Iterated sumsets and Hilbert functions

Shalom Eliahou
Université du Littoral Côte d’Opale, Calais

New York Number Theory Seminar
(on Zoom)
July 10, 2020
Introduction

Let $A, B \subseteq G$ where G is an abelian group, e.g. $G = \mathbb{Z}$. Denote

$$A + B = \{a + b \mid a \in A, b \in B\},$$

the sumset of A, B. For $A = B$, denote

$$2A = A + A.$$

For $h \geq 2$, denote

$$hA = A + (h - 1)A,$$

the h-fold iterated sumset of A. Of course, $0A = \{0\}$ and $1A = A$.

Problem (typical in Additive Combinatorics)

If A is finite, how does the sequence $|hA|$ grow with h?
Specifically here, if $|hA|$ is given, what can one say about $|(h \pm 1)A|$?

Theorem (Plünnecke, 1970)

Let A be a nonempty finite subset of an abelian group. Let $h \geq 2$ be an integer. Then $|iA| \geq |hA|^{i/h}$ for all $1 \leq i \leq h$.

This is one **Plünnecke inequality** derived using graph theory.

Note. These estimates are equivalent to the main case $i = h - 1$, i.e.

$$|(h - 1)A| \geq |hA|^{(h-1)/h}.$$

Our approach

- Model the sequence $|hA|$ with the **Hilbert function** of a standard graded algebra $R(A)$.
- Apply **Macaulay’s theorem** on the growth of Hilbert functions.

It allows us to **recover and strengthen** Plünnecke’s estimate.
An example

Let $A \subset \mathbb{Z}$ satisfy $|5A| = 100$. Plünnecke’s inequality yields

\[
|4A| \geq 100^{4/5} \approx 39.8 \\
|6A| \leq 100^{6/5} \approx 251.18
\]

Hence

\[
|4A| \geq 40 \\
|6A| \leq 251
\]

Can one do better? Yes. Our approach yields

\[
|4A| \geq 61 \\
|6A| \leq 152
\]

How?
A **standard graded algebra** is a quotient \(R = K[X_1, \ldots, X_n]/J \), where \(K \) is a field, \(\deg X_i = 1 \) for all \(i \), and \(J \) is a homogeneous ideal. So \(R = \bigoplus_{i \geq 0} R_i \), with \(R_0 = K \) and \(R_i R_j = R_{i+j} \) for all \(i, j \).

The **Hilbert function** of the standard graded algebra \(R = \bigoplus_{i \geq 0} R_i \) is the map \(i \mapsto d_i = \dim_K R_i \) \(\forall i \geq 0 \).

- What characterizes such numerical functions \(i \mapsto d_i \)?
 - Macaulay’s classical theorem (1927) provides a **complete answer**.
 - For instance, if \(\dim R_1 = n \), then \(\dim R_2 \leq (n+1)n/2 \). That is,

\[
d_1 = \binom{n}{1} \implies d_2 \leq \binom{n+1}{1+1}.
\]
Binomial representation

Let $a, i \geq 1$ be positive integers. There is a unique expression

$$a = \sum_{k=1}^{i} \binom{a_k}{k} = \binom{a_i}{i} + \binom{a_{i-1}}{i-1} + \cdots + \binom{a_1}{1}$$

with decreasing integers $a_i > a_{i-1} > \cdots > a_1 \geq 0$. We then define

$$a^{\langle i \rangle} = \sum_{k=1}^{i} \binom{a_k + 1}{k + 1}.$$

Example

$$100^{\langle 5 \rangle} = 152.$$
Example: $100^{(5)} = 152$

Let $a = 100$, $i = 5$. The 5th binomial representation of 100 is

$$100 = \binom{8}{5} + \binom{7}{4} + \binom{4}{3} + \binom{3}{2} + \binom{2}{1}.$$

Hence

$$100^{(5)} = \binom{9}{6} + \binom{8}{5} + \binom{5}{4} + \binom{4}{3} + \binom{3}{2} = 152.$$

From this we shall deduce: if $|5A| = 100$ then $|6A| \leq 152$.

Shalom Eliahou (ULCO)
Iterated sumsets and Hilbert functions
New York Number Theory Seminar
Macaulay’s theorem, first half

Macaulay’s theorem characterizes the Hilbert functions of standard graded algebras. Here is a necessary condition.

Theorem (1/2)

Let $R = \bigoplus_{i \geq 0} R_i$ be a standard graded algebra over a field K, with Hilbert function $d_i = \dim_K R_i$. Then for all $i \geq 1$, we have

$$d_{i+1} \leq d_i^{(i)}.$$

Example

Assume $\dim R_5 = 100$, i.e. $d_5 = 100$. Macaulay states $d_6 \leq d_5^{(5)}$. Now $100^{(5)} = 152$ as seen above. Hence

$$\dim R_6 \leq 152.$$
Macaulay’s theorem, full version

Remarkably, that necessary condition is also **sufficient**.

Theorem (Macaulay, 1927)

A numerical function \(i \mapsto d_i \) is the Hilbert function of a standard graded algebra if and only if \(d_0 = 1 \) and \(d_{i+1} \leq d_i^{(i)} \) for all \(i \geq 1 \).

Example

Let \((d_0, d_1, d_2, d_3, d_4, d_5, d_6) = (1, 5, 15, 33, 61, 100, 152)\). Then \(d_{i+1} \leq d_i^{(i)} \) for all \(i = 1, \ldots, 5 \). By Macaulay’s theorem, there exists a standard graded algebra \(R = \bigoplus_{i \geq 0} R_i \) such that \(\dim R_i = d_i \) for \(i = 0, \ldots, 6 \). For instance, take

\[
R = K[X_1, \ldots, X_5]/(X_5^3, X_4X_5^2, X_3^3X_5^2).
\]
A glimpse inside the box

1. Denote $M_d = \text{set of monomials of degree } d \text{ in } X_1, \ldots, X_n$.

2. Order M_d lexicographically: $X_1^d > X_1^{d-1}X_2 > X_1^{d-1}X_3 > \cdots > X_n^d$.

3. A lexsegment in M_d is $L = \{ v \in M_d \mid v \geq u \}$ for some $u \in M_d$.

4. Denote $\mathcal{M} = \{ X_1, \ldots, X_n \}$. If $A \subseteq M_d$ then $\mathcal{M}A \subseteq M_{d+1}$.

5. If $L \subseteq M_d$ is a lexsegment, then so is $\mathcal{M}L$.

6. Lexsegments have minimal growth: Let $A, L \subseteq M_d$ such that $|L| = |A|$ and L is a lexsegment. Then $|\mathcal{M}A| \geq |\mathcal{M}L|$.

7. For $A \subseteq M_d$, denote $\overline{A} = M_d \setminus A$, its complement.

8. Let $L \subseteq M_d$ be a lexsegment. If $|\overline{L}| = a$ then $|\overline{\mathcal{M}L}| = a^{(d)}$.

Shalom Eliahou (ULCO)
Iterated sumsets and Hilbert functions
New York Number Theory Seminar 10 / 26
Let G be an abelian group and K a commutative field. Let $A \subset G$ be finite nonempty. We associate to A a standard graded K-algebra

$$R = R(A) = \bigoplus_{h \geq 0} R_h$$

whose Hilbert function $\dim_K R_h$ exactly models the sequence $|hA|$ for $h \geq 0$.

- Consider the group algebra $K[G]$ of G. Its canonical K-basis is the set of symbols $\{ t^g \mid g \in G \}$, and its product is induced by the formula

$$t^{g_1} t^{g_2} = t^{g_1+g_2}$$

for all $g_1, g_2 \in G$.

- Consider $S = K[G][X]$, the one-variable polynomial algebra over $K[G]$.
• A natural K-basis for S is the set

$$\mathcal{B} = \{ t^g X^n \mid g \in G, n \in \mathbb{N} \}. $$

• The product of any two basis elements is given by

$$t^{g_1} X^{n_1} \cdot t^{g_2} X^{n_2} = t^{g_1 + g_2} X^{n_1 + n_2}$$

for all $g_1, g_2 \in G$ and all $n_1, n_2 \in \mathbb{N}$.

• We define the **degree** of a basis element as

$$\text{deg}(t^g X^n) = n$$

for all $g \in G$ and all $n \in \mathbb{N}$.

• Thus $S = \bigoplus_{h \geq 0} S_h$ is a graded K-algebra, where for all $h \geq 0$, S_h is the K-vector space with basis the set $\{ t^g X^h \mid g \in G \}$.
Definition

Set $A = \{a_1, \ldots, a_n\}$. We define $R(A)$ to be the K-subalgebra of S spanned by the set $\{t^{a_1}X, \ldots, t^{a_n}X\}$. That is,

$$R(A) = K[t^{a_1}X, \ldots, t^{a_n}X].$$

- Since $R(A)$ is finitely generated over K by elements of degree 1, it is a standard graded algebra.
- We then have $R = \bigoplus_{h \geq 0} R_h$, where R_h is the K-vector space with basis the set $\{t^bX^h \mid b \in hA\}$.

 - For instance, $R_2 = \langle t^{a_i+a_j}X^2 \mid 1 \leq i \leq j \leq n \rangle$.
- It follows that

 $$\dim R_h = |hA|$$

 for all $h \geq 0$.
Example revisited

Let $A \subset \mathbb{Z}$ satisfy $|5A| = 100$. Let $R = R(A) = \bigoplus_{h \geq 0} R_h$ be the associated standard graded algebra, with $\dim R_h = |hA|$ for all $h \geq 0$.

- So $\dim R_5 = 100$. Macaulay implies $|6A| = \dim R_6 \leq 100^{(5)} = 152$.
- Claim: $\dim R_4 = |4A| \geq 61$. Assume for a contradiction $\dim R_4 \leq 60$.

Now

$$60 = \binom{7}{4} + \binom{6}{3} + \binom{3}{2} + \binom{2}{1},$$

whence $60^{(4)} = 98$. Macaulay would then imply

$$\dim R_5 \leq 60^{(4)} = 98,$$

a contradiction. This proves the claim. **Summary:**

| When $|5A| = 100$ | $|4A| \geq$ | $|6A| \leq$ |
|-------------------|-----------|-----------|
| Plünnecke | 40 | 251 |
| Macaulay | 61 | 152 |
Optimality

- Are the bounds $|4A| \geq 61, |6A| \leq 152$ optimal, at least over \mathbb{Z}?
- Probably not, but they are close to it. For instance, let

$$A = \{0, 1, 5, 8, 49\}.$$

Then $|5A| = 100$ as required, and $|4A| = 63, |6A| = 145$.

We conjecture that this is best possible over \mathbb{Z}.

Conjecture

Let $A \subset \mathbb{Z}$ satisfy $|5A| = 100$. Then

$$|4A| \geq 63,$$
$$|6A| \leq 145.$$
Recovering Plünnecke’s estimate

Let $A \subset \mathbb{Z}$ be finite with $|A| \geq 2$. Let $h \geq 2$.

Theorem (Plünnecke, 1970)

$$|(h - 1)A| \geq |hA|^{(h-1)/h}.$$

We recover this estimate as follows.

Theorem (E.-Mazumdar, 2020+)

$$|(h - 1)A| \geq \theta(x, h) |hA|^{(h-1)/h}$$

where $\theta(x, h) \geq 1$ is a well-defined real number depending on $|hA|, h$.

For that, we need a condensed version of Macaulay’s theorem. It involves $\binom{x}{h}$ for $x \in \mathbb{R}$.
Binomial coefficients as functions

For \(h \in \mathbb{N} \) and \(x \in \mathbb{R} \), denote as usual

\[
\binom{x}{h} = \frac{x(x-1) \cdots (x-h+1)}{h!} = \prod_{i=0}^{h-1} \frac{x-i}{h-i}.
\]

Lemma

Let \(h \geq 1 \) be an integer. Then the map \(y \mapsto \binom{y}{h} \) is an increasing bijection from \([h-1, \infty)\) to \([0, \infty)\). Hence

\[y_1 \leq y_2 \iff \binom{y_1}{h} \leq \binom{y_2}{h}. \]

This is a direct consequence of Rolle’s theorem.

Corollary

Let \(h \geq 1 \) be a positive integer. Let \(z \in [0, \infty) \). Then there exists a unique real number \(x \geq h-1 \) such that \(z = \binom{x}{h} \). If \(z \geq 1 \) then \(x \geq h \).
A condensed version
(For smoother applications of Macaulay’s theorem)

Theorem (E. 2018)

Let \(R = \bigoplus_{i \geq 0} R_i \) be a standard graded algebra. Let \(i \geq 1 \). Let \(x \geq i - 1 \) be the unique real number such that \(\dim R_i = \binom{x}{i} \). Then

\[
\dim R_{i-1} \geq \binom{x-1}{i-1}, \quad \dim R_{i+1} \leq \binom{x+1}{i+1}.
\]

Notation

For an integer \(h \geq 1 \) and a real number \(x \geq h \), we denote

\[
\theta(x, h) = \frac{h}{x} \left(\frac{x}{h} \right)^{1/h}.
\]
We can now prove our main result, namely:

Theorem

Let \(h \geq 2 \). Then \(|(h - 1)A| \geq \theta(x, h)|hA|^{(h-1)/h} \), where \(x \geq h \) is the unique real number such that \(|hA| = \binom{x}{h} \). Moreover, \(\theta(x, h) \geq 1 \).

Proof.

Condensed Macaulay directly implies \(|(h - 1)A| \geq \binom{x - 1}{h - 1} \). Now

\[
\binom{x - 1}{h - 1} = \frac{h}{x} \binom{x}{h},
\]

since

\[
\binom{x}{h} = \prod_{i=0}^{h-1} \frac{x - i}{h - i} = \frac{x}{h} \prod_{i=1}^{h-1} \frac{x - i}{h - i} = \frac{x}{h} \binom{x - 1}{h - 1}.
\]
Proof (continued).

Hence

\[|(h-1)A|^h \geq \binom{x-1}{h-1}^h \]

\[= \left(\frac{h}{x} \right)^h \left(\frac{x}{h} \right)^h \]

\[= \left(\frac{h}{x} \right)^h \left(\frac{x}{h} \right)^{h-1} \]

\[= \theta(x, h)^h |hA|^{h-1}. \]

Taking \(h \)th roots, we get

\[|(h-1)A| \geq \theta(x, h)|hA|^{(h-1)/h}, \]

as desired. It remains to show \(\theta(x, h) \geq 1 \).
Proof (continued).

Equivalently, let us show $\theta(x, h)^h \geq 1$:

$$\theta(x, h)^h = \left(\frac{h^h}{x^h} \right) (x \bigg/ h) = \prod_{i=0}^{h-1} \frac{h(x-i)}{x(h-i)},$$

and $h(x-i) \geq x(h-i)$ for all $0 \leq i \leq h-1$ since $h \leq x$.

In fact, we actually strengthen Plünnecke’s estimate:

Proposition

*For all $h \in \mathbb{N}$, $x \in \mathbb{R}$ such that $x > h \geq 2$, one has $1 < \theta(x, h) < e$.***

Proof by elementary manipulations, using

$$\frac{h^h}{h!} < \sum_{k \in \mathbb{N}} \frac{h^k}{k!} = e^h.$$
Proposition (Asymptotic behavior)

Let $h \geq 2$ be an integer. Then for x large,

$$\theta(x, h) \sim \frac{(2x - h) e}{2x(2\pi h)^{1/(2h)}}.$$

In particular,

$$\lim_{x \to \infty} \theta(x, h) = (2\pi h)^{-1/(2h)} e.$$

The proof uses the following

Approximation formulas, including Stirling’s

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\binom{n}{k} \sim \frac{(n/k - 1/2)^k e^k}{\sqrt{2\pi k}}$$
Proposition

\[\lim_{x \to \infty} \theta(x, \lfloor x/2 \rfloor) = 2. \]

Indeed, Stirling’s formula implies \(\theta(n, \lfloor n/2 \rfloor) \approx 2 \left(\frac{2}{\pi n} \right)^{1/n} \).

Figure: Values of \(\theta(1000, h) \) for \(h = 1, \ldots, 1000 \)
Numerical behavior of improvement factor $\theta(x, h)$

<table>
<thead>
<tr>
<th>$\theta(x, 3)$</th>
<th>> 1.5</th>
<th>$x \geq 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta(48, 2)$</td>
<td>> 2</td>
<td></td>
</tr>
<tr>
<td>$\theta(x, 6)$</td>
<td>> 2</td>
<td>$x \geq 1210$</td>
</tr>
<tr>
<td>$\theta(1210, h)$</td>
<td>> 2</td>
<td>$h \in [6, 595]$</td>
</tr>
<tr>
<td>$\theta(x, h)$</td>
<td>> 2.70</td>
<td>$x \geq 200000$</td>
</tr>
<tr>
<td>$\theta(x, h)$</td>
<td>> 2.71</td>
<td>$x \geq 1100000$</td>
</tr>
</tbody>
</table>

Theoretical and numerical evidence suggest:

$$\lim_{x \to \infty} \theta(x, \lfloor x^{1/2} \rfloor) = e.$$
Some references

Thank you for your attention!