

△𝛼<𝜆𝑋𝛼 ≔ {𝑥 ∈ 𝑃𝜅(𝜆) ∶ ∀𝛼 ∈ 𝑥, (𝑥 ∈ 𝑋𝛼)}
Proposition 1.4. [22, p. 185] Let 𝑈 be an ultrafilter over 𝑃𝜅(𝜆).

(1) 𝑈 is fine if and only if 𝑀𝑈 ⊧ 𝑗𝑈 [𝜆] ⊆ id𝑈 .
(2) 𝑈 is normal if and only if 𝑀𝑈 ⊧ id𝑈 ⊆ 𝑗𝑈 [𝜆]. 2

Note that every fine ultrafilter 𝑈 on 𝑃𝜅(𝜆) is uniform, namely, every set 𝑋 ∈ 𝑈
has cardinality 𝜆. Otherwise |𝑋| < 𝜆, and |

⋃

𝑋| ≤ |𝑋| ⋅ 𝜅 < 𝜆. Take any
𝛼 ∈ 𝜆 ⧵

⋃

𝑋. If 𝑈 is fine, there is some 𝑥0 ∈ {𝑦 ∈ 𝑃𝜅(𝜆) ∶ 𝛼 ∈ 𝑦} ∩ 𝑋 ≠ ∅ but
then 𝛼 ∈ 𝑥0 ⊆

⋃

𝑋, contradicting our choice of 𝛼.
We say an ultrafilter 𝑈 is 𝜅-complete if whenever 𝑋𝛼 ∈ 𝑈 for all 𝛼 < 𝜅 then

⋂

𝛼<𝜅 𝑋𝛼 ∈ 𝑈 . We say that 𝑈 is 𝜎-complete if it is 𝜔1-complete.
Definition 1.5. A cardinal 𝜅 is strongly compact if for all 𝜆 ≥ 𝜅 there is a 𝜅-
complete fine ultrafilter on 𝑃𝜅(𝜆). 𝜅 is supercompact is for all 𝜆 ≥ 𝜅 there is a
normal , fine ultrafilter on 𝑃𝜅(𝜆).

Note that any normal, fine ultrafilter on 𝑃𝜅(𝜆) is automatically 𝜅-complete [25].
Definition 1.6. An ultrafilter 𝑈 is (𝜅, 𝜆)-regular if there is a sequence of sets ⟨𝑋𝛼 ∶
𝛼 < 𝜆⟩ ⊆ 𝑈 such that whenever 𝐼 ⊆ 𝜆 and |𝐼| = 𝜅,

⋂

𝛼∈𝐼 𝑋𝛼 = ∅.
Regularity of ultrafilters can be viewed as a strengthening of the failure of Galvin’s

property, since any witness for (𝜅, 𝜆)-regularity of an ultrafilter 𝑈 is also a witness
for ¬Gal(𝑈, 𝜅, 𝜆). Regularity admits a useful characterization in terms of the ul-
trapower:
Proposition 1.7. Let 𝑈 be an ultrafilter. The following are equivalent:

(1) 𝑈 is (𝜅, 𝜆)-regular.
(2) There is a set 𝑋 ∈ 𝑀𝑈 such that 𝑀𝑈 ⊧ 𝑗𝑈 [𝜆] ⊆ 𝑋 and 𝑀𝑈 ⊧ |𝑋| <

𝑗𝑈 (𝜅).
Hence, regular and fine ultrafilters are connected in the following way:

Corollary 1.8. The following are equivalent:
(1) 𝑈 is (𝜅, 𝜆)-regular.
(2) there is a fine ultrafilter on 𝑃𝜅(𝜆) such that 𝑈 ≤𝑅𝐾 𝑊

2Although 𝑗𝑈 [𝜆] might not be in 𝑀𝑈 , we abuse notation by writing 𝑀𝑈 ⊧ 𝑗𝑈 [𝜆] ⊆ 𝑋 to mean
that for every 𝛼 < 𝜆, 𝑀𝑈 ⊧ 𝑗𝑈 (𝛼) ∈ 𝑋.
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2. THE GALVIN PROPERTY

Given a filter 𝐹 , recall that the Galvin propery (see Definition ) Gal(𝐹 , 𝜅, 𝜆) says
that for all ⟨𝐴𝑖 ∶ 𝑖 < 𝜆⟩ ⊆ 𝐹 , there is 𝐼 ⊆ 𝜆 with |𝐼| = 𝜅 such that

⋂

𝑖∈𝐼 𝐴𝑖 ∈ 𝐹 .
We will present the proof of Galvin’s theorem, not only for completeness but also
because our proof of Theorems 2.16 and 4.10 mirrors this one.

Theorem 2.1 (Galvin’s Theorem). Suppose that 2<𝜅 = 𝜅 and let 𝐹 be a normal
filter over 𝜅. Then Gal(𝐹 , 𝜅, 𝜅+). Namely, letting ⟨𝑋𝑖 ∣ 𝑖 < 𝜅+

⟩ be a sequence of
sets such that for every 𝑖 < 𝜅+, 𝑋𝑖 ∈ 𝐹 , there is 𝑌 ⊆ 𝜅+ of cardinality 𝜅, such that
⋂

𝑖∈𝑌 𝑋𝑖 ∈ 𝐹 .

Proof. For every 𝛼 < 𝜅+ and 𝜉 < 𝜅, let

𝐻𝛼,𝜉 = {𝑖 < 𝜅+ ∣ 𝑋𝑖 ∩ 𝜉 = 𝑋𝛼 ∩ 𝜉}.

Claim 2.2. There is 𝛼∗ < 𝜅+ such that for every 𝜉 < 𝜅, |𝐻𝛼∗,𝜉| = 𝜅+

Proof of claim. Otherwise, for every 𝛼 < 𝜅+ there is 𝜉𝛼 < 𝜅 such that |𝐻𝛼,𝜉𝛼 | ≤
𝜅. By the pigeonhole principle,, there is 𝑋 ⊆ 𝜅+ and 𝜉∗ < 𝜅, such that |𝑋| = 𝜅+

and for each 𝛼 ∈ 𝑋, 𝜉𝛼 = 𝜉∗. Since 𝜅 is strong limit and 𝜉∗ < 𝜅, there are less
than 𝜅 many possibilities for 𝑋𝛼 ∩ 𝜉∗. Hence we can shrink 𝑋 to 𝑋′ ⊆ 𝑋 such that
|𝑋′

| = 𝜅+ and find a single set 𝐸∗ ⊆ 𝜉∗ such that for every 𝛼 ∈ 𝑋′, 𝑋𝛼 ∩ 𝜉∗ = 𝐸∗.
It follows that for every 𝛼 ∈ 𝑋′:

𝐻𝛼,𝜉𝛼 = 𝐻𝛼,𝜉∗ = {𝑖 < 𝜅+ ∣ 𝑋𝑖 ∩ 𝜉∗ = 𝐸∗}.

Hence the set 𝐻𝛼,𝜉𝛼 does not depend on 𝛼, which means it is the same for every
𝛼 ∈ 𝑋′. Denote this set by 𝐻∗. To see the contradiction, note that for every
𝛼 ∈ 𝑋′, 𝛼 ∈ 𝐻𝛼,𝜉𝛼 = 𝐻∗, thus 𝑋′ ⊆ 𝐻∗, hence

𝜅+ = |𝑋′
| ≤ |𝐻∗

| ≤ 𝜅

contradiction.□Claim
Let 𝛼∗ be as in the claim. Let us choose 𝑌 ⊆ 𝜅+ that witnesses the lemma. By

recursion, define 𝛽𝑖 for 𝑖 < 𝜅. At each step we pick 𝛽𝑖 ∈ 𝐻𝛼∗,𝑖+1 ⧵ {𝛽𝑗 ∣ 𝑗 < 𝑖}
(at the first step pick any index in 𝐻𝛼∗,1). It is possible to find such 𝛽𝑖, since the
cardinality of 𝐻𝛼∗,𝜌𝑖+1 is 𝜅+, and {𝛽𝑗 ∣ 𝑗 < 𝑖} is of size less than 𝜅. Let us prove
that 𝑌 = {𝛽𝑖 ∣ 𝑖 < 𝜅} is as wanted. Indeed, by definition, it is clear that |𝑌 | = 𝜅.
Next, we need to prove that

⋂

𝛾∈𝑌 𝑋𝛾 =
⋂

𝑖<𝜅 𝑋𝛽𝑖 ∈ 𝐹 . By normality of 𝐹 ,

𝑋∗ ∶= 𝑋𝛼∗ ∩ Δ𝑖<𝜅𝑋𝛽𝑖 ∈ 𝐹 .

Thus it suffices to prove that 𝑋∗ ⊆
⋂

𝑖<𝜅 𝑋𝛽𝑖 . Let 𝜁 ∈ 𝑋∗, then for every 𝑖 < 𝜁 ,
𝜁 ∈ 𝑋𝛽𝑖 by the definition of the diagonal intersection. For 𝑖 ≥ 𝜁 , 𝜁 ∈ 𝑖 + 1, and
thus 𝜁 < 𝑖 + 1. Recall that 𝛽𝑖 ∈ 𝐻𝛼∗,𝑖+1 which means that

𝑋𝛼∗ ∩ (𝑖 + 1) = 𝑋𝛽𝑖 ∩ (𝑖 + 1),

and since 𝜁 ∈ 𝑋𝛼∗ ∩ (𝑖 + 1), 𝜁 ∈ 𝑋𝛽𝑖 . We conclude that 𝜁 ∈
⋂

𝑖<𝜅 𝑋𝛽𝑖 , thus
𝑋∗ ⊆

⋂

𝑖<𝜅 𝑋𝛽𝑖 . □
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The Galvin property is an invariant of the Rudin-Keisler order (or more general-
ity the Tukey order, see [4]).

Lemma 2.3 ([12, Lemma 2.1]). Suppose 𝑊 ≤𝑅𝐾 𝑈 are ultrafilters and 𝜅 ≤ 𝜆 are
cardinals. If ¬Gal(𝑊 ,𝜅, 𝜆) then ¬Gal(𝑈, 𝜅, 𝜆).

The main question inspiring this paper concerns the Galvin property on ultra-
filters on 𝑃𝜅(𝜅+), but we shall answer the question more generally for ultrafilters
on 𝑃𝜅(𝜆) for any 𝜆 ≥ 𝜅+. We shall split this section to three subsections, each
addressing this general question depending on the cofinality of 𝜆.

2.1. The case cf(𝜆) > 𝜅. We begin with a lemma that we shall use repeatedly.

Lemma 2.4. Let 𝜅 < 𝜆 be cardinals and let 𝑈 be an ultrafilter on 𝑃𝜆(𝜆) such that
𝑈 does not concentrate on 𝑃𝜅(𝜁 ) for any 𝜁 < 𝜆. Suppose that [𝑋 ↦ 𝑋]𝑈 =  ∈
𝑀𝑈 and 𝛿 < cf(𝜆). If 𝑀𝑈 ⊧ || < 𝑗𝑈 (𝛿). Then for any 𝐵 ∈ 𝑈 there is 𝜃 < 𝛿 such
that {sup(𝑋) ∶ 𝑋 ∈ 𝐵 and |𝑋| < 𝜃} is unbounded in 𝜆.

Proof. For every 𝜃 < 𝛿 let 𝑆𝜃 = {sup(𝑋) ∶ 𝑋 ∈ 𝐵 and |𝑋| < 𝜃}. We want to
show that there is some 𝜃 such that sup𝑆𝜃 = 𝜆. Since 𝑀𝑈 ⊧ || < 𝑗𝑈 (𝛿), by Łoś
we have 𝑌 ≔ {𝑋 ∈ 𝐵 ∶ |𝑋| < 𝛿} ∈ 𝑈 . Note that

𝑌 =
⋃

𝜃≤𝛿
{𝑋 ∈ 𝐵 ∶ |𝑋| < 𝜃}.

Suppose now towards a contradiction that sup𝑆𝜃 < 𝜆 for all 𝜃 < cf(𝜆). It follows
that

𝜁 ≔ sup{sup(𝑋) ∶ 𝑋 ∈ 𝑌 } < 𝜆 (recall cf(𝜆) > 𝛿).
But then 𝑈 concentrates on 𝑃𝜅(𝜁 ), contradicting our assumption that 𝑈 is uniform.

□

Remark 2.5. Note that in the previous lemma, if we only assume 𝑀𝑈 ⊧ || ≤
𝑗𝑈 (𝛿), then we still get that for any 𝐵 ∈ 𝑈 {sup(𝑋) ∶ 𝑋 ∈ 𝐵 and |𝑋| ≤ 𝛿} is
unbounded in 𝜆. The reason is that for {𝑋 ∈ 𝐵 ∣ |𝑋| ≤ 𝛿} ∈ 𝑈 and for any set
in 𝑍 ∈ 𝑈 , {sup(𝑋) ∣ 𝑋 ∈ 𝑍} is unbounded in 𝜆.

Now we answer [9, Question 6.4] of the first author and Goldberg.

Theorem 2.6. Let 𝑈 be a normal, fine ultrafilter on 𝑃𝜅(𝜆). Suppose that 2<𝜆 = 𝜆
and cf(𝜆) > 𝜅. Then ¬Gal(𝑈, 𝜅, 2𝜆).

Proof. Let  = {𝑗𝑈 (𝑌 ) ∩ (sup 𝑗𝑈 [𝜆]) ∶ 𝑌 ⊆ 𝜆}. By Theorem 4.3.4 in [22],
 ∈ 𝑀𝑈 . Let 𝑓 ∶ 𝑃𝜅(𝜆) → 𝑃 (𝑃 (𝜆)) represent  in 𝑀𝑈 , so that 𝑗𝑈 (𝑓 )(𝑗𝑈 [𝜆]) =
. For each 𝑋 ∈ 𝑃𝜅(𝜆) let 𝑋 = 𝑓 (𝑋). We may assume that for every 𝑋,
𝑓 (𝑋) ⊆ 𝑃 (sup(𝑋)). For every 𝑌 ⊆ 𝜆, define

𝐵𝑌 ≔ {𝑋 ∈ 𝑃𝜅(𝜆) ∶ 𝑌 ∩ sup(𝑋) ∈ 𝑋},

then 𝐵𝑌 ∈ 𝑈 as 𝑗𝑈 [𝜆] ∈ 𝑗𝑈 (𝐵𝑌 ) by definition of . We claim that {𝐵𝑌 ∶ 𝑌 ⊆ 𝜆}
witnesses ¬Gal(𝑈, 𝜅, 2𝜆). Otherwise, there is a sequence of distinct ⟨𝑌𝑖 ⊆ 𝜆 ∶ 𝑖 <
𝜅⟩ so that 𝐵 =

⋂

𝑖<𝜅 𝐵𝑌𝑖 ∈ 𝑈 .
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Note that since 𝜆 < 𝑗𝑈 (𝜅), and 𝑗𝑈 (𝜅) is measurable in 𝑀𝑈 , 𝑀𝑈 ⊧ || = 2𝜆 <
𝑗𝑈 (𝜅) so by Lemma 2.4, we can fix 𝜃0 < 𝜅 such that 𝑆𝜃0 is unbounded in 𝜆. For
𝑖 ≠ 𝑗 < 𝜃+0 let 𝛽𝑖,𝑗 be least such that 𝑌𝑖 ⧵ 𝛽𝑖,𝑗 ≠ 𝑌𝑗 ⧵ 𝛽𝑖,𝑗 . Since cf(𝜆) > 𝜅 > 𝜃0,
𝛽∗ ≔ sup𝑖≠𝑗<𝜃+0 (𝛽𝑖,𝑗) < 𝜆, and by our choice of 𝜃0, there is an 𝑋∗ ∈ 𝐵 with
|𝑋∗| ≤ 𝜃0 and sup(𝑋∗) ≥ 𝛽∗. Then the map 𝑖 ↦ 𝑌𝑖 ∩ sup(𝑋∗) is now a one-to-
one map from 𝜃+0 into 𝑋∗ , a contradiction. □

Corollary 2.7. If 2𝜅 = 𝜅+ and 𝑈 is a normal, fine ultrafilter on 𝑃𝜅(𝜅+) then
¬Gal(𝑈, 𝜅, 2𝜅+).

Notice that the assumption cf(𝜆) > 𝜅 is crucial for the argument to work, so that
the supremum of the 𝛽𝑖,𝑗’s is below 𝜆. The case when cf(𝜆) < 𝜅 will admit a much
easier argument.

Normality is crucial to show that the set  is in 𝑀𝑈 to produce the counterex-
ample to the Galvin property. Without normality, we cannot guarantee this, but we
can effectively cover  in the ultrapower if 𝑈 is fine. This yields the following
result:

Theorem 2.8. Let 𝑈 be a fine, 𝜎-complete 𝑃𝜅(𝜆)-ultrafilter where 𝜅 is strong limit,
cf(𝜆) > 𝜅, and 2<𝜆 = 𝜆. Then ¬Gal(𝑈, 𝜅, 2𝜆).

Proof. For each 𝛼 with 𝜅 ≤ 𝛼 < 𝜆, let 𝑓𝛼 ∶ 𝜆 → 𝑃 (𝛼) be a surjection (here we use
2<𝜆 = 𝜆. Since 𝑈 is fine, id𝑈 ⊇ 𝑗𝑈 [𝜆]. It follows that 𝑗𝑈 (𝑓𝛼)[id𝑈 ] ⊇ 𝑗𝑈 [𝑃 (𝛼)].

Now let ⟨𝑓 ∗
𝛼 ∶ 𝛼 < 𝑗𝑈 (𝜆)⟩ = 𝑗𝑈 (⟨𝑓𝛼 ∶ 𝛼 < 𝜆⟩), and set 𝑋𝛼 = 𝑓 ∗

𝛼 [id𝑈 ]. Notice
⟨𝑋𝛼 ∶ 𝛼 < 𝑗𝑈 (𝜆)⟩ is in 𝑀𝑈 : 𝑋𝛼 ⊆ 𝑃 (𝛼)𝑀𝑈 ∈ 𝑀𝑈 and id𝑈 ∈ 𝑀𝑈 , and the
sequence is definable from id𝑈 and ⟨𝑓 ∗

𝛼 ∶ 𝛼 < 𝑗𝑈 (𝜆)⟩. Again, since id𝑈 ⊇ 𝑗𝑈 [𝜆] it
follows that 𝑗𝑈 [𝑃 (𝛼)] ⊆ 𝑋𝑗𝑈 (𝛼).

Let 𝜆∗ = sup 𝑗𝑈 [𝜆]. In 𝑀𝑈 , define the following set.

 = {𝑌 ⊆ 𝜆∗ ∶ 𝑌 ∩ 𝛼 ∈ 𝑋𝛼 for unboundedly many 𝛼 ∈ id𝑈 ∩𝜆∗}

Work in 𝑀𝑈 , we have that | id𝑈 | < 𝑗𝑈 (𝜅) and 𝑗𝑈 (𝜅) is strong limit. Therefore,

|| ≤ |

∏

𝛼∈id𝑈 ∩𝜆∗
𝑋𝛼| ≤ | id𝑈 |

| id𝑈 ∩𝜆∗| < 𝑗𝑈 (𝜅).

By definition of  and elementarity we have 𝑗𝑈 (𝑌 ) ∩𝜆∗ ∈  for all 𝑌 ⊆ 𝜆. To see
this, we will prove that for all 𝛼 ∈ 𝑗𝑈 [𝜆] we have 𝑗𝑈 (𝑌 ) ∩ 𝜆∗ ∩ 𝛼 ∈ 𝑋𝛼. Note that
if 𝛼 = 𝑗𝑈 (𝛽) for some 𝛽 < 𝜆 then

𝑗𝑈 (𝑌 ) ∩ 𝑗𝑈 (𝛽) = 𝑗𝑈 (𝑌 ∩ 𝛽) ∈ 𝑗𝑈 [𝑃 (𝛽)] ⊆ 𝑋𝛽 .

Now let 𝑓 ∶ 𝑃𝜅(𝜆) → 𝑃 (𝑃 (𝜆∗)) represent  in the ultrapower so that

𝑗𝑈 (𝑓 )(id𝑈 ) = .

For each 𝑋 ∈ 𝑃𝜅(𝜆) let 𝑋 = 𝑓 (𝑋). Let 𝑔 represent 𝜆∗ in 𝑀𝑈 , so 𝑗𝑈 (𝑔)(id) = 𝜆∗.
By the previous paragraph, 𝑗𝑈 (𝑌 ) ∩ sup(id𝑈 ) ∈  = 𝑗𝑈 (𝑓 )(id). Reflecting this we
have

∀𝑌 ⊆ 𝜆, 𝐵𝑌 ≔ {𝑋 ∈ 𝑃𝜅(𝜆) ∶ 𝑌 ∩ 𝑔(𝑋) ∈ 𝑋} ∈ 𝑈
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This is true as id𝑈 ∈ 𝑗𝑈 (𝐵𝑌 ) by elementarity and the definition of . We claim
that {𝐵𝑌 ∶ 𝑌 ⊆ 𝜆} witnesses ¬Gal(𝑈, 𝜅, 2𝜆). Otherwise there is ⟨𝑌𝑖 ⊆ 𝜆 ∶ 𝑖 < 𝜅⟩
so that 𝐵 =

⋂

𝑖<𝜅 𝐵𝑌𝑖 ∈ 𝑈 .
By Lemma 2.4, fix 𝜃0 < 𝜅 such that {sup(𝑋) ∶ 𝑋 ∈ 𝐵 and |𝑋| ≤ 𝜃0} is

unbounded in 𝜆. Now for 𝑖 ≠ 𝑗 < 𝜃+0 let 𝛽𝑖,𝑗 be least such that
𝑌𝑖 ⧵ 𝛽𝑖,𝑗 ≠ 𝑌𝑗 ⧵ 𝛽𝑖,𝑗 .

Now take 𝛼∗ > sup𝑖≠𝑗<𝜃+0 (𝛽𝑖,𝑗) below 𝜆 such that there is an 𝑋∗ ∈ 𝐵 with |𝑋∗| ≤
𝜃0 and 𝑔(𝑋∗) = 𝛼∗. Then the map 𝑖 ↦ 𝑌𝑖 ∩ 𝑔(𝑋∗) is a 1-1 map from 𝜃+0 into 𝑋∗ ,
a contradiction. □

Together with Corollary 1.8 we get the following, improving a result of Taylor
[30, Theorem 2.4 (2)] in some cases.

Corollary 2.9. Let 𝜅 be a strong limit cardinal. If 𝑈 is a (𝜅, 𝜆)-regular and 𝜎-
complete ultrafilter over 𝜆 where cf(𝜆) > 𝜅 and 2<𝜆 = 𝜆 then ¬Gal(𝑈, 𝜅, 2𝜆).

Proof. By Corollary 1.8, there is fine ultrafilter 𝑊 on 𝑃𝜅(𝜆) such that 𝑊 ≤𝑅𝐾 𝑈 .
Also, since𝑈 is 𝜎-complete so is𝑊 . By Theorem 2.8, ¬Gal(𝑊 ,𝜅, 2𝜆). By Lemma
2.3, also ¬Gal(𝑈, 𝜅, 2𝜆). □

This corollary is also interesting in the light of the conjecture from [10] that
non-Tukey-top ultrafilters (i.e. those which satisfy the Galvin property) must be
non-regular.

2.2. The case cf(𝜆) < 𝜅. Here the situation trivializes due to a powerful result
of Goldberg, which generalizes a classic result of Solovay. We begin with some
definitions.

Definition 2.10. An ultrafilter 𝑈 on a cardinal 𝜆 is weakly normal if whenever 𝐴 ∈
𝑈 and 𝑓 ∶ 𝐴 → 𝜆 is regressive, then there is a 𝐵 ⊆ 𝐴 in 𝑈 such that |𝑓 [𝐴]| < 𝜆.

Weakly normal ultrafilters admit a nice characterization in the ultrapower (see
[22, Proposition 4.4.23]).

Proposition 2.11. Let 𝜆 be a cardinal. A countably complete, uniform ultrafilter 𝑈
on 𝜆 is weakly normal if and only if id𝑈 is the unique ordinal 𝛼 ≥ sup 𝑗𝑈 [𝜆] such
that 𝛼 ≠ 𝑗𝑈 (𝑓 )(𝛽) for any 𝑓 ∶ 𝜆 → 𝜆 and 𝛽 < 𝛼 (i.e. id𝑈 is the unique generator
of 𝑗𝑈 above 𝑗𝑈 [𝜆]).

Definition 2.12. Let 𝜃 be a cardinal. An ultrafilter 𝑈 on 𝜃 is isonormal if 𝑈 is
weakly normal and 𝑀𝑈 is closed under 𝜃-sequences.

Goldberg gives an exact characterization of when an ultrafilter on a cardinal is
equivalent to a supercompactness measure. Using this characterization, we can
reduce the study of 𝑃𝜅(𝜆) ultrafilters to ultrafilters on cardinals when we are con-
sidering only Rudin-Keisler invariant properties, such as the Galvin property. We
shall use this deep fact again in the next section.

Theorem 2.13 (Goldberg [22, Theorem 4.4.37]). Every normal, fine ultrafilter is
Rudin-Keisler equivalent to a unique isonormal ultrafilter.
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Remark 2.14. The proof of the above theorem also shows the following fact that
we shall use in the next section: suppose 𝑈 a normal, fine ultrafilter on 𝑃𝜅(𝜆) and
cf(𝜆) ≥ 𝜅. Let 𝑊 is the unique isonormal ultrafilter isomorphic to 𝑈 . Then there
is some ordinal 𝜃 such that sup 𝑗𝑈 [𝜆] ≤ 𝜃 < 𝑗𝑈 (𝜆) and 𝑋 ∈ 𝑊 iff 𝜃 ∈ 𝑗𝑈 (𝑋).

This yields an even stronger failure of Galvin’s property in this case.

Theorem 2.15. Let cf(𝜆) < 𝜅 < 𝜆 and 2<𝜆 = 𝜆. If 𝑈 is a normal, fine ultrafilter
on 𝑃𝜅(𝜆) then ¬Gal(𝑈, 𝜅, 2𝜆+).

Proof. Applying Theorem 2.13, 𝑈 is Rudin-Keisler equivalent to an isonormal ul-
trafilter 𝑊 on |𝜃| ≥ 𝜆, where 𝜃 is as in the previous remark. Note that 𝑀𝑈 and
𝑀𝑊 are in fact closed under 𝜆<𝜅-sequences and in this case 𝜆<𝜅 ≥ 𝜆+. Hence we
may derive a normal fine ultrafilter 𝑍 on 𝑃𝜅(𝜆+) from 𝑗𝑊 using 𝑗𝑊 [𝜆+]. Now The-
orem 2.6 applies to 𝑍 and 𝑍 ≤𝑅𝐾 𝑊 ≅𝑅𝐾 𝑈 , so by Lemma 2.3 we may conclude
¬Gal(𝑈, 𝜅, 2𝜆+). □

2.3. The case cf(𝜅) = 𝜆. Here the situation is more complicated, and the only one
yielding a positive result. First we will show that the proof of Galvin’s theorem for
normal filters on a cardinal actually generalizes:

Theorem 2.16. Suppose cf(𝜆) = 𝜅 and 2<𝜆 = 𝜆. Let 𝑈 be a normal, fine ultrafilter
on 𝑃𝜅(𝜆). Then Gal(𝑈, 𝜅, 𝜆+).

Proof. By Theorem 4.4.37 in [22], there is a unique weakly normal ultrafilter 𝑊
on 𝜆 such that 𝑊 ≅𝑅𝐾 𝑈 . Furthermore, 𝑀𝑊 is closed under 𝜆-sequences. We
will show Gal(𝑊 ,𝜅, 2𝜆) holds. Let ⟨𝑋𝑖 ∶ 𝑖 < 𝜆+⟩ ⊆ 𝑊 . For 𝛼 < 𝜆+ and 𝜉 < 𝜆 let

𝐻𝛼,𝜉 = {𝑖 < 𝜆+ ∶ 𝑋𝑖 ∩ 𝜉 = 𝑋𝛼 ∩ 𝜉}

Claim 2.17. There is an 𝛼∗ < 𝜆+ such that |𝐻𝛼∗,𝜉| = 𝜆+ for every 𝜉 < 𝜆.

Proof of claim. Otherwise, for every 𝛼 < 𝜆+ there is 𝜉𝛼 < 𝜆 such that |𝐻𝛼,𝜉𝛼 | ≤ 𝜆.
There must be 𝑋 ⊆ 𝜆+ with |𝑋| = 𝜆+ and a 𝜉∗ < 𝜆 such that 𝜉𝛼 = 𝜉∗ for all
𝛼 ∈ 𝑋. Since 2<𝜆 = 𝜆 and 𝜉∗ < 𝜆 there are fewer than 𝜆 many possibilities for
𝑋𝛼 ∩ 𝜉∗. Hence we may shrink 𝑋 to 𝑋′ ⊆ 𝑋 with |𝑋′

| = 𝜆+ and find a 𝐸∗ ⊆ 𝜉∗
such that 𝑋𝛼 ∩ 𝜉∗ = 𝐸∗ for every 𝛼 ∈ 𝑋′. Then for every 𝛼 ∈ 𝑋′, 𝐻𝛼,𝜉𝛼 = 𝐻𝛼,𝜉∗ .
Denote this set by 𝐻∗. We see that 𝑋′ ⊆ 𝐻∗, but |𝑋′

| is strictly larger than |𝐻∗
|,

a contradiction. ⊣

Let 𝛼∗ be as in the claim. Fix 𝑓 ∶ 𝜆 → 𝜅 so that [𝑓 ]𝑊 = 𝜅. Note that we may
take 𝑓 to be monotone. To see this, let 𝑔∶ 𝜅 → 𝜆 be increasing, continuous, and
cofinal, and assume the range of 𝑔 consists only of cardinals. For every 𝛽 < 𝜆 let
𝑓 (𝛽) = 𝛼 where 𝛼 is least such that 𝑔(𝛼) > 𝛽. Then 𝑓 is clearly weakly monotone.
Now we check that [𝑓 ]𝑊 = 𝜅. As mentioned in Remark 2.14, there is some ordinal
𝜃 strictly between sup 𝑗𝑈 [𝜆] and 𝑗(𝜆) such that

𝑋 ∈ 𝑊 ⟺ 𝜃 ∈ 𝑗𝑈 (𝑋)
So we shall show that 𝑗𝑊 (𝑓 )([id]𝑊 ) = 𝑗𝑈 (𝑓 )(𝜃) = 𝜅. If 𝛼 < 𝜅 then 𝑗𝑈 (𝑔)(𝛼) =
𝑗𝑈 (𝑔(𝛼)) < sup 𝑗𝑈 [𝜆] < 𝜃. Since 𝑔 is continuous, sup 𝑗𝑈 [𝜆] = 𝑗𝑈 (𝑔)(𝜅). Since
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𝑔(𝛼) is always a cardinal, 𝜃 < | sup 𝑗𝑈 [𝜆]|+𝑀𝑈 ≤ 𝑗(𝑔)(𝜅+1). Hence 𝑗𝑈 (𝑓 )(𝜃) = 𝜅,
as desired.

Now for all 𝑖 < 𝜅 choose 𝛽𝑖 ∈ 𝐻𝛼∗,𝑔(𝑖)+1 ⧵ {𝛽𝑗 ∣ 𝑗 < 𝑖} for 𝑖 < 𝜅. We define the
𝑓 -diagonal intersection:

𝐷 = △𝑓
𝑖<𝜅𝑋𝛽𝑖 = {𝜂 < 𝜆 ∣ ∀𝑖 < 𝑓 (𝜂) (𝜂 ∈ 𝑋𝛽𝑖)}

Note that 𝑗𝑊 (𝑋⃗)𝑖 = 𝑗𝑊 (𝑋𝛽𝑖) for all 𝑖 < 𝜅 and 𝑗𝑊 (𝑓 )([id]𝑊 ) = 𝜅, so it follows that
𝑊 is closed under 𝑓 -diagonal intersections. Now it suffices to show that

𝑋𝛼∗ ∩𝐷 ⊆
⋂

𝑖<𝜅
𝑋𝛽𝑖 .

Towards this end suppose 𝜁 ∈ 𝑋𝛼∗ ∩ 𝐷. Fix 𝑖 < 𝜅. If 𝑖 < 𝑓 (𝜁 ) then 𝜁 ∈ 𝑋𝛽𝑖 by
definition of 𝐷. If 𝑖 ≥ 𝑓 (𝜁 ), since 𝜁 ∈ 𝑋𝛼∗ then 𝑋𝛽𝑖 ∩ 𝜆𝑖 + 1 = 𝑋𝛼∗ ∩ 𝜆𝑖 + 1, so
𝜁 ∈ 𝑋𝛽𝑖 . □

We cannot use the strategy in the proof of Theorem 2.6 since the cofinality of 𝜆
is too small in this case to show the failure of Galvin’s property in the same way.
However we can use a simple counting argument to show some failure of Galvin’s
property. The following proof was shown to the second author by Goldberg.

Theorem 2.18. Suppose cf(𝜆) = 𝜅 and 2<𝜆 = 𝜆. Let 𝑈 be a normal, fine ultrafilter
on 𝑃𝜅(𝜆). Then ¬Gal(𝑈, (2𝜅)+, 2𝜆).

Proof. Let 𝑊 be the isonormal ultrafilter on 𝜆 that is RK-equivalent to 𝑈 . Let
𝜆∗ ≔ sup(𝑗𝑈 [𝜆]) and  = ⟨𝑗𝑈 (𝑆) ∩ 𝜆∗ ∣ 𝑆 ⊆ 𝜆⟩. By Theorem 2.13,  ∈ 𝑀𝑊
and let  = [𝛽 ↦ 𝛽]𝑊 . We may assume that for every 𝛽 < 𝜆, |𝛽| < 𝜅. Let
⟨𝑋𝛼 ∣ 𝛼 < 2𝜆⟩ be a one-to-one enumeration of subsets of 𝜆. For 𝛼 < 𝜆 let

𝐵𝛼 = {𝛽 < 𝜆 ∶ 𝑋𝛼 ∩ 𝛽 ∈ 𝛽}

Suppose towards a contradiction that there is some 𝐼 ⊆ 2𝜆 such that |𝐼| = (2𝜅)+
and 𝐵 ≔

⋂

𝛼∈𝐼 𝐵𝛼 ∈ 𝑈 . Let 𝐶 ⊆ 𝐵 be cofinal in 𝜆 with 𝑜𝑡(𝐶) = 𝜅. Now consider

𝑓 ∶ 𝐼 →
∏

𝛽∈𝐶
𝛽

𝛼 ↦ ⟨𝑋𝛼 ∩ 𝛽 ∣ 𝛽 ∈ 𝐶⟩

Then 𝑓 is a well-defined injection by the definition of 𝐵 but |𝐼| = (2𝜅)+ and the
above product has size 2𝜅 , a contradiction. □

The above proof shows that the sets ⟨𝐵𝛼 ∣ 𝛼 < 2𝜆⟩ have the following property:
For any 𝐼 ∈ [2𝜆](2𝜅 )+ ,

⋂

𝛼∈𝐼 𝐵𝛼 must be bounded in 𝜆.

2.4. Possible strengthenings. Under the assumptions that 2<𝜆 = 𝜆, the Galvin
property for a normal fine ultrafilter on 𝑃𝜅(𝜆) is fully settled when cf(𝜆) ≠ 𝜅. For
cf(𝜆) = 𝜅, there is still one last case:

Question 2.19. Let 𝑈 be a normal fine ultrafilter on 𝑃𝜅(𝜆), where cf(𝜆) = 𝜅. Must
Gal(𝑈, 2𝜅 , 2𝜆) hold? Must Gal(𝑈, 2𝜅 , 2𝜆) fail?
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We conjecture that the answer is independent. Another question we would like
to address is the necessity of the assumptions of Theorem 2.8 (or rather its corollary
2.9) regarding𝑈 being a (𝜅, 𝜆)-regular 𝜎-complete ultrafilter on𝑃𝜅(𝜆). The cardinal
arithmetic assumptions of this theorem will be considered in Section 3.3.

Let us consider the fineness assumption. There is a simple counter example if
we take 𝜆 to be much larger than 𝜅.

Example 2.20. Suppose 𝜅 < 𝜆 are measurable cardinals, and let 𝑈0, 𝑈1 be normal
ultrafilters on 𝜅 and 𝜆 respectively. Let 𝑊 be an ultrafilter over 𝜆 which is Rudin-
Keisler equivalent to the product ultrafilter 𝑈0 ⋅𝑈1 on 𝜅 ×𝜆. So 𝑊 is a 𝜅-complete
ultrafilter on 𝜆 and 2<𝜆 = 𝜆 but 𝑊 satisfies Gal(𝑈, 𝜆, 𝜆+). Indeed, if ⟨𝐴𝛼 ∣ 𝛼 <
𝜆+⟩ ⊆ 𝑈 , then for each 𝛼 we can find 𝐴𝛼,0 ∈ 𝑈0 and 𝐴𝛼,1 ∈ 𝑈1 such that 𝐴𝛼,0 ×
𝐴𝛼,1 ⊆ 𝐴𝛼. We can now stabilize 𝐴𝛼,0 for many 𝛼’s, so we assume without loss of
generality that 𝐴𝛼,0 = 𝑋0 ∈ 𝑈0 for every 𝛼 < 𝜆+. Now we apply Galvin’s theorem
for the normal measure 𝑈1 on 𝜆, to find 𝐼 ∈ [𝜆+]𝜆 such that 𝑋1 =

⋂

𝑖∈𝐼 𝐴𝛼,1 ∈ 𝑈1.
It follows that 𝑋0 ×𝑋1 ⊆

⋂

𝛼∈𝐼 𝐴𝛼, as wanted.

For ultrafilters over successor cardinals we need to work a bit harder. We can
use recent results [10] regarding the consistency of non-Tukey-top ultrafilters on
successor cardinals. For the convenience of the reader, we translate the results to
our settings.

Theorem 2.21 (Essentially [10, Thm. 5.4]). Let 𝜈<𝜈 = 𝜈. Suppose that 2𝜈 < 2𝜈+

and that there is a normal 𝜈+-dense ideal3 on 𝜈+. Then there is a uniform ultrafilter
𝑈 on 𝜈+ such that Gal(𝑈, 𝜈+, 2𝜈+).

Note that the ultrafilter produced by the above theorem is non-(𝜈, 𝜈+)-regular.
The consistency of dense ideals on small cardinals was proven to be consistent by
Woodin [33], and recent results of Eskew and Hayut [16] made significant progress
in the study of such ideals.

Theorem 2.22 ([16]). It is consistent (relative to large cardinals) that GCH holds
and for every 𝑛 < 𝜔 there is a uniform, normal 𝜔𝑛+1-dense ideal on 𝜔𝑛+1.

This gives the consistency of an ultrafilter on a successor cardinal which satisfies
the Galvin property; however, it is unclear if this could be made the successor of a
supercompact cardinal:

Question 2.23. Is it consistent to have a normal 𝜅+-dense ideal on 𝜅+ where 𝜅 is
𝜅+-supercompact?

3. SOME APPLICATIONS

3.1. The Ultrapower Axiom. Here we present some results on the Galvin property
under the Ultrapower Axiom. First a concept that will be vital to the proof of the
next theorem.

3An ideal 𝐼 on 𝜌 is called 𝜇-dense if 𝑃 (𝜌)∕𝐼 has a dense subset of size 𝜇.
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Definition 3.1. A nonprincipal 𝜎-complete ultrafilter 𝑈 is irreducible if whenever
there is an ultrafilter 𝑊 and 𝑊 ′ ∈ 𝑀𝑊 such that (𝑀𝑊 ′)𝑀𝑊 = 𝑀𝑈 , either 𝑊 is
principal or 𝑊 ≤𝑅𝐾 𝑈 .

Theorem 3.2. (UA) Let 𝑈 be a 𝜎-complete ultrafilter on 𝜅+. Then there is a fine,
𝜎-complete ultrafilter 𝐹 on 𝑃𝜅(𝜅+) such that 𝐹 ≤𝑅𝐾 𝑈 .

Proof. Let 𝑈 be a 𝜎-complete ultrafilter on 𝜅+. By Theorem 8.2.24 in [22] there is
an ordinal 𝜆 < 𝜅+ and an ultrafilter 𝐷 on 𝜆 with 𝐷 ≤𝑅𝐾 𝑈 such that 𝑗𝐷(𝑈 ) = 𝑊
is a 𝑗𝐷(𝜅+)-irreducible ultrafilter and 𝑗𝑈 = 𝑗𝑀𝐷

𝑊 ◦𝑗𝐷. By Theorem 8.2.22 in [22]
𝑗𝑀𝐷
𝑊 is a 𝑗𝐷(𝜅+) supercompactness embedding from the perspective of 𝑀𝐷. Hence
𝑗𝑀𝐷
𝑊 [𝑗𝐷(𝜅+)] ∈ 𝑀𝑈 . Now define an ultrafilter 𝐹 on 𝑃𝜅(𝜅+) by

𝑋 ∈ 𝐹 ⟺ 𝑗𝑀𝐷
𝑊 [𝑗𝐷(𝜅+)] ∈ 𝑗𝑈 (𝑋)

then𝐹 is 𝜎-complete. To see that𝐹 is fine, notice 𝑗𝐷(𝜅+) > 𝜅+ we have 𝑗𝑀𝐷
𝑊 [𝑗𝐷(𝜅+)] ⊇

𝑗𝑈 [𝜅+]. Also 𝑗𝑈 (𝜅) = 𝑗𝑊 (𝑗𝐷(𝜅)) > 𝑗𝐷(𝜅+) since 𝑗𝑊 (𝜅) > 𝜅+. Hence

|𝑗𝑀𝐷
𝑊 [𝑗𝐷(𝜅+)]|𝑀𝑈 = |𝑗𝐷(𝜅+)|𝑀𝑈 < 𝑗𝑈 (𝜅).

Since 𝑗𝑀𝐷
𝑊 [𝑗𝐷(𝜅+)] covers 𝑗𝑈 [𝜅+] and has size less than 𝑗𝑈 (𝜅) we conclude that

𝐹 is fine. Furthermore 𝐹 ≤𝑅𝐾 𝑈 since 𝐹 was derived using 𝑗𝑈 . □

This yields an improvement of [9, Cor. 6.2].

Corollary 3.3. (UA) Let 𝑈 be a 𝜎-complete ultrafilter on 𝜅+. If 2𝜅 = 𝜅+ then
¬Gal(𝑈, 𝜅, 2𝜅+).

3.2. Density of Old Sets. The failure of the Galvin property for supercompactness
measures allows us to generalize a result of Gitik [20] and Benhamou-Garti-Poveda
[5] on ground model sets after Prikry forcing over a measurable cardinal. First we
start by recalling the definition of the supercompact Prikry forcing (see [21]).

Definition 3.4. Let 𝑥, 𝑦 ∈ 𝑃𝜅(𝜆) we say 𝑥 is strongly below 𝑦, written 𝑥 ≺ 𝑦, iff
𝑥 ⊆ 𝑦 and |𝑥| < |𝜅 ∩ 𝑦|.

Definition 3.5. Let 𝑈 be a normal ultrafilter on 𝑃𝜅(𝜆). The supercompact Prikry
forcing consists of ⟨𝑥⃗, 𝐴⟩ where 𝑥⃗ is a finite ≺-increasing sequence of elements in
𝑃𝜅(𝜆) and 𝐴 ∈ 𝑈 is such that max≺(𝑥⃗) ≺ 𝑎 for all 𝑎 ∈ 𝐴. We set ⟨𝑥⃗, 𝐴⟩ ≤ ⟨𝑦, 𝐵⟩
if the following hold:

(1) 𝑥⃗ is an end-extension of 𝑦.
(2) 𝐴 ⊆ 𝐵.
(3) Whenever |𝑦| < 𝑖 ≤ |𝑥⃗|, 𝑥𝑖 ∈ 𝐵 ⧵ 𝐴.

Theorem 3.6. Assume 2<𝜆 = 𝜆 and cf(𝜆) ≠ 𝜅. Suppose 𝑈 is a normal 𝑃𝜅(𝜆)
ultrafilter, and let ℙ be the supercompact Prikry forcing with respect to 𝑈 . In 𝑉 [𝐺],
there is a set 𝑆 ⊆ 2𝜆 that contains no ground model set of size 𝜅.

Proof. By Theorem 2.6, in 𝑉 there is ⟨𝐴𝛼 ∶ 𝛼 < 2𝜆⟩ ⊆ 𝑈 such that no intersection
of 𝜅 many 𝐴𝛼’s lies in 𝑈 . An easy density argument ensures that for every 𝛼 < 2𝜆
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there is 𝑛𝛼 < 𝜔 such that for every 𝑚 > 𝑛𝛼, 𝑋𝑚 ∈ 𝐴𝛼. Since cf(2𝜆) > 𝜔, there
is 𝑆 ∈ [2𝜆]2𝜆 , and 𝑛∗ < 𝜔 such that for every 𝛼 ∈ 𝑆, 𝑛𝛼 = 𝑛∗. This means
that {𝑋𝑚 ∣ 𝑚 < 𝑛∗} ⊆

⋂

𝛼∈𝑆 𝐴𝛼. We will show 𝑆 contains no ground model
set of size 𝜅. Otherwise 𝑇 ∈ [𝑆]𝜅 in 𝑉 , then by the failure of Galvin’s property,
⋂

𝛼∈𝑇 𝐴𝛼 ∉ 𝑈 . On the other hand, {𝑋𝑚 ∣ 𝑚 > 𝑛∗} ⊆
⋂

𝛼∈𝑇 𝐴𝛼. However, since
𝜅⧵(

⋂

𝛼∈𝑇 𝐴𝛼) ∈ 𝑈 , the same density argument as before yield that for some 𝑛′ < 𝜔,
for every 𝑚 > 𝑛′, 𝑋𝑚 ∉

⋂

𝛼∈𝑇 𝐴𝛼, this is a contradiction. □

We will give some example conclusions we may draw from this theorem. Let 𝐺
be generic for the supercompact Prikry forcing, and let 𝑋 ∈ 𝑉 [𝐺] ⧵ 𝑉 such that
𝑋 ⊆ 𝑉 [𝐺]. Let 𝜂 = |𝑋|. Then:

(1) If 𝐶 =
⋃

{𝑥⃗ ∶ ⟨𝑥⃗, 𝐴⟩ ∈ 𝐺} is the Prikry sequence, then 𝐶 contains no
infinite ground model set.

(2) If 𝜃 is any cardinal of 𝑉 [𝐺] of countable cofinality, then 𝜃 has a subset of
size 𝜃 with no ground model subset of the same cardinality.

(3) If 𝜔 < cf𝑉 (𝜂) < 𝜅, then 𝑋 contains a ground model set of size 𝜂.
(4) If 𝜅 < cf(𝜂) ≤ 2𝜆 then 𝑋 contains ground model subsets of every cardinal-

ity < 𝜅, but no ground model set of size 𝜅.
(5) If cf(𝜂) > 2𝜆 then 𝑋 contains a ground model set of the same size.

Remark 3.7. If 𝑈 is a supercompactness measure on 𝑃𝜅(𝜆) then there is a Rudin-
Keisler projection from 𝑈 to a normal measure on 𝜅, via 𝑥 ↦ |𝑥 ∩ 𝜅|. This can be
lifted to a projection from the supercompact Prikry forcing with 𝑈 to the classical
Prikry forcing with a normal measure on 𝜅. Hence any new sets with no large
ground model subsets added by the classical Prikry forcing will also persist into the
supercompact Prikry extension. Hence, Gitik’s analysis of the density of old sets in
a usual Prikry extension can be used. In fact, if 𝑈 is 2𝜅-supercompact, then any 𝜅-
complete ultrafilter on 𝜅 is a Rudin-Keisler projection of 𝑈 and the Rudin-Keisler
projection induces a projection of the corresponding forcings.

3.3. Generating Sets of 𝑃𝜅(𝜆)-Measures. Recall that given an ultrafilter 𝑈 on a
set 𝑋, and a filter 𝐹 , we say that  ⊆ 𝑈 is an ⊆𝐹 -base for 𝑈 if for every 𝐴 ∈ 𝑈
there is 𝐵 ∈  such that 𝐵 ⊆ 𝐴 (mod 𝐹 ), namely, there is 𝐶 ∈ 𝐹 such that
𝐵∩𝐶 ⊆ 𝐴. When 𝑈 is an ultrafilter over a cardinal 𝜇, we usually consider 𝐹 = {𝜅}
or 𝐹 being the co-bounded filter on 𝜅, in which case ⊆ (mod 𝐹 ) translates to ⊆
and ⊆∗ respectively. However, on 𝑃𝜅(𝜆)-measures, there is another natural ideal to
consider– the fine ideal. Let

𝜒𝐹 (𝑈 ) = min{|| ∣  is a ⊆𝐹 -base for 𝑈}
The following is well-known (see for example [18, Claim 1.2]):

Lemma 3.8. No uniform ultrafilter over 𝑋 has a ⊆-base consisting of |𝑋|-many
sets.

An immediate corollary is:

Corollary 3.9. Let 𝑈 be a uniform ultrafilter on 𝑋 and 𝐹 a filter over 𝑋. Suppose
that 𝐹 ⊆ 𝑈 , and 𝐹 is generated by |𝑋|-many sets, then 𝜒𝐹 (𝑈 ) = 𝜒(𝑈 ).
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The way our results connect to the above is by using the following lemma:

Lemma 3.10 (Folklore). Let 𝜆 be a regular cardinal and 𝑈 an ultrafilter on 𝜆.
Suppose that 𝑈 satisfy ¬Gal(𝑈, 𝜆, 𝜆). Then 𝜒(𝑈 ) ≥ 𝜆.

Proof. Let ⟨𝐴𝛼 ∣ 𝛼 < 𝜆⟩ ⊆ 𝑈 witness that ¬Gal(𝑈, 𝜆, 𝜆). Towards a contradiction,
if 𝜒(𝑈 ) < 𝜆, let ⟨𝑋𝛽 ∣ 𝛽 < 𝜃⟩ ⊆ 𝑈 be a ⊆-base for 𝑈 for some 𝜃 < 𝜆. For
each 𝛼 < 𝜆, we find 𝛽𝛼 < 𝜃 such that 𝑋𝛽𝛼 ⊆ 𝐴𝛼. By the regularity of 𝜆, we can
find a single 𝛽∗ ans 𝑆 ∈ [𝜆]𝜆 such that for every 𝛼 ∈ 𝑆, 𝛽𝛼 = 𝛽∗. It follows that
𝑋𝛽∗ ⊆

⋂

𝛼∈𝑆 𝐴𝛼, contradicting that ⟨𝐴𝛼 ∣ 𝛼 < 𝜆⟩ witnesses ¬Gal(𝑈, 𝜆, 𝜆). □

Corollary 3.11. If 𝑈 is a 𝜎-complete (𝜅, 𝜆)-regular ultrafilter over 𝜆, 𝜅 being a
strong limit and 2<𝜆 = 𝜆, then 𝜒(𝑈 ) = 2𝜆.

Next, let us show that 2<𝜆 = 𝜆 cannot be dropped from Theorem 2.8. Towards
that, we need the following theorem:

Theorem 3.12 (Raghavan-Shelah [29]). Suppose that 𝜅<𝜅 = 𝜅, and 𝜅 < 𝑐𝑓 (𝜇) <
𝜆 < 𝜇, where 𝜇 is a strong limit cardinal and suppose 𝑈 is a cf(𝜇)-indecomposable
ultrafilter over 𝜆. If 𝐺 ⊆ Add(𝜅, 𝜇) is a 𝑉 -generic filter, any extension of 𝑈 to a
𝑉 [𝐺]-ultrafilter 𝑈∗ is generated by 𝜇-many sets.

Corollary 3.13. Let 𝜅 be a Laver-indestructible supercompact cardinal 4 and let
𝜆 > 𝜅 be a regular cardinal such that there is 𝜆-complete fine ultrafilter 𝑈 over
𝑃𝜆(𝜆+). Then in 𝑉 [𝐺], there is a 𝜅-complete fine ultrafilter 𝑈∗ on 𝑃𝜆(𝜆+) such that
Gal(𝑈∗, 2𝜆+ , 2𝜆+). In particular Gal(𝑈∗, 𝜅, 2𝜆+).

Proof. Let 𝑈̄ be the filter generated by 𝑈 in 𝑉 [𝐺]. Since Add(𝜅, 𝜆+𝜅+) is 𝜅-closed,
𝑈̄ is a 𝜅-complete filter, and since 𝜅 is indestructible, in 𝑉 [𝐺], we can extend 𝑈̄
to a 𝜅-complete ultrafilter 𝑈∗ on 𝑃𝜆(𝜆+). To see that 𝑈∗ remains fine, it suffices
to use the fineness of 𝑈 and note that {𝐴 ∈ 𝑃𝜆(𝜆+) ∣ 𝛼 ∈ 𝐴}𝑉 ⊆ {𝐴 ∈ 𝑃𝜆(𝜆+) ∣
𝛼 ∈ 𝐴}𝑉 [𝐺]. It remains to see that Gal(𝑈∗, 2𝜆+ , 2𝜆+) holds, since 𝑈 is 𝜆-complete,
it is in particular 𝜅+-complete, so we may apply Theorem 3.12, to conclude that the
extension 𝑈∗ of 𝑈 is generated by 𝜆+𝜅+-many sets. Also note that in 𝑉 [𝐺], 2𝜆+ =
𝜆+𝜅++1. By Lemma 3.10, we conclude that Gal(𝑈∗, 2𝜆+ , 2𝜆+) holds, as desired. □

4. ON GENERATING SETS MODULO THE FINE FILTERS

In this section we discuss two results concerning generating sets of a fine filter
with respect to ⊆Fine(𝜅,𝜆), where Fine(𝜅, 𝜆) is the fine filter defined as follows:

Definition 4.1. The fine filter Fine(𝜅, 𝜆) is the filter generated by sets for the form
{𝑋 ∈ 𝑃𝜅(𝜆) ∣ 𝑖 ∈ 𝑋} for some 𝑖 < 𝜆. For 𝑋, 𝑌 ∈ 𝑃𝜅(𝜆) we say 𝑋 ⊆Fine(𝜅,𝜆) 𝑌 if
there is some 𝐴 ∈ Fine(𝜅, 𝜆) such that 𝑋 ∩ 𝐴 ⊆ 𝑌 . When 𝜅 and 𝜆 are clear from
context, we will simply write 𝑋 ⊆ 𝑌 .

Note that by Corollary 3.9, we have that 𝜒Fine(𝜅,𝜆)(𝑈 ) = 𝜒(𝑈 ).

4That is, after any 𝜅-directed forcing, 𝜅 remains supercompact [26].
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4.1. The revised Galvin property. One may argue that the problem of gener-
alizing Galvin’s theorem to normal 𝑃𝜅(𝜆)-ultrafilters is that the wrong version of
Galvin’s property was used. In this section, we present two possible ways the the-
ory generalizes if one uses the inclusion modulo the fine ideal.

Definition 4.2. Let 𝑈 be a fine ultrafilter on 𝑃𝜅(𝜆). Gal∗(𝑈, 𝜇, 𝜇′) is the statement
that from any 𝜇′-many sets in 𝑈 there are 𝜇-many which have a lower bound in ⊆ .
In other words, given ⟨𝐴𝛼 ∶ 𝛼 < 𝜇′

⟩ ⊆ 𝑈 there is some 𝐼 ⊆ 𝜇′ with |𝐼| = 𝜇 and
𝐴∗ ∈ 𝑈 such that whenever 𝛼 ∈ 𝐼 , 𝐴∗ ⊆ 𝐴𝛼.

Definition 4.3. Let 𝐹 be a filter on a set 𝐷. Suppose  is a family of subsets of 𝐷
such that whenever 𝐴0,… , 𝐴𝑛−1 ∈ ,

⋂

𝑖<𝑛𝐴𝑖 ∈ 𝐹+. Then we denote by 𝐹 []
the minimal filter such that 𝐹 ∪ ⊆ 𝐹 [].

There are limitations on the variation of Galvin’s property that can hold. The
following limitation is a slight modification of [3, Thm. 4.3]:

Corollary 4.4. Let 𝑈 be a fine ultrafilter on 𝑃𝜅(𝜆) and let 𝜇 = cf(𝜒(𝑈 )). Then
¬Gal∗(𝑈, 𝜇, 𝜇). In particular, if 2𝜆 = 𝜆+ then ¬Gal∗(𝑈, 𝜆+, 𝜆+).

Proof. Let ⟨𝑋𝑖 ∶ 𝑖 < 𝜒 (𝑈 )⟩ be a ⊆ -base for 𝑈 . By Lemma 3.8, 𝜒 (𝑈 ) =
𝜒(𝑈 ) ≥ 𝜆+. By thinning out the ⊆ -base, we may assume that for any 𝑗 < 𝜒(𝑈 ),
𝑋𝑗 ∉ Fine(𝜅, 𝜆)[⟨𝑋𝑖 ∶ 𝑖 < 𝑗⟩] , namely 𝑋𝑖 ⊈ 𝑋𝑗 for any 𝑖 < 𝑗. Now let ⟨𝛼𝑖 ∣ 𝑖 <
cf(𝜒(𝑈 ))⟩ be increasing and cofinal in 𝜒(𝑈 ). We claim that ⟨𝑋𝛼𝑖 ∣ 𝑖 < cf(𝜒(𝑈 ))⟩
witnesses that ¬Gal∗(𝑈, 𝜆, 𝜆). Otherwise, there is 𝐼 unbounded in cf(𝜒(𝑈 )) such
that {𝑋𝛼𝑖 ∣ 𝑖 ∈ 𝐼} has a ⊆ -lower bound 𝑋 ∈ 𝑈 . Then there is 𝑗 < cf(𝜒(𝑈 )) such
that 𝑋𝑗 ⊆ 𝑋. Since ⟨𝛼𝑖 ∣ 𝑖 < cf(𝜒(𝑈 ))⟩ is cofinal and 𝐼 is unbounded, there is
𝑖 ∈ 𝐼 such that 𝑗 < 𝛼𝑖. But this is impossible since this would mean that 𝑋𝑗 ⊆
𝑋 ⊆ 𝑋𝛼𝑖 , contradicting the choice that 𝑋𝛼𝑖 ∉ Fine(𝜅, 𝜆)[⟨𝑋𝑗 ∣ 𝑗 < 𝛼𝑖⟩]. □

Definition 4.5. We say that a fine ultrafilter 𝑈 on 𝑃𝜅(𝜆) is a 𝑃𝜇-point if every col-
lection ⟨𝑋𝑖 ∣ 𝑖 < 𝜌⟩ ⊆ 𝑈 such that 𝜌 < 𝜇 there is a set 𝐴 ∈ 𝑈 such that for every
𝑖 < 𝜌, 𝐴 ⧵𝑋𝑖 ∈ Fine(𝜅, 𝜆)∗, where Fine(𝜅, 𝜆)∗ is the ideal dual to Fine(𝜅, 𝜆).

For successor cardinals, Ketonen [2] has another definition of a 𝑝-point which
differs from this one.

Proposition 4.6. If 𝑈 is a normal fine ultrafilter then 𝑈 is a 𝑃𝜆+-point.

Proof. Let 𝜌 < 𝜆+ and let ⟨𝑋𝑖 ∶ 𝑖 < 𝜌⟩ ⊆ 𝑈 . Let ⟨𝑋𝑖𝜈 ∣ 𝜈 < 𝜆⟩ be a re-enumeration
of order-type 𝜆. Let

𝐴 = △𝜈<𝜆𝑋𝑖𝜈 = {𝑥 ∈ 𝑃𝜅(𝜆) ∶ 𝑥 ∈
⋂

𝜈∈𝑥
𝑋𝑖𝜈}.

Then 𝐴 ∈ 𝑈 by normality. Furthermore, for each 𝑖 < 𝜌 we find 𝜈 < 𝜆 such that
𝑖 = 𝑖𝜈 . Then,

𝐴 ⧵𝑋𝑖 = 𝐴 ⧵𝑋𝑖𝜈 ⊆ {𝑥 ∶ 𝑖𝜈 ∉ 𝑥} ∈ Fine(𝜅, 𝜆)∗.
□

It is easy to see that the following holds:
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Proposition 4.7. If 𝑈 is a 𝑃𝜆+-point then Gal∗(𝑈, 𝜆, 𝜆).

Let us provide some analogies to the usual characterization of 𝑝-points using
partitions:

Proposition 4.8. Let 𝑈 be a fine ultrafilter on 𝑃𝜅(𝜆). The following are equivalent:
(1) 𝑈 is a 𝑃𝜆+-point.
(2) Whenever ⟨𝑋𝑖 ∶ 𝑖 < 𝜆⟩ ⊆ 𝑃 (𝑃𝜅(𝜆)) either there is 𝑗 < 𝜆 such that 𝑋𝑗 ∈ 𝑈

or else there is an 𝑋 ∈ 𝑈 such that 𝑋 ∩𝑋𝑖 ∈ Fine(𝜅, 𝜆) for all 𝑖 < 𝜆.

Proof. Assume 𝑈 is a 𝑃𝜆+-point and let ⟨𝑋𝑖 ∣ 𝑖 < 𝜆⟩ ⊆ 𝑃 (𝑃𝜅(𝜆) be such that for
every 𝑖 < 𝜆, 𝑋𝑖 ∉ 𝑈 . Then ⟨𝑋𝑐

𝑖 ∣ 𝑖 < 𝜆⟩ ⊆ 𝑈 . By (1), there is 𝑋 ∈ 𝑈 such that
𝑋 ⊆ 𝑋𝑐

𝑖 for each 𝑖. This means that 𝑋 ∩ 𝑋𝑖 ∈ Fine(𝜅, 𝜆) for every 𝑖 < 𝜆. The
other direction is similar.

□

The variation of Galvin’s theorem we obtain here is with respect to the following
special kind of intersection:

Definition 4.9. Let ⟨𝐴𝑥 ∣ 𝑥 ∈ 𝑃𝜅(𝜆)⟩ ⊆ 𝑃𝜅(𝜆). The cone intersection of the
sequence ⟨𝐴𝑥 ∣ 𝑥 ∈ 𝑃𝜅(𝜆)⟩ ⊆ 𝑃𝜅(𝜆), is the set

⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝑥 = {𝑦 ∈ 𝑃𝜅(𝜆) ∣ ∀𝑥 ∈ 𝑃𝜅(𝜆), (𝑥 ≺ 𝑦 ∨ 𝑦 ⊆ 𝑥) ⇒ 𝑦 ∈ 𝐴𝑥}

Clearly, the cone intersection satisfies:
⋂

𝑥∈𝑃𝜅 (𝜆)
𝐴𝑥 ⊆ ⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝑥 ⊆ Δ𝑥∈𝑃𝜅 (𝜆)𝐴𝑥

For example, if 𝐴𝑥 = {𝑧 ∈ 𝑃𝜅(𝜆) ∣ 𝑥 ⊆ 𝑧}, then for every 𝑦 ∈ 𝑃𝜅(𝜆), there is
𝑦 ⊊ 𝑥, which means that 𝑦 ∉ 𝐴𝑥, and in turn 𝑦 ∉ ⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝑥, i.e. ⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝑥 = ∅.
If follows that normal measures on 𝑃𝜅(𝜆) are not in general closed under cone inter-
sections of their elements. Nonetheless, we have the following analogy of Galvin’s
theorem:

Theorem 4.10. Suppose that 𝜆<𝜅 = 𝜆 and let 𝑈 be a normal fine ultrafilter over
𝑃𝜅(𝜆). Then for any ⟨𝐴𝛼 ∣ 𝛼 < 𝜆+⟩ ⊆ 𝑈 there are sets 𝐻𝑥 ∈ [𝜆+]𝜆+ for 𝑥 ∈ 𝑃𝜅(𝜆)
such that for every choice ⟨𝛼𝑥 ∣ 𝑥 ∈ 𝑃𝜅(𝜆)⟩ ∈

∏

𝑥∈𝑃𝜅 (𝜆)
𝐻𝑥, ⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝛼𝑥 ∈ 𝑈 .

Proof. For each 𝑥 ∈ 𝑃𝜅(𝜆) and 𝛼 < 𝜆+ let

𝐻𝛼,𝑥 = {𝛽 < 𝜆+ ∣ 𝐴𝛽 ∩ 𝑃 (𝑥) = 𝐴𝛼 ∩ 𝑃 (𝑥)}

Claim 4.11. There is 𝛼∗ < 𝜆+ such that for every 𝑥 ∈ 𝑃𝜅(𝜆), |𝐻𝛼∗,𝑥| = 𝜆+.

Proof of Claim. Otherwise, for each 𝛼 < 𝜆+ there is 𝑥𝛼 such that |𝐻𝛼,𝑥𝛼 | ≤ 𝜆.
Since 𝜆<𝜅 = 𝜆, there is 𝑆 ∈ [𝜆+]𝜆+ and 𝑥∗ ∈ 𝑃𝜅(𝜆) such that for every 𝛼 ∈ 𝑆,
𝑥𝛼 = 𝑥∗. Next, note that the value of 𝐴𝛼 ∩ 𝑃 (𝑥∗) has 22|𝑥

∗
|-many possibilities.

Since 𝜆<𝜅 = 𝜆, there is 𝐴∗ ⊆ 𝑃 (𝑥∗) and 𝑆′ ∈ [𝑆]𝜆+ such that for every 𝛼 ∈ 𝑆′,
𝐴𝛼 ∩ 𝑃 (𝑥∗) = 𝐴∗. But this is impossible, since if 𝛼 ∈ 𝑆′, then on one hand
|𝐻𝛼,𝑥𝛼 | ≤ 𝜆, on the other hand, 𝑆′ ⊆ 𝐻𝛼,𝑥𝛼 . □
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Fix 𝛼∗ as in the claim above and let 𝐻𝑥 = 𝐻𝛼∗,𝑥. For every 𝑥 ∈ 𝑃𝜅(𝜆),
choose 𝛼𝑥 ∈ 𝐻𝛼∗,𝑥 and let 𝐴𝑥 = 𝐴𝛼𝑥 . To see that ⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝑥 ∈ 𝑈 , we prove
that id𝑈 = 𝑗𝑈 [𝜆] ∈ 𝑗𝑈 (⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝑥) = (⧖𝑥∈𝑃𝑗(𝜅)(𝑗(𝜆))𝐴

′
𝑥))

𝑀𝑈 , where 𝑗𝑈 (⟨𝐴𝑥 ∣
𝑥 ∈ 𝑃𝜅(𝜆)⟩) = ⟨𝐴′

𝑥 ∣ 𝑥 ∈ 𝑃𝑗(𝜅)(𝑗(𝜆))𝑀𝑈
⟩. Towards this, following the defini-

tion of the cone intersection, let 𝑥 ≺ 𝑗𝑈 [𝜆], then there is 𝑦 ∈ 𝑃𝜅(𝜆) such that
𝑗𝑈 (𝑦) = 𝑗𝑈 [𝑦] = 𝑥. In particular, 𝐴′

𝑥 = 𝑗𝑈 (𝐴𝑦) and since 𝐴𝑦 ∈ 𝑈 , id𝑈 ∈ 𝑗𝑈 (𝐴𝑦).
For the second part of the definition of (⧖𝑥∈𝑃𝜅 (𝜆)𝐴

′
𝑥)

𝑀𝑈 , let 𝑦 ∈ (𝑃𝑗(𝜅)(𝑗(𝜆)))𝑀𝑈

such that id𝑈 ⊆ 𝑦. By elementarity and the choice of the sequence ⟨𝛼𝑥 ∣ 𝑥 ∈
𝑃𝜅(𝜆)⟩, 𝑀𝑈 ⊧ 𝑗𝑈 (𝐴𝛼∗) ∩ 𝑃 (𝑦) = 𝐴𝑦 ∩ 𝑃 (𝑦). Since id𝑈 ⊆ 𝑦 we conclude that
id𝑈 ∈ 𝑗𝑈 (𝐴∗) ∩ 𝑃 (𝑦) and therefore in 𝐴𝑦. It follows that id𝑈 ∈ 𝑗𝑈 (⧖𝑥∈𝑃𝜅 (𝜆)𝐴𝑥), as
wanted. □

Remark 4.12. The above generalizes Galvin’s theorem in the following sense: a
normal ultrafilter 𝑈 on a measurable cardinal 𝜅 can be identified as a normal fine
ultrafilter on 𝑃𝜅(𝜅) which concentrates on the set of ordinals 𝜅 ⊆ 𝑃𝜅(𝜅). Now the
above theorem says that if we take ⟨𝐴𝛼 ∣ 𝛼 < 𝜅+

⟩ ⊆ 𝑈 , then there are 𝐻𝑥 ∈ [𝜅+]𝜅+

such that for every ⟨𝛼𝑥 ∣ 𝑥 ∈ 𝑃𝜅(𝜅)⟩ ∈
∏

𝑥∈𝑃𝜅 (𝜅)
. ⧖𝑥∈𝑃𝜅 (𝜅)𝐴𝛼𝑥 ∈ 𝑈 . Hence

⧖𝑥∈𝑃𝜅 (𝜅)𝐴𝛼𝑥 ∈ 𝑈 . We claim that Card. ∩ ⧖𝑥∈𝑃𝜅 (𝜅)𝐴𝛼𝑥 ⊆
⋂

𝜈<𝜅 𝐴𝛼𝜈 , where Card.
is the class of cardinals (here we view 𝜈 as an element of 𝑃𝜅(𝜅)). Indeed, let 𝜌 ∈
Card. ∩ ⧖𝑥∈𝑃𝜅 (𝜅)𝐴𝛼𝑥 and 𝜈 < 𝜅. Then either 𝜈 < 𝜌 in which case 𝜈 ≺ 𝜌 and thus
𝜌 ∈ 𝐴𝛼𝜈 . Otherwise, 𝜌 ≤ 𝜈 in which case 𝜌 ⊆ 𝜈 and again 𝜌 ∈ 𝐴𝛼𝜈 by definition of
⧖. We conclude that 𝜌 ∈

⋂

𝜈<𝜅 𝐴𝛼𝜈 which recovers Galvin’s theorem.

4.2. An Ideal From Two-Cardinal Filter Games. Throughout this section we
assume that 𝜅 ≤ 𝜆 are cardinals and 𝜆<𝜅 = 𝜆. In this section, we would like to gen-
eralize Theorem of [17, Thm 1.2] connecting winning strategy in the filter games
and large cardinal ideals, to the two-cardinal filter games. These were interested in
[8]. To set up the game, we first need the following definition:

Definition 4.13. Fix some large regular cardinal 𝜃. A set 𝑀 ≺ 𝐻𝜃 of size 𝜆 is
called a (𝜅, 𝜆)-model if

(1) 𝑀 is transitive.
(2) 𝑀 ⊧ ZFC−. 5

(3) 𝑀 ≺Σ0
𝑉 .

(4) 𝜆 + 1 ⊆ 𝑀 and 𝑃𝜅(𝜆)𝑀 ⊆ 𝑀 .

Given a (𝜅, 𝜆)-model 𝑁 we say that 𝑈 is a normal 𝑁-ultrafilter on 𝑃𝜅(𝜆) if
(𝑁,∈, 𝑈 ) ⊧ 𝑈 is a fine normal ultrafilter on 𝑃𝜅(𝜆).

That is, 𝑈 measures all the sets in 𝑃 (𝑃𝜅(𝜆)) ∩𝑁 , and whenever ⟨𝐴𝛼 ∣ 𝛼 < 𝜆⟩ ∈ 𝑁
is a collection of 𝜆-many sets in 𝑈 , Δ𝛼<𝜆𝐴𝛼 ∈ 𝑈 .

Let us turn to the definition of the games 𝐺1 and 𝐺2. This is a game between
two players, the Challenger and the Judge, taking turns. Informally, the Challenger
presents the Judge with a challenge– a collection of sets they have to measure. The

5𝑍𝐹𝐶− is the theory obtained from ZFC by removing the axiom of powerset, replacing the re-
placement schema with collection, and replacing the axiom of choice to the well-ordering principle
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Judge responds with a normal ultrafilter measuring this collection. In further steps
of the game, the Challenger can add more sets to the ones which they previously
presented, and the Judge has to extend the previous ultrafilter to the new collection.

The game𝐺1, generalizing the game𝐺1 from [17]. For that we need an internally
approachable sequence, that is, a sequece ⟨𝑁𝑖 ∶ 𝑖 < 𝜆+⟩ of (𝜅, 𝜆)-models which is
an increasing, continuous elementary chain such that ⟨𝑁𝑖 ∶ 𝑖 < 𝛼⟩ ∈ 𝑁𝛼′ for all
𝛼 < 𝛼′ < 𝜆+.

Remark 4.14. If |𝑃 (𝑃𝜅(𝜆))| = 𝜆+ then in 𝐻𝜃 there is a wellorder of 𝑃𝜆+(𝑃 (𝑃𝜅(𝜆)))
in order type 𝜆+. Hence 𝑃 (𝑃𝜅(𝜆)) =

⋃

𝑖<𝜇 𝑁𝑖 ∩ 𝑃 (𝑃𝜅(𝜆)), and every 𝑁𝑖-ultrafilter
appears in 𝑁𝑗 for some 𝑗 > 𝑖.

Definition 4.15 (The game 𝐺1). Fix any ordinal 𝛾 . The rules of 𝐺𝛾
1 are as follows:

(1) The Challenger plays an increasing sequence of ordinals 𝛼𝑖 < 𝜆+.
(2) The Judge plays a sequence 𝑈𝑖 of 𝑁𝛼𝑖+1-ultrafilters on 𝑃𝜅(𝜆) such that:

(a) ⟨𝑈𝑗 ∣ 𝑗 < 𝑖⟩ ∈ 𝑁𝛼𝑖+1.
(b) 𝑈𝑗 ⊆ 𝑈𝑖 for all 𝑖 > 𝑗.

The Challenger goes first at limit stages. The game proceeds for some length 𝓁 < 𝛾
determined by the play, for some fixed 𝛾 ≤ 𝜆+. The game continues until either the
Judge has no valid move or the play has reached length 𝛾 . The Judge wins only if
the play reaches length 𝛾 .

Definition 4.16 (The game 𝐺2). Fix an internally approachable sequence of (𝜅, 𝜆)-
models ⟨𝑁𝑖 ∶ 𝑖 < 𝜆+⟩. The rules of 𝐺𝛾

2 are as follows:
(1) The Challenger plays an increasing sequence of ordinals 𝛼𝑖 < 𝜆+.
(2) The Judge plays a sequence of sets 𝑌𝑖 ⊆ 𝑃𝜅(𝜆) such that:

(a) 𝑌𝑖 ⊆ 𝑌𝑗 for all 𝑖 > 𝑗 and ⟨𝑌𝑗 ∣ 𝑗 < 𝑖⟩ ∈ 𝑁𝛼𝑖+1.
(b) 𝑈𝑖 = {𝑋 ∈ 𝑃 (𝑃𝜅(𝜆))∩𝑁𝛼𝑖+1 ∶ 𝑌𝑖 ⊆ 𝑋} is a normal 𝑁𝛼𝑖+1-ultrafilter

on 𝑃𝜅(𝜆)).

The rules and winning conditions of 𝐺𝛾
2 are the same as those of 𝐺𝛾

1.

Proposition 4.17. The following are equivalent:
(1) the Judge has a winning strategy in 𝐺𝛾

1.
(2) the Judge has a winning strategy in 𝐺𝛾

2.

Proof. The direction (2) ⇒ (1) is trivial, since given the set produced by a strategy
for 𝐺𝛾

2 the Judge can play the ultrafilter determined by that set in 𝐺𝛾
1.

Given a 𝐺𝛾
1-winning strategy 𝜎, we will define a 𝐺𝛾

2-winning strategy 𝜎′. For the
first move, the Challenger plays an ordinal 𝛼0 and 𝜎 will yield a normal 𝑁𝛼0 + 1
ultrafilter 𝑈0. To determine the move 𝑌0 given by 𝜎′, choose 𝛽 large enough that
𝑈0 ∈ 𝑁𝛽 and choose a minimal enumeration of 𝑈0 = {𝑋𝜉 ∶ 𝜉 < 𝜆} is the well-
ordering of 𝐻𝜃. By elementarity, and since 𝑈0 ∈ 𝑁𝛽 , this enumeration is in 𝑁𝛽 .
Then set 𝑌0 = △𝜉<𝜆𝑋𝜉 . Note that any legal move 𝛼1 of the challenger will have
to satisfy that 𝑌0 ∈ 𝑁𝛼1 and also 𝑈0 ∈ 𝑁𝛼1 . Again by elementarity, we will have
that the minimal enumeration 𝑈0 = {𝑋𝜉 ∶ 𝜉 < 𝜆} will also be in 𝑁𝛼1 , so whenever
𝑈0 ⊆ 𝑈1 is a normal 𝑁𝛼1-ultrafilter, 𝑌0 ∈ 𝑈1.
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Now suppose that ⟨(𝛼𝑗 , 𝑌𝑗) ∣ 𝑗 < 𝑖⟩ is a run in the game according to 𝜎′ which
has already been defined. Also assume that we maintained an auxiliary 𝐺𝛾

1-run
⟨(𝛼𝑗 , 𝑈𝑗) ∣ 𝑗 < 𝑖⟩, such that each 𝑌𝑗 is the diagonal intersection of 𝑈𝑗 according to
the minimal enumeration of 𝑈𝑗 in the 𝐻𝜃 well-ordering.

Now suppose that the challenger in the game 𝐺𝛾
2 plays a legal move 𝛼𝑖. Note that

⟨(𝑈𝑗 , 𝑌𝑗) ∣ 𝑗 < 𝑖⟩ ∈ 𝑁𝛼𝑖+1, and that for each 𝑗 < 𝑖, the minimal enumeration of 𝑈𝑗
is a member of 𝑁𝛼𝑖+1. Next, we let the challenger in the game 𝐺𝛾

1 play 𝛼𝑖, and the
strategy 𝜎′ produces an 𝑁𝛼𝑖+1-normal ultrafilter 𝑈𝑖 which extends all the 𝑈𝑗’s for
𝑗 < 𝑖. It follows that 𝑌𝑗 ∈ 𝑈𝑖 for each 𝑗 < 𝑖. Let 𝑈𝑖 = {𝑋𝑖

𝜉 ∣ 𝜉 < 𝜆} be the minimal
enumeration of 𝑈𝑖, we set 𝑌𝑖 = △𝜉<𝜆𝑋𝑖

𝜉 . It is routine to check that 𝜎 is a winning
strategy in the game 𝐺𝛾

2. □

Next, we shall define some properties of ideals that appear in the main theorem
of this section.

Definition 4.18. Let 𝐼 be an ideal on 𝑃𝜅(𝜆).
(1) 𝐼 is normal if 𝐼 is closed under diagonal unions: whenever ⟨𝑋𝛼 ∶ 𝛼 <

𝜆⟩ ⊆ 𝐼 ,
▽
𝛼<𝜆

𝑋𝛼 ≔ {𝑥 ∈ 𝑃𝜅(𝜆) ∶ 𝑥 ∈
⋃

𝛼∈𝑥
𝑋𝛼} ∈ 𝐼

(2) 𝐼 is precipitous if whenever 𝐺 ⊆ 𝑃 (𝑃𝜅(𝜆))∕𝐼 is generic over 𝑉 , the generic
𝑉 -ultrapower Ult(𝑉 ,𝐺) is well-founded.

(3) 𝐷 ⊆ 𝐼+ is dense if𝐷 is a dense subset of the partial order (𝑃 (𝑃𝜅(𝜆))∕𝐼, ⊆𝐼 ).
(4) 𝐼 is 𝜆-measuring if for any ⟨𝐴𝛼 ∣ 𝛼 < 𝜆⟩ ⊆ 𝑃𝜅(𝜆) and any 𝑆 ∈ 𝐼+ there is

𝑆′ ⊆ 𝑆, 𝑆′ ∈ 𝐼+ such that for any 𝛼 < 𝜆, 𝑆′ ⊆ 𝐴𝛼 or 𝑆′ ⊆ 𝑃𝜅(𝜆) ⧵𝐴𝛼.

Theorem 4.19. Suppose that 2𝜆 = 𝜆+, there is no saturated ideal on 𝑃𝜅(𝜆), and
that the Judge has a winning strategy for the game 𝐺𝛾

2 for some regular 𝜔 < 𝛾 ≤ 𝜆.
Then there is an ideal 𝐼 on 𝑃𝜅(𝜆) such that:

(1) 𝐼 is normal.
(2) 𝐼 is precipitous.
(3) 𝐼+ has a dense subtree (𝑇 , ⊇ ) which is 𝛾-closed.
(4) 𝐼 is 𝜆-measuring.

Proof. Given a winning strategy 𝜎 for the Judge, we define the hopeless ideal 𝐼(𝜎)
as the collection of all 𝑋 ⊆ 𝑃𝜅(𝜆) such that no play of the game played according
to 𝜎 ends with a 𝑌 ⊆ 𝑋. In other words, no ultrafilter generated in any play
according to 𝜎 assigns measure one to 𝑋.

More precisely, for any 𝓁 ≤ 𝛾 we recursively define a play of 𝐺𝓁
2 according to

𝜎 as a sequence 𝑃 = ⟨(𝛼𝑖, 𝑌𝑖) ∶ 𝜎((𝑃 ↾ 𝑖)⌢𝛼𝑖) = 𝑌𝑖 for 𝑖 < 𝓁⟩. Now define the
hopeless ideal:

𝐼(𝜎) = {𝑋 ⊆ 𝑃𝜅(𝜆) ∶ for any play 𝑃 and any 𝛼, 𝜎(𝑃⌢𝛼) ⊈ 𝑋}

We also define the conditional hopeless ideal given some play 𝑃 of length 𝓁 < 𝛾:

𝐼(𝜎, 𝑃 ) = {𝑋 ⊆ 𝑃𝜅(𝜆) ∶ for any play 𝑄 ⊒ 𝑃 and any 𝛼, 𝜎(𝑄⌢𝛼) ⊈ 𝑋}
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Claim 4.20. 𝐼(𝜎) is 𝜅-complete and normal.

Proof of claim. First we check 𝜅-completeness. Suppose towards a contradiction
that 𝐼(𝜎) is not 𝜅-complete, so there is some 𝜂 < 𝜅 and ⟨𝐴𝜉 ∶ 𝜉 < 𝜂⟩ ⊆ 𝐼(𝜎) such
that 𝐴 =

⋃

𝜉<𝜂 𝐴𝛼 ∉ 𝐼(𝜎). Then there must be some play 𝑃 of length 𝓁 such that
𝑌𝑖 ⊆ 𝐴 for some 𝑌𝑖 appearing in 𝑃 . Now we can choose some play 𝑄 such that
𝑃 ↾ 𝑖 = 𝑄 ↾ 𝑖 and ⟨𝐴𝜉 ∶ 𝜉 < 𝜂⟩ ⊆ 𝑁𝛼𝑖+1 . In particular, 𝑌𝑖+1 ⊆ 𝑌𝑖 ⊆ 𝐴 and
for all 𝜉 < 𝜂,

⋃

𝑗≤𝑖+1𝐴𝑗 ⊆ 𝐴𝜉 . Hence 𝑌𝑖+1 ⊆ 𝐴𝜉 by normality of 𝑈𝑖, so there is
some 𝐴𝜉 ∉ 𝐼(𝜎), a contradiction.

The same proof with ▽𝜉<𝜆𝐴𝜉 in place of
⋃

𝜉<𝜂 𝐴𝜉 shows that 𝐼(𝜎) is normal.
The same proof also shows that 𝐼(𝜎, 𝑃 ) is 𝜅-complete and normal for any 𝑃 . ⊣

To construct the desired ideal, we will first take an arbitrary winning strategy 𝜎
for II in 𝐺𝛾

2 and build the tree 𝑇 (𝜎) together with a correspondence taking sets 𝑋 in
𝑇 (𝜎) to plays of the game 𝑅𝑋 . We will then use 𝑇 (𝜎) to construct a new strategy
𝜎′ for which 𝑇 (𝜎) will witness the required property (3) of 𝐼(𝜎′).

The construction of 𝑇 (𝜎) and the assignment 𝑋 ↦ 𝑅𝑋 will go by induction on
the levels of 𝑇 (𝜎). We wish to maintain the following in our induction:

(1) 𝑅𝑋 has successor length and ends with 𝑋 as the last move played by the
Judge.

(2) The tree order is ⊆ restricted to the nodes of the tree.
(3) If 𝑋 ⊇ 𝑌 are nodes in 𝑇 (𝜎) then 𝑅𝑋 ⊑ 𝑅𝑌 .
(4) If 𝑋, 𝑌 are on the same level of the tree then 𝑋 ∩ 𝑌 ∈ Fine(𝜅, 𝜆)∗.

For 𝛿 limit we will take 𝑇 (𝜎) ↾ 𝛿 =
⋃

𝛼<𝛿(𝑇 (𝜎) ↾ 𝛼) and 𝑅𝑋 will be already be
defined for every 𝑋 ∈ 𝑇 (𝜎) ↾ 𝛿. The induction hypothesis is trivially maintained.
So we shall focus on the successor stage of the construction.

Let 𝛿 < 𝛾 and suppose we have constructed every level up to 𝛿. Let 𝑏 be a cofinal
branch of the tree constructed thus far. Let 𝑃𝑏 =

⋃

𝑋∈𝑏𝑅𝑋 . Then by (2), 𝑃𝑏 is a
play according to 𝜎. Since we assume there is no saturated ideal, we can choose
some antichain 𝑏 ⊆ 𝐼(𝜎, 𝑃𝑏)+ with || = 𝜆+. For each 𝐴 ∈ 𝑏 let 𝑄𝐴 be a play
extending 𝑃𝑏 such that if 𝑌𝐴 is the last move of the Judge then 𝑌𝐴 ⊆ 𝐴. Such a
play exists by the definition of 𝐼(𝜎, 𝑃𝑏).

Now we construct notes at the 𝛿th-level, which will all have 𝑏 as their set of
predecessors in the tree. This is again by recursion. Suppose we have constructed
the successors ⟨𝑌𝜉 ∶ 𝜉 < 𝜉⟩, and let 𝛼(𝑌𝜉) denote the index in 𝑅𝑌𝜉 played by the
Challenger to which 𝑌𝜉 was the response to. Since each 𝑁𝛽 has size 𝜆 we may
choose the some 𝐴 ∈ 𝑏 which is not an element of any 𝑁𝛼(𝑌𝜉 )+1 for any 𝜉 < 𝜉.
Now let 𝛼 be least such that 𝐴 and every 𝑌𝜉 is in 𝑁𝛼+1. Then 𝛼 is a legal move
following 𝑄𝐴, so we may let 𝑌𝜉 be the Judge’s response to 𝑄𝐴

⌢
⟨𝛼⟩ given by 𝜎.

Notice that 𝑌𝜉 ⊆ 𝐴 as 𝐴 was given by a previous move of the Judge. Also, set
𝑅𝑌𝜉 = 𝑄𝐴

⌢(𝛼, 𝑌𝜉).
Now we shall show that the three conditions of the inductive hypothesis are main-

tained. The first is easily seen to be satisfied, so towards verifying the second con-
dition, et 𝑋 be any node in 𝑇 (𝜎) and 𝑌𝜉 any node on the newly constructed 𝛿th level
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of the tree. If 𝑋 is a predecessor of 𝑌𝜉 is the tree order, then 𝑋 lie on the branch 𝑏,
and therefore 𝑌𝜉 ⊆ 𝑋 as 𝑌𝜉 was given by a move of the Judge to a run of the game
where 𝑋 was played. In the other direction, if 𝑋 is not in 𝑏, then either 𝑋 = 𝑌𝜉
in which case 𝑌𝜉 ⊈ 𝑋, or the predecessors of 𝑋 and 𝑌𝜉 in the tree are different.
Applying (4) of the induction hypothesis to the level where 𝑋 and 𝑌𝜉 split, together
with (2), we see that 𝑌𝜉 ⊈ 𝑋.

The third condition now follows from the second, since if let 𝑋 ⊆ 𝑌𝜉 , then 𝑋
must be on the branch 𝑏 leading to 𝑌𝜉 . But then, by definition,

𝑅𝑋 ⊑ 𝑏 ⊑ 𝑄𝐴 ⊑ 𝑅𝑌𝜉 ,

where 𝐴 ∈ 𝑏 was the set used in the construction of 𝑌𝜉 .
Finally, we verify the fourth condition. 𝑌 ,𝑍 lie above distinct branches then

this follows from the inductive hypothesis. So suppose now that 𝜉 < 𝜁 and 𝑌𝜉 , 𝑌𝜁
are above the same branch 𝑏. Let 𝐴𝜉 , 𝐴𝜁 be the corresponding members of 𝑏,
respectively. Then 𝑌𝜉 ⊆ 𝐴𝜉 and similar for 𝜁 . But 𝐴𝜉 ∩ 𝐴𝜁 ∈ Fine(𝜅, 𝜆)∗ since
𝑏 is an antichain, so 𝑌𝜉 ∩ 𝑌𝜁 ∈ Fine(𝜅, 𝜆)∗. Hence the induction hypothesis is
maintained and so the construction of 𝑇 (𝜎) is completed.

Now given 𝑇 (𝜎) we shall recursively define a new strategy 𝜎′. Suppose 𝑅 =
⟨(𝛼𝑖, 𝑌𝑗) ∶ 𝑖 < 𝑗⟩ is a play of the game according to 𝜎′ ↾ 𝑗, and assume further that
every move given by 𝜎′ is in 𝑇 (𝜎). Let 𝑏𝑅 be the corresponding branch through
𝑇 (𝜎). For each legal move 𝛽 for the Challenger, set

𝜎′(𝑅⌢
⟨𝛽⟩) = the unique immediate successor 𝑌 of 𝑏𝑅 in

𝑇 (𝜎) such that 𝛼(𝑌 ) > 𝛽 is minimal.

Since 𝜎 is a winning strategy and 𝑇 (𝜎) has height 𝛾 we see that 𝜎′ is also a winning
strategy. Also since 𝑇 (𝜎) has height 𝛾 and no terminal nodes we see that 𝑇 (𝜎) is a
𝛾-closed subset of 𝐼(𝜎′)+.

We have seen already that 𝐼(𝜎′) is normal, so we show it is precipitous. Consider
the precipitousness game on an ideal 𝐽 , which is played as follows: players I and
II alternate picking sets 𝑆𝑛 ∈ 𝐽+ such that 𝑆𝑛+1 ⊆ 𝑆𝑛 for all 𝑛 ∈ 𝜔. The game is
played for 𝜔 steps. I wins iff

⋂

𝑛∈𝜔 𝑆𝑛 = ∅. A proof that 𝐼 is precipitous iff I does
not have a winning strategy can be found in [23, Lemma 22.21].

Claim 4.21. Player I does not have a winning strategy in the precipitousness game
𝐺(𝐼(𝜎′)), so 𝐼(𝜎′) is precipitous.

Proof of claim. Assume that 𝜏 is a winning strategy for I in the precipitousness
game 𝐺(𝐼(𝜎′)). We will show that there is a play of the game according to 𝜏 where
II wins. To do this, we shall use an auxiliary play of 𝐺𝛾

2.
First let 𝑆0 be the first move for I given by 𝜏. Let 𝛼 be least such that 𝑆0 ∈ 𝑁𝛼.

Since𝑆0 ∈ 𝐼(𝜎′)+, there is a run of the game𝑅0 ending with 𝑌0 such that 𝑌0 ⊆ 𝑆0.
Note that by the definition of 𝜎′, 𝑅0 = 𝑅𝑌0 . Back in the precipitousness game, we
let II play 𝑆1 = 𝑌0 ∩ 𝑆0. In general, suppose that 𝑆0 ⊇ 𝑆1 ⊇ ... ⊇ 𝑆2𝑛−1 was
played according to 𝜏 and let 𝑆2𝑛 ∈ 𝐼(𝜎′)+ be the move of Player 𝐼 according to 𝜏.
Again, note that there is a Run 𝑅𝑛 with last move 𝑌𝑛 such that 𝑌𝑛 ⊆ 𝑆2𝑛. Again,
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𝑅𝑛 = 𝑅𝑌𝑛 and note that 𝑌𝑛 ⊆ 𝑆2𝑛 ⊆ 𝑌𝑛−1. By the properties of the tree, it follows
that 𝑅𝑛−1 = 𝑅𝑌𝑛−1 ⊑ 𝑅𝑌𝑛 = 𝑅𝑛. Let 𝑆2𝑛+1 = 𝑌𝑛 ∩ 𝑆2𝑛 by the move of 𝐼𝐼 .

Then at the end of the game,
⋂

𝑖<𝜔 𝑆𝑖 = ∅, since 𝜏 is a winning strategy. How-
ever, the run𝑅 =

⋃

𝑛<𝜔𝑅𝑛 is a run in the game𝐺𝜉
2 according to the winning strategy

𝜎. We can pick 𝛼 large enough so it is a legal move and ⟨𝑆𝑛 ∣ 𝑛 < 𝜔⟩π𝑁𝛼+1. Then
𝜎(𝑅⌢𝛼) = 𝑌 and 𝑌 determines a normal ultrafilter 𝑈 on 𝑁𝛼+1 which includes
all the 𝑌𝑛’s and therefore all the 𝑆𝑛’s. Also 𝑈 is 𝜅-complete which implies that
⋂

𝑛<𝜔 𝑆𝑛 ∈ 𝑈 , producing a contradiction. ⊣

We remark that all we have really used in the above proof is that we have a
winning strategy in the game of length 𝜔 + 1-closed. Now we just have one claim
left to show.
Claim 4.22. 𝐼(𝜎′) is 𝜆-measuring.

Proof of claim. Fix 𝐴 ∈ 𝑇 (𝜎) and a sequence ⟨𝐴𝛼 ∶ 𝛼 < 𝜆⟩. Let 𝜉 < 𝜆+ be large
enough that ⟨𝐴𝛼 ∶ 𝛼 < 𝜆⟩ ⊆ 𝑁𝜉 and let 𝐴∗ ⊆ 𝐴𝛼 for all 𝛼 with 𝐴∗ ∈ 𝑇 (𝜎). Then
𝐴∗ is a valid move for the Judge in response to the Challenger playing 𝜉. Since
𝐼(𝜎′) extends the fine ideal, 𝐴∗ ⊆ 𝐴 and 𝐴∗ measures ⟨𝐴𝛼 ∶ 𝛼 < 𝜆⟩. ⊣

Hence 𝐼(𝜎′) is as desired. □

Remark 4.23. Similar to Theorem [8, Thm. 8.14], the existence of a normal 𝜆-
measuring ideal 𝐼 on 𝑃𝜅(𝜆) with a 𝛿-closed dense tree 𝐷. Implies that the Judge
has a winning strategy in the game 𝐺𝛾
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