
What Makes Proper Forcing Proper?

Ben-Zion Weltsch

I wrote these notes for myself to try and better understand proper forcing. I
wanted to provide an exposition of the motivation for the formulation of proper
forcing through many examples, and motivate the definition of (M,P)-genericity.

We assume basic familiarity with iterated forcing.
The formulation of proper forcing began as an attempt to generalize the

following fact about iterated forcing:

Theorem 1. Any finite support iteration of ccc forcings is ccc.

Proof. We only sketch the proof. Induct on the length of the iteration.
In the successor stage, use the fact that Pα+1

∼= Pα ∗ Q̇α. Suppose towards
a contradiction that {(pξ, q̇ξ) : ξ < ω1} is an antichain in Pα ∗ Q̇α. Let Ṡ =

{(ξ, pξ) : ξ < ω1}, so Ṡ is a Pα name. Clearly Pα ⊩ Ṡ ⊆ ω1, and it suffices to

show that Ṡ is forced to be countable. It is not too hard to see that if ξ ̸= η ∈ ṠG

then (q̇ξ)G ⊥ (q̇η)G. Since Pα ⊩ Q̇α is ccc, Pα ⊩ Ṡ is countable.
In the limit case, take {pα : α < ω1} ⊆ Pα and use the delta system lemma to

stabilize the (finite!) supports of the pα’s on an uncountable B ⊆ ω1. Now there
is some fixed γ such that for all α ∈ B, supp(pα) ⊆ γ. Then if {pα : α ∈ B}
formed an antichain, it is not too hard to see that {pα ↾ γ : α ∈ B} forms an
antichain in Pγ , but Pγ is ccc.

This fact is the key in Solovay-Tenenbaum’s proof of the consistency of
Suslin’s hypothesis (the first application of iterated forcing), as it follows that
ω1 is preserved. The idea is that it’s easy to destroy one Suslin tree: the
Suslin tree is itself a ccc partial order, so forcing with a Suslin tree will preserve
cardinals, and the union over the generic filter will be a branch through the
tree. The problem is that this necessarily adds another Suslin tree, so we can
never force Suslin’s hypothesis by killing one Suslin tree at a time. We need to
do an iterated forcing where we use some suitable bookkeeping mechanism to
ensure that we kill every Suslin tree at some point, thereby “catching our tail”.
Of course if we end up collapsing ω1, we will not have accomplished anything.
This is why the above iteration theorem for ccc forcings is essential for the
construction. For completeness, we sketch the argument in a bit more detail
below.

Theorem 2. Con(ZFC) =⇒ Con(ZFC + SH).
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Proof. Assume that 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2. Fix a bijection π : ℵ2 → ℵ2 × ℵ2

such that π(ξ) = (ζ, µ) with γ < α. We construct a finite support iteration P
of ccc forcings.

Since we use finite supports, we only need to specify what happens at suc-
cessor stages: if δ is limit, p ∈ Pδ, and p ⊩ φ then there is δ′ < δ such that
supp(p) ⊆ δ′, so p ↾ δ′ ∈ Pδ′ and p ↾ δ′ ⊩ φ is p is trivial past δ′.

So suppose we have defined Pα where α < κ and f(α) = (β, γ). Let 1P ⊩ ◁̇ is
a well-order of the Suslin trees in the generic extension by Pγ . Then let 1P ⊩ Q̇
is the βth Suslin tree in generic extension by Pγ , according to ◁̇.

Let G ⊆ P be generic. First, since we iterate ccc forcings with finite supports,
the whole iteration is ccc, so all cardinals and cofinalities are preserved.

Now to check that there are no Suslin trees in V [G]. So suppose T ∈ V [G]
is Suslin, so there is p ∈ G such that p ⊩ Ṫ is Suslin. Again, since we use finite
supports, there is some γ < ℵ2 such that supp(p) ⊆ γ, so p ↾ γ ∈ Pγ and p ↾ γ,
so that T ∈ V [Gγ ], where Gγ ⊆ P is generic for Pγ . Say T is a the βth Suslin
tree in V [Gγ ] according to ◁̇Gγ

. Since π is a bijection, there is some α > γ such

that π(α) = (β, γ). Then Pα ⊩ Q̇α = T , by our construction, so we already
killed T at stage α. So T is not Suslin in V [G].

Hence V [G] satisfies Suslin’s hypothesis.

So we are able to do iterated forcing to get a model of Suslin’s hypothesis.
In general, we wish to do the following:

Goal 1. Let φ be a property of subsets of ω1. I want to show it is consistent
that there is no subset of ω1 with property φ. To do this, I want to concoct
an iteration to destroy all subsets of ω1 with the property φ, all while crucially
preserving ω1.

But ccc forcings are too restrictive, and finite support iterations of non-ccc
forcings will collapse ω1, as the next two examples show.

Proposition 1. Suppose V |= ♢, P is ccc, and |P| ≤ ℵ1. Then V [G] |= ♢.

Proof. Let A⃗ = ⟨Aα : α < ω1⟩ be a ♢ sequence. Since |P| = ℵ1, we may assume
that P is a partial order on ℵ1. In V [G], let Bα = (Ǎα)G ∩ α.

We will show that B⃗ is a ♢ sequence in V [G]. Let X ⊆ ω1 in V [G]. We may
assume |Ẋ| = ω1, so let X∗ ⊆ ω1 code Ẋ in V . Let S be stationary so that
X ∩ α = Aα for all α ∈ S. Since P is ccc S remains stationary in V [G], and
Bα = Bα = (Ǎα)G ∩ α = Aα ∩ α = X ∩ α for all α ∈ S.

This shows, for example, that we can’t iterate small ccc forcings for length
ω1 and violate ♢. But using finite supports when iterating non-ccc forcings is
too destructive.

Proposition 2. Suppose ⟨Pn, Q̇n : n < ω⟩ is a finite support iteration where
Pn ⊩ Q̇n is not ccc for all n ∈ ω. Then in V [G], ω1 is collapsed.
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Proof. For each n, let Pn ⊩ Ȧn is an antichain in Q̇ of size ℵ1. Working in
V [G], partition each An =

⊔
α<ω1

Aα
n into countably many pieces. Then define

f : ω → ω1 by f(n) = i iff G ↾ n ∩Ai
n ̸= ∅. Note that f is well defined since for

i ̸= j, Ai
n ∩ Aj

n = ∅, and G must meet one Ai
n for all n by genericity. A simple

genericity argument shows that f is onto, so ω1 is collapsed.

Note that if each Q̇n is forced to be σ-closed, then ω1 is preserved at every
step of the iteration, and only gets collapsed at the end.

The dream would be that some iteration of ω1-preserving posets is ω1-
preserving. Unfortunately, no choice of supports for iteration ω1-preserving
posets will be guaranteed to preserve ω1, as the following example shows.

Proposition 3. There is an iteration of countable length of ω1-preserving forc-
ings that collapses ω1, with any choice of supports.

Proof. First we define the partial order. For a stationary, co-stationary S ⊆ ω1

let PS be the partial order consisting of closed, bounded subsets of S. PS is
ordered by end extension. It is easy to see that if ω1 is preserved then in V [G],
C =

⋃
G is a club subset of S, so that the complement of S ceases to be

stationary.

Claim 1. PS preserves ω1 (in fact, PS adds no new ω-sequences).

Proof of claim. To see that ω1 is preserved, let p ⊩ ḟ : ω → Ord. Fix a count-
able M ≺ ⟨Hλ,∈,P, p, ḟ ,◁⟩ where λ is sufficiently large and ◁ is a wellorder
of Hλ such that M ∩ ω1 = δ /∈ S. This last requirement is no issue since S is
co-stationary (hence not a club). Let ⟨δn : n < ω⟩ be increasing and cofinal in
δ. Build a chain of conditions p0 = p and pn+1 is the ◁-least condition below
pn such that there is some βn so that pn+1 ⊩ ḟ(n) = βn and max pn+1 ≥ δn.
By elementarity, ⟨pn : n < ω⟩ ∈ M , so that maxn<ω pn ≤ δ. Then taking
q =

⋃
n<ω n ∪ {δ} then q ∈ P and for all n, q ⊩ ḟ(n) = βn. Hence ḟG ∈ V for

any generic G. ⊣

Now we use PS to construct our example. Partition ω1 =
⊔

n<ω Sn into

countably many stationary sets. Consider the iteration ⟨Pn, Q̇n : n < ω⟩ where
Q̇n names the partial order to shoot a club through Sn. Note that each Q̇n is
ω-distributive and hence preserves ω1. No matter what supports we take in the
iteration, we will have that ωV

1 \ Sn is nonstationary for all n yet ωV
1 is now a

countable union of nonstationary sets: ωV
1 =

⋃
n<ω ωV

1 \Sn, a contradiction.

So we can’t iterate ω1-preserving forcings, but this example leads one to
consider the class of forcings that preserve stationary subsets of ω1. We call
such forcings stationary set-preserving. This study of this class is very subtle
and the class’s iteration scheme is quite intricate. The naive attempt is to iterate
stationary set-preserving forcings with countable support, which fails.

Proposition 4. There is an iteration of length ω of stationary set-preserving
forcings that taking either finite or countable supports collapses ω1.
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Proof. To simplify the proof that our example is stationary set-preserving, we
assume CH.

Let fη denote the ηth canonical function on ω1, for η < ω2, i.e. f0(α) = 0,
fη+1(α) = fη(α)+1, and for limit η, fη is a least upper bound of every fξ, ξ < η
in ≤NS .

Let g be an upper bound of all the fη’s in ≤NS . Define Pg to be triples
(h, c, {cη : η ∈ A}) where:

1. h : α+ 1 → ω1 for some α < ω1

2. c, cη are closed in α+ 1

3. A is countable, and h < g on c and fη < h on cη

We say (h, c, {cη : η ∈ A}) ≤ (f, b, {bη : η ∈ B}) iff h ⊇ f , c end-extends b, and
A ⊇ B.

Claim 2. Pg preserves stationary subsets of ω1.

Proof of claim. Let S ∈ V be stationary and p ∈ P such that p ⊩ Ċ is club.
Let λ be sufficiently large and M ≺ ⟨Hλ,∈,P, Ċ, S, P ⟩ such that |M | = ℵ1 and
Mω ⊆ M , which is possible since we assume CH.

We may also assume that there is an increasing, continuous chain ⟨Nα : α <
ω1⟩ of countable elementary submodels of M such that

⋃
α<ω1

Nα = M and for
all β < ω1, ⟨Nα : α < β⟩ ∈ Nβ .

Let δ = M ∩ ω2, and let ⟨δi : i < ω1⟩ be increasing and cofinal in δ. For
every i < ω1 let Ci be such that fδi <NS fδ.

Similarly, let D0 be a club so that fδ(α) < g(α) for all α ∈ D0. Let D1 be
the club of α such that Nα ∩ δ = ⟨δi : i < α⟩. Further let D2 = {α < ω1 : ∀(i <
α) i ∈ Cα} Finally take D = D0 ∩ D1 ∩ D2 and note that D is club. Choose
some ξ ∈ D and let ⟨ξn : n < ω⟩ be cofinal in ξ.

Now we define a descending sequence of conditions ⟨pn : n < ω⟩ ⊆ M . Let
p0 = p and pn+1 ≤ pn such that ξn ⊆ dom(pn+1) and pn+1 ⊩ γn ∈ Ċ for some
γn ≥ ξn.

Now let take p∗ to be the union of all the pn’s while also defining h(ξ) = fδ(ξ),
where h is the function part of p∗. Now p∗ ⊩ ξ ∈ Ċ since Ċ is closed and ξ ∈ S. ⊣

Now consider the iteration ⟨Pα, Q̇α : α < ω⟩ where P0 = Pg, and if fn is

generic function added by Q̇n then Pn+1 ⊩ Q̇n+1 = Pfn . Then in V [G], for all
n < ω, there is a club Cn such that for all α ∈ Cn, fn+1(α) < fn(α). If ω1

were preserved by the iteration, D =
⋂

n<ω Cn would be club. In particular,
there would be an α ∈ D, so f0(α) > f1(α) > · · · , a contradiction. Hence the
iteration collapses ω1.

However, Shelah found that the following more restricting class works with
countable support:

Definition 3. A forcing P is proper if P preserves all stationary S ⊆ [λ]ω for
all uncountable λ.
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Notice that ω1 is club in [ω1]
ω, so proper implies stationary set-preserving,

and hence ω1-preserving. In fact, one can show the following:

Proposition 5. If P is proper then every countable set of ordinals in V [G]
is contained in a countable set in V (i.e. proper forcings have the ω1-cover
property).

Proof. Let X be a countable set of ordinals in V [G] and λ regular uncountable
in V such that X ⊆ λ. Then ([λ]ω)V remains stationary in V [G] and hence
meets the club {A ⊆ [λ]ω : A ⊇ X} in V [G]. Hence there is some A ∈ ([λ]ω)V

such that X ⊆ A.

So if P is proper and does not add reals then P adds no new sequences of
ordinals.

The proofs that ccc and σ-closed forcings preserve stationary subsets of ω1

easily generalize to show that they are proper.

Proposition 6. Both ccc and σ-closed forcings are proper.

Proof. First we prove that ccc forcings are proper. Let p ⊩ Ċ ⊆ [λ]ω is club.
We use the fact that there Ḟ : λ<ω → ω such that p ⊩ Ċ contains the closure
points of Ḟ . In V , let f : λ<ω → [λ]ω where

f(e) = {α < λ : (∃q ≤ p) Ḟ (e) = α

By the ccc, |f(e)| is countable for all e. Let D be the club of closure points of
f . Then p ⊩ ∀e Ḟ (e) ∈ f(e) so p ⊩ D ⊆ Ċ. Since every club in the extension
contains a ground model club, all stationary sets are preserved.

Now we shall prove that σ-closed forcings are proper. Let S be stationary,
and p ⊩ Ḟ : λ<ω → λ. We find an extension of p that forces S to contain a
closure point of Ḟ .

There is some M ≺ Hλ countable such that N ∩ λ ∈ S. Let N ∩ λ = x.
Enumerate x<ω = {en : n < ω}. We construct a descending sequence of
conditions pn+1 ≤ pn such that p0 = p and for every n there is an αn such
that pn+1 ⊩ Ḟ (en) = αn. Using closure of the poset, let q be a lower bound of
the pn’s. Then q ⊩ Ḟ ”x<ω ⊆ x.

Note that the proof of properness of σ-closed forcings can be generalized to
< ω1 strategically-closed forcings.

It is also easy to see that if P is proper and P ⊩ Q̇ is proper, then P ∗
Q̇ is proper. Although properness is easily preserved by two-step iteration,
properness is not necessarily preserved under products.

Proposition 7. There are proper forcings P,Q such that P×Q is not proper,
and in fact collapses ω1.

Proof. Consider the tree T = ω<ω1
2 and let P = T . It is easy to see that P is

σ-closed, and forcing with P adds a surjection from ω1 to ω2.
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Now we want to construct a (proper) forcing Q such that if H ⊆ Q is generic
then in V [H], any forcing preserving ω1 will not add an uncountable branch
cofinal in ω2 to T . We will take Q to be a 3-step iteration, Q = Q1 ∗ Q̇2 ∗ Q̇3.
Q1 will be Add(ω, 1) and Q̇2 will be a name for Col(ω1, 2

ω1). It is a well-known
result of Silver that any iteration of the form Knaster ∗σ-closed does not add
branches through trees of height ω2, such a forcing is proper as well (Knaster
implies ccc). Finally Q̇3 will be forced to “specialize” T .

We describe the forcing Q̇3. For an ω1-tree S, let SS be the partial order
consisting of finite partial functions f : S → ω such that if s, t ∈ S are in-
compatible then f(s) = f(t). Since the f ’s have finite domains, a delta system
argument shows that SS is ccc (hence proper). A genericity argument shows
that if G ⊆ SS is generic then

⋃
G = g : S → ω is a specializing function for S,

i.e. for all n, g−1{n} is an antichain.
Notice that after forcing with Q1 ∗ Q̇2, T become a tree of height ω1, so we

take Q̇3 to be a name for ST . Let G×H ⊆ P×Q be generic, so that in V [H], T
become a special tree of height ω1 and in V [G], a cofinal branch is added to T .
Since a special tree cannot have a branch, ω1 must be collapsed in V [G×H].

Proper forcings end up being the right class for a nice iteration theory, as
Shelah proved that any countable support iteration of proper forcings remain
proper. As far as I know, there is no proof of this theorem using the above
formulation of properness. However, Shelah was able to generalize an analogue
of the following model-theoretic characterization of ccc:

Lemma 1. Let P be any notion of forcing. The following are equivalent:

1. P is ccc.

2. For all sufficiently large λ and countable M ≺ Hλ, if Ġ names the generic
filter then 1P ⊩ Ġ ∩M is M -generic.

Proof. (1 ⇒ 2). Let M ≺ Hλ be countable, D ∈ M dense. If A ∈ M is a
maximal antichain, then A must be countable by the ccc. Consider D = {p ∈
P : ∃q ∈ A such that q ≤ p}. Then D ∈ M and D is dense. So 1P ⊩ ∃q ∈ Ġ∩D,
and since Ġ is upwards closed, 1P ⊩ ∃p ∈ Ġ ∩ A. So 1P forces Ġ to meet every
maximal antichain of M .

(2 ⇒ 1). Suppose P is not ccc and A is a maximal antichain, so A is uncount-
able. Let M ≺ Hλ be countable with A ∈ M . Choose some p ∈ A \M . Since
any generic G contains exactly one element of A, if p ∈ G then G ∩A ∩M = ∅
so p ⊩ Ġ ∩M is not M -generic.

The condition in 2. suggests the following definition:

Definition 4. Let P be a partial order and p ∈ P. For λ sufficiently large and
M ≺ Hλ countable, we say p is (M,P)-generic if p ⊩ Ġ∩M is M -generic, where
Ġ names the generic filter.

So P is ccc iff 1P is (M,P)-generic for every countable M . The proof of the
last lemma easily generalizes to show the following:
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Lemma 2. Let P be any forcing, p ∈ P, and λ sufficiently large, and M ≺ Hλ

countable. The following are equivalent:

1. p is (M,P )-generic (i.e. p ⊩ Ġ ∩M is M -generic)

2. For all maximal antichains A ⊆ P, A∩M is predense below p, i.e. for all
q ≤ p there is r ∈ A ∩M such that r ̸⊥ q.

Then one can prove the following model-theoretic characterization of proper-
ness which is used in proving the iteration theorem, and is generally easier to
verify.

Lemma 3. Let P be any forcing. The following are equivalent:

1. P is proper.

2. For all sufficiently large λ there is a club of countable M ≺ Hλ such that
for all p ∈ M there is a q ≤ p that is (M,P )-generic.

Proof. (1 ⇒ 2). Suppose towards a contradiction that there is a stationary
S ⊆ [Hλ]

ω such that for all M ∈ S, there is a p ∈ M with no q ≤ p that is
(M,P)-generic. We may assume that there is one fixed p for all M ∈ S: if
f : S → Hλ by f(M) = p where p ∈ M is such that there is no (M,P)-generic
q ≤ p, we see f is regressive and by Fodor constant on a stationary set.

Now let G be generic with p ∈ G and work in V [G]. For every maximal
antichain A below p, let qA ∈ G ∩A. Note that qA is unique. Let

C = {M ≺ HV
λ : if A ∈ M then qA ∈ M}

It is easy to see that C is club. Since S remains stationary, in V [G] there is
an M ∈ S ∩ C. For each A ∈ M , since qA ∈ M there is an upper bound qMA
of A ∩M in G. By genericity, there is a lower bound q∗ of all the qMA ’s. Then
q∗ ≤ p is (M,P)-generic, but M ∈ S, a contradiction.

(2 ⇒ 1). Let S ⊆ [λ]ω be stationary and let p ⊩ Ḟ : λ<ω → λ. We want
to show that there is a q ≤ p that forces S to contain a closure point of Ḟ .
Let µ ≥ λ be sufficiently large and C ⊆ [Hµ]

ω club so that for all M ∈ C and
p ∈ M , there is an (M,P)-generic q ≤ p. Note that {M ∩ λ : M ∈ C} contains
a club in [λ]ω, so there is some M ∈ C with M ∩ λ ∈ S and p ∈ M .

Let q ≤ p be (M,P)-generic. We shall show that q ⊩ M ∩ λ is closed under
Ḟ . To this end let e ∈ (M ∩ λ)<ω. Let

A = {r ∈ M : r ≤ p and ∃α r ⊩ Ḟ (e) = α}

So that A ∈ M and A is a maximal antichain below p. Suppose that r ≤ q and
r ⊩ Ḟ (e) = α. Since A ∩M is predense below q (by (M,P)-genericity), there is
an r′ ∈ A compatible with r. By the definability lemma, α ∈ M .

This characterization of properness is generally easier to check. For example,
we can now easily prove that Axiom A forcings are proper:

7



Proposition 8. Axiom A forcings are proper.

Proof. Suppose P is Axiom A. We recall that since P is Axiom A, there is a
sequence of partial orderings {≤n: n < ω} on P such that p ≤0 q implies p ≤ q
and for all n, p ≤n+1 q implies p ≤ q and

1. If ⟨pn : n < ω⟩ is a sequence such that p0 ≥0 p1 ≥1 p2 ≥2 p3 ≥ · · · then
there is a q such that q ≤n pn for all n.

2. For all p ∈ P and n and every ordinal name α̇ there is q ≤n p and a
countable set B such that q ⊩ α̇ ∈ B̌.

Now let M be countable and p ∈ M . Enumerate the maximal antichains in M
as ⟨An : n < ω⟩. We define a sequence pn+1 ≤n pn with p0 = p. Take pn+1 such
that {a ∈ An : a ⊥ pn+1} is countable. Now let q ≤n pn for all n.

We claim that q is (M,P)-generic: For every n, since An is predense, also
{a ∈ An : a ⊥ q} ⊆ M is predense.

This characterization is also key in verifying that a countable support it-
eration of proper forcings is proper. For a proof of the properness iteration
theorem, we refer the reader to chapter 3 of [She17], chapter 31 of [Jec03], or
Uri Abraham’s chapter in the Handbook of Set Theory [Abr10].

Theorem 5. Any countable support iteration of proper forcings is proper.
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