Galvin's Failure at $P_{\kappa}(\lambda)$

Ben-Zion Weltsch

Rutgers University

Rutgers Logic Seminar, 2025

The following, due to Fred Galvin, was published in a paper by Baumgartner, Hajnal, and Maté [1]. Galvin looked at this theorem as generalization of (non)regular ultrafilters.

Galvin's Theorem

Suppose $\kappa^{<\kappa} = \kappa$ and F is a normal filter over κ . Then for whenever $\langle X_{\alpha} : \alpha < \kappa^+ \rangle \subseteq F$ there is some $Y \in [\kappa^+]^{\kappa}$ such that $\bigcap_{\alpha \in Y} X_{\alpha} \in F$.

F is *normal* if every regressive function is constant on a positive set iff *F* is closed under diagonal intersections of size κ .

We can extract the following combinatorial property from Galvin's theorem:

Definition

Let F be a filter and $\kappa \leq \lambda$. We say $Gal(F, \kappa, \lambda)$ holds iff whenever $\langle X_{\alpha} : \alpha < \lambda \rangle \subseteq F$ there is a $Y \in [\lambda]^{\kappa}$ such that $\bigcap_{\alpha \in Y} X_{\alpha} \in F$.

We can extract the following combinatorial property from Galvin's theorem:

Definition

Let F be a filter and $\kappa \leq \lambda$. We say $Gal(F, \kappa, \lambda)$ holds iff whenever $\langle X_{\alpha} : \alpha < \lambda \rangle \subseteq F$ there is a $Y \in [\lambda]^{\kappa}$ such that $\bigcap_{\alpha \in Y} X_{\alpha} \in F$.

Examples

- Galvin's Theorem says that if $\kappa^{<\kappa} = \kappa$ and F is normal then $Gal(F, \kappa, \kappa^+)$.
- **2** If $Gal(F, \kappa, \lambda)$ holds then we can decrease κ or increase λ .
- Solution If U is κ -complete on κ then U is Tukey-top iff $\neg Gal(U, \kappa, 2^{\kappa})$ [2].

< □ > < □ > < □ > < □ > < □ > < □ >

$P_{\kappa}(\lambda)$ Filters

Definitions

$$P_{\kappa}(\lambda) = \{ X \subseteq \lambda : |X| < \kappa \}.$$

- **2** A filter *F* on $P_{\kappa}(\lambda)$ is **fine** if for all $x \in P_{\kappa}(\lambda)$, $\hat{x} = \{y \in P_{\kappa}(\lambda) : x \subseteq y\} \in F$
- A filter *F* on *P*_κ(λ) is **normal** if whenever $\langle X_{\alpha} : \alpha < \lambda \rangle \subseteq F$, $\triangle_{\alpha < \lambda} X_{\alpha} = \{x \in P_{\kappa}(\lambda) : x \in \bigcap_{\alpha \in x} X_{\alpha}\} \in U$

э

4 3 4 3 4 3 4

$P_{\kappa}(\lambda)$ Filters

Definitions

$$P_{\kappa}(\lambda) = \{ X \subseteq \lambda : |X| < \kappa \}.$$

- A filter *F* on *P_κ(λ)* is **fine** if for all *x* ∈ *P_κ(λ)*, $\hat{x} = \{y \in P_{\kappa}(\lambda) : x \subseteq y\} \in F$
- A filter *F* on *P*_κ(λ) is **normal** if whenever $\langle X_{\alpha} : \alpha < \lambda \rangle \subseteq F$, $\triangle_{\alpha < \lambda} X_{\alpha} = \{x \in P_{\kappa}(\lambda) : x \in \bigcap_{\alpha \in x} X_{\alpha}\} \in U$

Remarks

- If U is an ultrafilter over $P_{\kappa}(\lambda)$ then U is U is normal iff $[id]_U = j_U''\lambda$.
- 3 κ is strongly compact iff $P_{\kappa}(\lambda)$ carries a fine ultrafilter for every $\lambda \geq \kappa$.
- κ is supercompact iff P_κ(λ) carries a normal fine ultrafilter for every λ ≥ κ.

э

< □ > < □ > < □ > < □ > < □ > < □ >

The Galvin Property on $P_{\kappa}(\lambda)$ Filters

- Recall Galvin's theorem that whenever $\kappa^{<\kappa} = \kappa$ and F is a normal filter on κ . Then $Gal(F, \kappa, \kappa^+)$.
- Notice the Galvin property makes sense for filters over an arbitrary set, not just filters over ordinals.
- Note that if U is fine then trivially $\neg Gal(U, \kappa, \lambda)$.

- Recall Galvin's theorem that whenever $\kappa^{<\kappa} = \kappa$ and F is a normal filter on κ . Then $Gal(F, \kappa, \kappa^+)$.
- Notice the Galvin property makes sense for filters over an arbitrary set, not just filters over ordinals.
- Note that if U is fine then trivially $\neg Gal(U, \kappa, \lambda)$.

Benhamou and Goldberg asked the following in [3] where they investigate the Galvin property in inner models.

Question

Let U be a fine, normal ultrafilter over $P_{\kappa}(\kappa^+)$. Must $Gal(U, \kappa, 2^{\kappa^+})$ hold?

- Recall Galvin's theorem that whenever $\kappa^{<\kappa} = \kappa$ and F is a normal filter on κ . Then $Gal(F, \kappa, \kappa^+)$.
- Notice the Galvin property makes sense for filters over an arbitrary set, not just filters over ordinals.
- Note that if U is fine then trivially $\neg Gal(U, \kappa, \lambda)$.

Benhamou and Goldberg asked the following in [3] where they investigate the Galvin property in inner models.

Question

Let U be a fine, normal ultrafilter over $P_{\kappa}(\kappa^+)$. Must $Gal(U, \kappa, 2^{\kappa^+})$ hold?

We answer this negatively, in a strong way.

Failure of Galvin Property on $P_{\kappa}(\lambda)$ Measures

Main Theorem 1

If U fine, normal ultrafilter over
$$P_{\kappa}(\kappa^+)$$
 then $\neg Gal(U, \kappa, 2^{\kappa^+})$.

э

Failure of Galvin Property on $P_{\kappa}(\lambda)$ Measures

Main Theorem 1

If U fine, normal ultrafilter over
$$P_{\kappa}(\kappa^+)$$
 then $\neg Gal(U,\kappa,2^{\kappa^+})$.

- Proof idea: U is Dodd-sound, which asserts that M_U has a certain canonical sequence of subsets of $j_U(\kappa^+)$.
- Turn this sequence into a counterexample to the Galvin property.

Main Theorem 1

If U fine, normal ultrafilter over
$$P_{\kappa}(\kappa^+)$$
 then $\neg Gal(U,\kappa,2^{\kappa^+})$.

• Proof idea: U is Dodd-sound, which asserts that M_U has a certain canonical sequence of subsets of $j_U(\kappa^+)$.

• Turn this sequence into a counterexample to the Galvin property. Even without Dodd-soundness, we can use some tricks to "cover" the sequence in M_U . But we must trade normality of the filter for some cardinal arithmetic, yielding the following theorem.

Main Theorem 2

Let $\kappa < cf(\lambda)$ and assume $2^{<\lambda} = \lambda$. Let U be a fine, σ -complete $P_{\kappa}(\lambda)$ ultrafilter. Then $\neg Gal(U, \kappa, 2^{\lambda})$.

< □ > < □ > < □ > < □ > < □ > < □ >

Main Theorem

Let
$$U$$
 be a normal $\mathcal{P}_\kappa(\kappa^+)$ ultrafilter. Then $eg Gal(U,\kappa,2^{\kappa^+}).$

э

Main Theorem

Let
$$U$$
 be a normal $\mathcal{P}_\kappa(\kappa^+)$ ultrafilter. Then $eg Gal(U,\kappa,2^{\kappa^+}).$

• Let M_U denote the ultrapower of V by U. By a theorem of Goldberg, normal ultrafilters are *Dodd-sound*, meaning

$$\mathcal{A} = \{j_U(X) \cap (\sup j''_U \kappa^+) : X \subseteq \kappa^+\} \in M_U$$

Main Theorem

Let
$$U$$
 be a normal $P_\kappa(\kappa^+)$ ultrafilter. Then $eg Gal(U,\kappa,2^{\kappa^+}).$

 Let M_U denote the ultrapower of V by U. By a theorem of Goldberg, normal ultrafilters are *Dodd-sound*, meaning

$$\mathcal{A} = \{j_U(X) \cap (\sup j''_U \kappa^+) : X \subseteq \kappa^+\} \in M_U$$

) We will use $\mathcal A$ to produce a counterexample to the Galvin property.

Main Theorem

Let
$$U$$
 be a normal $P_\kappa(\kappa^+)$ ultrafilter. Then $eg Gal(U,\kappa,2^{\kappa^+}).$

 Let M_U denote the ultrapower of V by U. By a theorem of Goldberg, normal ultrafilters are *Dodd-sound*, meaning

$$\mathcal{A} = \{j_U(X) \cap (\sup j''_U \kappa^+) : X \subseteq \kappa^+\} \in M_U$$

• We will use \mathcal{A} to produce a counterexample to the Galvin property.

• Let $f: P_{\kappa}(\kappa^+) \to P(P(\kappa^+))$ represent \mathcal{A} in M_U , i.e.

 $j_U(f)([id]_U) = \mathcal{A}$

Main Theorem

Let
$$U$$
 be a normal $P_\kappa(\kappa^+)$ ultrafilter. Then $eg Gal(U,\kappa,2^{\kappa^+}).$

 Let M_U denote the ultrapower of V by U. By a theorem of Goldberg, normal ultrafilters are *Dodd-sound*, meaning

$$\mathcal{A} = \{j_U(X) \cap (\sup j''_U \kappa^+) : X \subseteq \kappa^+\} \in M_U$$

- We will use \mathcal{A} to produce a counterexample to the Galvin property.
- Let $f: P_{\kappa}(\kappa^+) \to P(P(\kappa^+))$ represent \mathcal{A} in M_U , i.e.

 $j_U(f)([id]_U) = \mathcal{A}$

For each $X \in P_{\kappa}(\kappa^+)$ let $\mathcal{A}_X = j_U(f)(X)$.

• For each $X \in P_{\kappa}(\kappa^+)$ let $\mathcal{A}_X = j_U(f)(X)$.

• For each $X \in P_{\kappa}(\kappa^+)$ let $\mathcal{A}_X = j_U(f)(X)$.

) Here we find the counterexample: for every $Y\subseteq\kappa^+$,

$$B_Y = \{X \in P_\kappa(\kappa^+) : Y \cap \sup(X) \in \mathcal{A}_X\} \in U$$

 $j''_U \kappa^+ \in j_U(B_Y)$ by elementarity and the definition of \mathcal{A} .

- For each $X \in P_{\kappa}(\kappa^+)$ let $\mathcal{A}_X = j_U(f)(X)$.
- Here we find the counterexample: for every $Y\subseteq\kappa^+$,

$$B_Y = \{X \in P_\kappa(\kappa^+) : Y \cap \sup(X) \in \mathcal{A}_X\} \in U$$

 $j''_U \kappa^+ \in j_U(B_Y)$ by elementarity and the definition of \mathcal{A} .

• Suppose towards a contradiction that there is $\{Y_i : i < \kappa\} \subseteq P(\kappa^+)$ such that $\bigcap_{i < \kappa} B_{Y_i} = B \in U$.

Claim

There is $\theta < \kappa$ such that $\{\sup(X) : X \in B \text{ and } |\mathcal{A}_X| < \theta\} = S_{\theta}$ is unbounded in κ^+ .

э

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| < \theta \} = S_{\theta}$ is unbounded in κ^+ .

Notice that the following hold:

$$egin{aligned} \mathcal{M}_{\mathcal{U}} \models |\mathcal{A}| &= 2^{\kappa^+} < j_{\mathcal{U}}(\kappa) \ && \kappa = j_{\mathcal{U}}''\kappa^+ \cap j_{\mathcal{U}}(\kappa) \end{aligned}$$

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| < \theta \} = S_{\theta}$ is unbounded in κ^+ .

Notice that the following hold:

$$egin{aligned} \mathcal{M}_{\mathcal{U}} \models |\mathcal{A}| &= 2^{\kappa^+} < j_{\mathcal{U}}(\kappa) \ && \kappa = j_{\mathcal{U}}''\kappa^+ \cap j_{\mathcal{U}}(\kappa) \end{aligned}$$

Together we have

$$M_U \models |j_U(f)(j''_U\kappa^+)| \le 2^{(j''_U\kappa^+ \cap j_U(\kappa))^+}$$

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| < \theta \} = S_{\theta}$ is unbounded in κ^+ .

Notice that the following hold:

$$egin{aligned} \mathcal{M}_{\mathcal{U}} \models |\mathcal{A}| &= 2^{\kappa^+} < j_{\mathcal{U}}(\kappa) \ && \kappa = j_{\mathcal{U}}''\kappa^+ \cap j_{\mathcal{U}}(\kappa) \end{aligned}$$

Together we have

$$M_U \models |j_U(f)(j_U''\kappa^+)| \le 2^{(j_U''\kappa^+ \cap j_U(\kappa))^+}$$

• Hence
$$\{X\in P_\kappa(\kappa^+): |\mathcal{A}_X|=2^{|X\cap\kappa|^+}\}\in U$$

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| \le \theta \} = S_{\theta}$ is unbounded in κ^+ .

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| \le \theta \} = S_{\theta}$ is unbounded in κ^+ .

Now suppose towards a contradiction there is no such θ , so for every $\theta < \kappa$, sup $S_{\theta} = \sigma_{\theta}$ for some $\sigma_{\theta} < \lambda$.

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| \le \theta \} = S_{\theta}$ is unbounded in κ^+ .

- Now suppose towards a contradiction there is no such θ , so for every $\theta < \kappa$, sup $S_{\theta} = \sigma_{\theta}$ for some $\sigma_{\theta} < \lambda$.
- Let $\sigma = \sup_{\theta < \kappa} \sigma_{\theta}$.

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| \le \theta \} = S_{\theta}$ is unbounded in κ^+ .

• Now suppose towards a contradiction there is no such θ , so for every $\theta < \kappa$, sup $S_{\theta} = \sigma_{\theta}$ for some $\sigma_{\theta} < \lambda$.

• Let
$$\sigma = \sup_{\theta < \kappa} \sigma_{\theta}$$
.

By elementarity,

$$M_U \models \forall \theta < j_U(\kappa), \, \sup(j_U(S)_{\theta}) < j_U(\sigma) < \sup j_U'' \kappa^+$$

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| \le \theta \} = S_{\theta}$ is unbounded in κ^+ .

Now suppose towards a contradiction there is no such θ , so for every $\theta < \kappa$, sup $S_{\theta} = \sigma_{\theta}$ for some $\sigma_{\theta} < \lambda$.

• Let
$$\sigma = \sup_{\theta < \kappa} \sigma_{\theta}$$
.

By elementarity,

$$M_U \models orall heta < j_U(\kappa), \, \sup(j_U(\mathcal{S})_ heta) < j_U(\sigma) < \sup j_U'' \kappa^+$$

• In particular, the following set is bounded in $\sup j''_U \kappa^+$: $\{\sup(X) : X \in j_U(B) \text{ and } |\mathcal{A}_X| \le 2^{|X \cap \kappa|^+}\}$

Claim

There is $\theta < \kappa$ such that $\{ \sup(X) : X \in B \text{ and } |\mathcal{A}_X| \le \theta \} = S_{\theta}$ is unbounded in κ^+ .

• Now suppose towards a contradiction there is no such θ , so for every $\theta < \kappa$, sup $S_{\theta} = \sigma_{\theta}$ for some $\sigma_{\theta} < \lambda$.

• Let
$$\sigma = \sup_{\theta < \kappa} \sigma_{\theta}$$
.

By elementarity,

$$M_U \models orall heta < j_U(\kappa), \, \sup(j_U(\mathcal{S})_ heta) < j_U(\sigma) < \sup j_U'' \kappa^+$$

• In particular, the following set is bounded in $\sup j''_U \kappa^+$: $\{\sup(X) : X \in j_U(B) \text{ and } |\mathcal{A}_X| \le 2^{|X \cap \kappa|^+}\}$

• But this is a contradiction as $j''_U \kappa^+ \in j_U(B)$ and $|\mathcal{A}| = 2^{\kappa^+}$.

Ben-Zion Weltsch (Rutgers University)

▶ < ∃ > Rutgers Logic Seminar, 2025

æ

• Now we may fix θ such that $\{\sup(X) : X \in B \text{ and } |A_X| \le \theta\}$ is unbounded in κ^+ .

- Now we may fix θ such that $\{\sup(X) : X \in B \text{ and } |A_X| \le \theta\}$ is unbounded in κ^+ .
- For $i \neq j < \theta^+$ let $\beta_{i,j}$ be least such that $Y_i \setminus \beta_{i,j} \neq Y_j \setminus \beta_{i,j}$.

- Now we may fix θ such that {sup(X) : X ∈ B and |A_X| ≤ θ} is unbounded in κ⁺.
- For $i \neq j < \theta^+$ let $\beta_{i,j}$ be least such that $Y_i \setminus \beta_{i,j} \neq Y_j \setminus \beta_{i,j}$.
- Fix $\alpha^* > \sup_{i \neq j < \theta_0^+} (\beta_{i,j})$ below κ^+ such that there is an $X^* \in B$ with $|\mathcal{A}_{X^*}| \le \theta$ and $\sup(X^*) = \alpha^*$.

- Now we may fix θ such that {sup(X) : X ∈ B and |A_X| ≤ θ} is unbounded in κ⁺.
- For $i \neq j < \theta^+$ let $\beta_{i,j}$ be least such that $Y_i \setminus \beta_{i,j} \neq Y_j \setminus \beta_{i,j}$.
- Fix $\alpha^* > \sup_{i \neq j < \theta_0^+} (\beta_{i,j})$ below κ^+ such that there is an $X^* \in B$ with $|\mathcal{A}_{X^*}| \le \theta$ and $\sup(X^*) = \alpha^*$.
- $i \mapsto Y_i \cap \sup(X^*)$ is a 1-1 map from θ^+ into \mathcal{A}_{X^*} , a contradiction. \Box

Ben-Zion Weltsch (Rutgers University)

(日) (四) (日) (日) (日)

2

The results essentially settle the question of the Galvin property for fine ultrafilters.

The results essentially settle the question of the Galvin property for fine ultrafilters.

Galvin Property for Posets

Let $\mathbb{P} = (P, \leq)$ be a directed poset. We say $Gal(\mathbb{P}, \kappa, \lambda)$ holds iff whenever $\langle p_{\alpha} : \alpha < \lambda \rangle \subseteq P$ there is a $Y \in [\lambda]^{\kappa}$ and a $q \in P$ such that such that $p_{\alpha} \leq q$ for all $\alpha \in Y$.

The results essentially settle the question of the Galvin property for fine ultrafilters.

Galvin Property for Posets

Let $\mathbb{P} = (P, \leq)$ be a directed poset. We say $Gal(\mathbb{P}, \kappa, \lambda)$ holds iff whenever $\langle p_{\alpha} : \alpha < \lambda \rangle \subseteq P$ there is a $Y \in [\lambda]^{\kappa}$ and a $q \in P$ such that such that $p_{\alpha} \leq q$ for all $\alpha \in Y$.

- Generalizes Galvin property from $\mathbb{P} = (U, \supseteq)$.
- Connections with generalized cardinal characteristics for $P_{\kappa}(\lambda)$.

The results essentially settle the question of the Galvin property for fine ultrafilters.

Galvin Property for Posets

Let $\mathbb{P} = (P, \leq)$ be a directed poset. We say $Gal(\mathbb{P}, \kappa, \lambda)$ holds iff whenever $\langle p_{\alpha} : \alpha < \lambda \rangle \subseteq P$ there is a $Y \in [\lambda]^{\kappa}$ and a $q \in P$ such that such that $p_{\alpha} \leq q$ for all $\alpha \in Y$.

- Generalizes Galvin property from $\mathbb{P} = (U, \supseteq)$.
- Connections with generalized cardinal characteristics for $P_{\kappa}(\lambda)$.

Let $\mathbb{U}^* = (U, \supseteq^*)$ where \supseteq^* is reverse containment modulo the Fine filter and U is a fine $P_{\kappa}(\kappa^+)$ ultrafilter.

The results essentially settle the question of the Galvin property for fine ultrafilters.

Galvin Property for Posets

Let $\mathbb{P} = (P, \leq)$ be a directed poset. We say $Gal(\mathbb{P}, \kappa, \lambda)$ holds iff whenever $\langle p_{\alpha} : \alpha < \lambda \rangle \subseteq P$ there is a $Y \in [\lambda]^{\kappa}$ and a $q \in P$ such that such that $p_{\alpha} \leq q$ for all $\alpha \in Y$.

- Generalizes Galvin property from $\mathbb{P} = (U, \supseteq)$.
- Connections with generalized cardinal characteristics for $P_{\kappa}(\lambda)$.

Let $\mathbb{U}^* = (U, \supseteq^*)$ where \supseteq^* is reverse containment modulo the Fine filter and U is a fine $P_{\kappa}(\kappa^+)$ ultrafilter.

Questions

- Must $Gal(\mathbb{U}^*, \kappa, \kappa^+)$ hold?
- What if U is σ-complete? If U is normal?

Thanks Tom for inviting me to this project, and thanks for your attention!

- J.E. Baumgartner, András Hajnal, and A. Mate. "Weak saturation properties of ideals". In: *Colloq. Math. Soc. Janós Bolyai* 10 (Jan. 1973).
- [2] TOM BENHAMOU and NATASHA DOBRINEN. "COFINAL TYPES OF ULTRAFILTERS OVER MEASURABLE CARDINALS". In: The Journal of Symbolic Logic (Feb. 2024), pp. 1–35. ISSN: 1943-5886. DOI: 10.1017/jsl.2024.12. URL: http://dx.doi.org/10.1017/jsl.2024.12.
- [3] Tom Benhamou and Gabriel Goldberg. "The Galvin property under the ultrapower axiom". In: Canadian Journal of Mathematics (May 2024), pp. 1–32. ISSN: 1496-4279. DOI: 10.4153/s0008414x2400052x. URL: http://dx.doi.org/10.4153/S0008414X2400052X.