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Prikry Forcing

Classical Prikry Forcing

Let U be a normal, κ-complete ultrafilter on κ. Prikry forcing
(with respect to U) consists of pairs (s,A) where s is a finite
increasing sequence of ordinals below κ, and A ∈ U. We say
(s,A) ≤ (t,B) if s extends t, A ⊆ B, and s \ t ⊆ B \ A.

After doing Prikry forcing:

1 If G is the generic, S =
⋃
{s : (s,A ∈ G )} is an ω sequence, a

Prikry sequence.

2 By density S is cofinal in κ, so cf(κ) = ω

3 All cardinals are preserved
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Tree Prikry Forcing

How to do Prikry forcing with other kinds of ultrafilters:

Tree Prikry Forcing

Let U be a countably complete ultrafilter on a directed set (D, <).
The Tree Prikry forcing, denoted PU , consists of trees T ⊆ D<ω

with a stem s (i.e. for all t ∈ T , either s ⊆ t or t ⊆ s) and for all
t ⊇ s in T , we have {d ∈ D : t ⌢d ∈ T} ∈ U.

A generic G for Tree Prikry forcing also produces a Prikry
sequence S =

⋂
{T : T ∈ G}, and S is cofinal in (D, <) and has

order type ω. Examples:

1 If (D, <) = (κ,∈) and U is a normal ultrafilter on κ

2 (κ2,∈ × ∈) and U2

3 (Pκ(λ),≺) and U is a supercompactness measure
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Supercompactness

Supercompactness is a very powerful strengthening of
measurability.

Definitions

1 Pκ(λ) = {x ⊆ λ : |x | < κ}
2 A cardinal κ is supercompact if for all λ ≥ κ there is a

normal, fine ultrafilter U on Pκ(λ). We say U is a
supercompactness measure.

3 If x , y ∈ Pκ(λ) we say x ≺ y if x ⊆ y and |x | < |y ∩ κ|.

Supercompact Tree Prikry

We use the term supercompact Tree Prikry forcing to denote Tree
Prikry forcing with (U,≺) where U is a supercompactness measure.
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Maximality

Maximality Property

Let U be an ultrafilter. PU has the maximality property if
whenever S1, S2 are Prikry sequences and V [S1] ⊆ V [S2], then S1
is, modulo an initial segment, a subsequence of S2.

Examples:

1 If U is a normal ultrafilter on κ then PU has the maximality
property.

2 If U = W 2 for some W then PU does not have the
maximality property.

Conjecture (Woodin, 90’s)

Supercompact Tree Prikry forcing has the maximality property.
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What is known?

Conjecture (Woodin, 90’s)

Supercompact Tree Prikry forcing has the maximality property.

1 If U is a strongly normal ultrafilter on Pκ(λ), then PU has the
maximality property. (Hamkins, 1997 [1])

2 Not every supercompactness measure is strongly normal.
(Menas, 1985 [2])

Theorem (W.)

Let U be a supercompactness measure on Pκ(λ) where either λ is
regular or cf(λ) ≤ κ. Then Tree Priky forcing with U has the
maximality property.
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Questions

Questions

Must PU have the maximality property if:

1 κ < cf(λ) < λ and U is a supercompactness measure on
Pκ(λ)?

2 If U is a strongly compact measure?

3 If U is Rudin-Keisler minimal among uniform ultrafilters on its
underlying set?

Conjecture

If U is an ultrafilter on a set of size λ then PU does not have the
maximality property iff there are uniform ultrafilters W0,W1 on λ
such that W0 ×W1 ≤RK U.
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Thanks!

Thanks for listening! Thanks to Tom for giving me ideas on this
problem, to Dima for her advising, and to Gabe Goldberg for
showing me this problem.
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