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Prikry Forcing

Classical Prikry Forcing

Let U be a normal, k-complete ultrafilter on k. Prikry forcing
(with respect to U) consists of pairs (s, A) where s is a finite
increasing sequence of ordinals below k, and A € U. We say
(s,A) < (t,B) if sextendst, AC B,and s\t C B\ A.
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(with respect to U) consists of pairs (s, A) where s is a finite
increasing sequence of ordinals below k, and A € U. We say
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After doing Prikry forcing:

Q If G is the generic, S = |J{s: (s,A € G)} is an w sequence, a
Prikry sequence.
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After doing Prikry forcing:

Q If G is the generic, S = |J{s: (s,A € G)} is an w sequence, a
Prikry sequence.

@ By density S is cofinal in k, so cf(k) = w
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Prikry Forcing

Classical Prikry Forcing

Let U be a normal, k-complete ultrafilter on k. Prikry forcing
(with respect to U) consists of pairs (s, A) where s is a finite
increasing sequence of ordinals below k, and A € U. We say
(s,A) < (t,B) if sextendst, AC B,and s\t C B\ A.
After doing Prikry forcing:

Q If G is the generic, S = |J{s: (s,A € G)} is an w sequence, a
Prikry sequence.

@ By density S is cofinal in k, so cf(k) = w

© All cardinals are preserved
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Tree Prikry Forcing

How to do Prikry forcing with other kinds of ultrafilters:
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Tree Prikry Forcing

How to do Prikry forcing with other kinds of ultrafilters:

Tree Prikry Forcing

Let U be a countably complete ultrafilter on a directed set (D, <).
The Tree Prikry forcing, denoted Py, consists of trees T C D<¥
with a stem s (i.e. for all t € T, either s C t or t C s) and for all
tDOsinT,wehave {deD:t"deT}eU.
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A generic G for Tree Prikry forcing also produces a Prikry
sequence S = ({7 : T € G}, and S is cofinal in (D, <) and has
order type w.
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Tree Prikry Forcing

How to do Prikry forcing with other kinds of ultrafilters:

Tree Prikry Forcing

Let U be a countably complete ultrafilter on a directed set (D, <).
The Tree Prikry forcing, denoted Py, consists of trees T C D<¥
with a stem s (i.e. for all t € T, either s C t or t C s) and for all
tOsin T,wehave {deD:t"deT}eU.

A generic G for Tree Prikry forcing also produces a Prikry
sequence S = ({7 : T € G}, and S is cofinal in (D, <) and has
order type w. Examples:

Q If (D,<) = (k,€) and U is a normal ultrafilter on
Q@ (k%,€ x €) and U?
@ (P.()\),=<) and U is a supercompactness measure
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Supercompactness

Supercompactness is a very powerful strengthening of
measurability.
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Supercompactness is a very powerful strengthening of
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Q@ P.(\)={xC\:|x| <k}
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Supercompactness

Supercompactness is a very powerful strengthening of
measurability.

Q@ P.(N)={xCX:|x| <k}

@ A cardinal k is supercompact if for all A\ > x there is a
normal, fine ultrafilter U on P,()\). We say U is a
supercompactness measure.
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Supercompactness

Supercompactness is a very powerful strengthening of
measurability.

Q@ P.(N)={xCX:|x| <k}

@ A cardinal k is supercompact if for all A\ > x there is a
normal, fine ultrafilter U on P,()\). We say U is a
supercompactness measure.

Q If x,y € P.(\) wesay x <y if x Cyand |x| < |y Nkl
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Supercompactness

Supercompactness is a very powerful strengthening of
measurability.

Q@ P.(N)={xCX:|x| <k}

@ A cardinal k is supercompact if for all A\ > x there is a
normal, fine ultrafilter U on P,()\). We say U is a
supercompactness measure.

Q If x,y € P.(\) wesay x <y if x Cyand |x| < |y Nkl

Supercompact Tree Prikry

We use the term supercompact Tree Prikry forcing to denote Tree
Prikry forcing with (U, <) where U is a supercompactness measure.
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Maximality

Maximality Property

Let U be an ultrafilter. Py has the maximality property if
whenever S1, S are Prikry sequences and V[S1] C V[S,], then S;
is, modulo an initial segment, a subsequence of Sp.
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Let U be an ultrafilter. Py has the maximality property if
whenever S1, S are Prikry sequences and V[S1] C V[S,], then S;
is, modulo an initial segment, a subsequence of Sp.

Examples:

@ If U is a normal ultrafilter on s then Py has the maximality
property.
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Let U be an ultrafilter. Py has the maximality property if
whenever S1, S are Prikry sequences and V[S1] C V[S,], then S;
is, modulo an initial segment, a subsequence of Sp.

Examples:
@ If U is a normal ultrafilter on s then Py has the maximality
property.
@ If U= W? for some W then Py does not have the
maximality property.
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Maximality Property

Let U be an ultrafilter. Py has the maximality property if
whenever S1, S are Prikry sequences and V[S1] C V[S,], then S;
is, modulo an initial segment, a subsequence of Sp.

Examples:

@ If U is a normal ultrafilter on s then Py has the maximality
property.

@ If U= W? for some W then Py does not have the
maximality property.

Conjecture (Woodin, 90's)

Supercompact Tree Prikry forcing has the maximality property.
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What is known?

Conjecture (Woodin, 90's)

Supercompact Tree Prikry forcing has the maximality property.
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What is known?

Conjecture (Woodin, 90's)

Supercompact Tree Prikry forcing has the maximality property.

@ If U is a strongly normal ultrafilter on P,()), then Py has the
maximality property. (Hamkins, 1997 [1])
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What is known?

Conjecture (Woodin, 90's)

Supercompact Tree Prikry forcing has the maximality property.

@ If U is a strongly normal ultrafilter on P,()), then Py has the
maximality property. (Hamkins, 1997 [1])

© Not every supercompactness measure is strongly normal.
(Menas, 1985 [2])
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What is known?

Conjecture (Woodin, 90's)

Supercompact Tree Prikry forcing has the maximality property.

@ If U is a strongly normal ultrafilter on P,()), then Py has the
maximality property. (Hamkins, 1997 [1])

© Not every supercompactness measure is strongly normal.
(Menas, 1985 [2])

Theorem (W.)

Let U be a supercompactness measure on P, (\) where either X is
regular or cf(\) < k. Then Tree Priky forcing with U has the
maximality property.
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Questions

Must Py have the maximality property if:

@ k < cf(A\) < X and U is a supercompactness measure on
P (A)?
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Questions

Must Py have the maximality property if:

@ k < cf(A\) < X and U is a supercompactness measure on
P (A)?

@ If U is a strongly compact measure?
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Questions

Must Py have the maximality property if:

@ k < cf(A\) < X and U is a supercompactness measure on
P (A)?

@ If U is a strongly compact measure?

@ If U is Rudin-Keisler minimal among uniform ultrafilters on its
underlying set?
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Must Py have the maximality property if:

@ k < cf(A) < Xand U is a supercompactness measure on
Pe(A)?

@ If U is a strongly compact measure?

© If U is Rudin-Keisler minimal among uniform ultrafilters on its
underlying set?

If U is an ultrafilter on a set of size A then Py does not have the

maximality property iff there are uniform ultrafilters Wg, Wi on A
such that Wy x Wy <gk U.
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