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Introduction
[With Eshita Mazumdar. Preprint (2020) on arXiv.]

Let A,B ⊆ G where G is an abelian group, e.g. G = Z. Denote

A+B = {a+b | a ∈ A,b ∈ B},

the sumset of A,B. For A = B, denote

2A = A+A.

For h ≥ 2, denote
hA = A+(h−1)A,

the h-fold iterated sumset of A. Of course, 0A = {0} and 1A = A.

Problem (typical in Additive Combinatorics)
If A is finite, how does the sequence |hA| grow with h?
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Specifically here, if |hA| is given, what can one say about |(h±1)A|?

Theorem (Plünnecke, 1970)
Let A be a nonempty finite subset of an abelian group. Let h ≥ 2 be an
integer. Then |iA| ≥ |hA|i/h for all 1≤ i ≤ h.

This is one Plünnecke inequality derived using graph theory.

Note. These estimates are equivalent to the main case i = h−1, i.e.

|(h−1)A| ≥ |hA|(h−1)/h.

Our approach
Model the sequence |hA| with the Hilbert function of a standard
graded algebra R(A).

Apply Macaulay’s theorem on the growth of Hilbert functions.

It allows us to recover and strengthen Plünnecke’s estimate.
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An example
Let A⊂ Z satisfy |5A|= 100. Plünnecke’s inequality yields

|4A| ≥ 1004/5 ≈ 39.8

|6A| ≤ 1006/5 ≈ 251.18

Hence

|4A| ≥ 40

|6A| ≤ 251

Can one do better? Yes. Our approach yields

|4A| ≥ 61

|6A| ≤ 152

How?
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Hilbert functions

A standard graded algebra is a quotient R = K [X1, . . . ,Xn]/J, where
K is a field, degXi = 1 for all i , and J is a homogeneous ideal. So
R =⊕i≥0Ri , with R0 = K and RiRj = Ri+j for all i, j .

The Hilbert function of the standard graded algebra R =⊕i≥0Ri is the
map i 7→ di = dimK Ri ∀i ≥ 0.

•What characterizes such numerical functions i 7→ di?

Macaulay’s classical theorem (1927) provides a complete answer.

• For instance, if dimR1 = n, then dimR2 ≤ (n+1)n/2. That is,

d1 =

(
n
1

)
=⇒ d2 ≤

(
n+1
1+1

)
.
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Binomial representation
Let a, i ≥ 1 be positive integers. There is a unique expression

a =
i

∑
k=1

(
ak

k

)
=

(
ai

i

)
+

(
ai−1

i−1

)
+ · · ·+

(
a1

1

)
with decreasing integers ai > ai−1 > · · ·> a1 ≥ 0. We then define

a〈i〉 =
i

∑
k=1

(
ak +1
k +1

)
.

Example

100〈5〉 = 152.
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Example: 100〈5〉 = 152

Let a = 100, i = 5. The 5th binomial representation of 100 is

100 =

(
8
5

)
+

(
7
4

)
+

(
4
3

)
+

(
3
2

)
+

(
2
1

)
.

Hence

100〈5〉 =

(
9
6

)
+

(
8
5

)
+

(
5
4

)
+

(
4
3

)
+

(
3
2

)
= 152.

From this we shall deduce: if |5A|= 100 then |6A| ≤ 152.
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Macaulay’s theorem, first half

Macaulay’s theorem characterizes the Hilbert functions of standard
graded algebras. Here is a necessary condition.

Theorem (1/2)

Let R =⊕i≥0Ri be a standard graded algebra over a field K , with
Hilbert function di = dimK Ri . Then for all i ≥ 1, we have

di+1 ≤ d〈i〉i .

Example

Assume dimR5 = 100, i.e. d5 = 100. Macaulay states d6 ≤ d〈5〉5 . Now
100〈5〉 = 152 as seen above. Hence

dimR6 ≤ 152.
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Macaulay’s theorem, full version

Remarkably, that necessary condition is also sufficient.

Theorem (Macaulay, 1927)
A numerical function i 7→ di is the Hilbert function of a standard graded
algebra if and only if d0 = 1 and di+1 ≤ d〈i〉i for all i ≥ 1.

Example
Let (d0,d1,d2,d3,d4,d5,d6) = (1,5,15,33,61,100,152). Then

di+1 ≤ d〈i〉i for all i = 1, . . . ,5. By Macaulay’s theorem, there exists a
standard graded algebra R =⊕i≥0Ri such that dimRi = di for
i = 0, . . . ,6. For instance, take

R = K [X1, . . . ,X5]/(X
3
5 , X4X 2

5 , X 3
3 X 2

5 ).
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A glimpse inside the box

1 Denote Md = set of monomials of degree d in X1, . . . ,Xn.

2 Order Md lexicographically: X d
1 > X d−1

1 X2 > X d−1
1 X3 > · · ·> X d

n .

3 A lexsegment in Md is L = {v ∈Md | v ≥ u} for some u ∈Md .

4 Denote M = {X1, . . . ,Xn}. If A⊆Md then M A⊆Md+1.

5 If L⊆Md is a lexsegment, then so is M L.

6 Lexsegments have minimal growth: Let A,L⊆Md such that
|L|= |A| and L is a lexsegment. Then |M A| ≥ |M L|.

7 For A⊆Md , denote A = Md \A, its complement.

8 Let L⊆Md be a lexsegment. If |L|= a then |M L|= a〈d〉.
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The algebra R(A)
Let G be an abelian group and K a commutative field. Let A⊂ G be
finite nonempty. We associate to A a standard graded K -algebra

R = R(A) =⊕h≥0Rh

whose Hilbert function dimK Rh exactly models the sequence |hA| for
h ≥ 0.

• Consider the group algebra K [G] of G. Its canonical K -basis is the
set of symbols {tg | g ∈ G}, and its product is induced by the formula

tg1 tg2 = tg1+g2

for all g1,g2 ∈ G.

• Consider S = K [G][X ], the one-variable polynomial algebra over
K [G].
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• A natural K -basis for S is the set

B = {tgX n | g ∈ G,n ∈ N}.

• The product of any two basis elements is given by

tg1X n1 · tg2X n2 = tg1+g2X n1+n2

for all g1,g2 ∈ G and all n1,n2 ∈ N.

•We define the degree of a basis element as

deg(tgX n) = n

for all g ∈ G and all n ∈ N.

• Thus S =⊕h≥0Sh is a graded K -algebra, where for all h ≥ 0, Sh is
the K -vector space with basis the set {tgX h | g ∈ G}.
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Definition
Set A = {a1, . . . ,an}. We define R(A) to be the K -subalgebra of S
spanned by the set {ta1X , . . . , tanX}. That is,

R(A) = K [ta1X , . . . , tanX ].

• Since R(A) is finitely generated over K by elements of degree 1, it is
a standard graded algebra.

•We then have R =⊕h≥0Rh, where Rh is the K -vector space with
basis the set {tbX h | b ∈ hA}.

. For instance, R2 = 〈tai+aj X 2 | 1≤ i ≤ j ≤ n〉.

• It follows that
dimRh = |hA|

for all h ≥ 0.
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Example revisited
Let A⊂ Z satisfy |5A|= 100. Let R = R(A) =⊕h≥0Rh be the
associated standard graded algebra, with dimRh = |hA| for all h ≥ 0.

• So dimR5 = 100. Macaulay implies |6A|= dimR6 ≤ 100〈5〉 = 152.
• Claim: dimR4 = |4A| ≥ 61. Assume for a contradiction dimR4 ≤ 60.
Now

60 =

(
7
4

)
+

(
6
3

)
+

(
3
2

)
+

(
2
1

)
,

whence 60〈4〉 = 98. Macaulay would then imply

dimR5 ≤ 60〈4〉 = 98,

a contradiction. This proves the claim. Summary:

When |5A|= 100 |4A| ≥ |6A| ≤
Plünnecke 40 251
Macaulay 61 152
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Optimality

• Are the bounds |4A| ≥ 61, |6A| ≤ 152 optimal, at least over Z?

• Probably not, but they are close to it. For instance, let

A = {0,1,5,8,49}.

Then |5A|= 100 as required, and |4A|= 63, |6A|= 145.

We conjecture that this is best possible over Z.

Conjecture
Let A⊂ Z satisfy |5A|= 100. Then

|4A| ≥ 63,

|6A| ≤ 145.
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Recovering Plünnecke’s estimate

Let A⊂ Z be finite with |A| ≥ 2. Let h ≥ 2.

Theorem (Plünnecke, 1970)

|(h−1)A| ≥ |hA|(h−1)/h.

We recover this estimate as follows.

Theorem (E.-Mazumdar, 2020+)

|(h−1)A| ≥ θ(x ,h)|hA|(h−1)/h

where θ(x ,h)≥ 1 is a well-defined real number depending on |hA|,h.

For that, we need a condensed version of Macaulay’s theorem. It

involves

(
x
h

)
for x ∈ R.

Shalom Eliahou (ULCO) Iterated sumsets and Hilbert functions New York Number Theory Seminar 16 / 26



Binomial coefficients as functions
For h ∈ N and x ∈ R, denote as usual(

x
h

)
=

x(x−1) · · ·(x−h+1)
h!

=
h−1

∏
i=0

x− i
h− i

.

Lemma
Let h ≥ 1 be an integer. Then the map y 7→

(y
h

)
is an increasing

bijection from [h−1,∞) to [0,∞). Hence y1 ≤ y2 ⇐⇒
(y1

h

)
≤
(y2

h

)
.

This is a direct consequence of Rolle’s theorem.

Corollary
Let h ≥ 1 be a positive integer. Let z ∈ [0,∞). Then there exists a
unique real number x ≥ h−1 such that z =

(x
h

)
. If z ≥ 1 then x ≥ h.

Shalom Eliahou (ULCO) Iterated sumsets and Hilbert functions New York Number Theory Seminar 17 / 26



A condensed version
(For smoother applications of Macaulay’s theorem)

Theorem (E. 2018)
Let R =⊕i≥0Ri be a standard graded algebra. Let i ≥ 1. Let x ≥ i−1

be the unique real number such that dimRi =

(
x
i

)
. Then

dimRi−1 ≥
(

x−1
i−1

)
, dimRi+1 ≤

(
x +1
i +1

)
.

Notation
For an integer h ≥ 1 and a real number x ≥ h, we denote

θ(x ,h) =
h
x

(
x
h

)1/h

.
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We can now prove our main result, namely:

Theorem
Let h ≥ 2. Then |(h−1)A| ≥ θ(x ,h)|hA|(h−1)/h, where x ≥ h is the

unique real number such that |hA|=
(

x
h

)
. Moreover, θ(x ,h)≥ 1.

Proof.
Condensed Macaulay directly implies |(h−1)A| ≥

(
x−1
h−1

)
. Now(

x−1
h−1

)
=

h
x

(
x
h

)
, since

(
x
h

)
=

h−1

∏
i=0

x− i
h− i

=
x
h

h−1

∏
i=1

x− i
h− i

=
x
h

(
x−1
h−1

)
.
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Proof (continued).
Hence

|(h−1)A|h ≥
(

x−1
h−1

)h

=

(
h
x

)h(x
h

)h

=

(
h
x

)h(x
h

)(
x
h

)h−1

= θ(x ,h)h|hA|h−1.

Taking hth roots, we get |(h−1)A| ≥ θ(x ,h)|hA|(h−1)/h, as desired.

It remains to show θ(x ,h)≥ 1.
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Proof (continued).
Equivalently, let us show θ(x ,h)h ≥ 1:

θ(x ,h)h =

(
h
x

)h(x
h

)
=

h−1

∏
i=0

h(x− i)
x(h− i)

,

and h(x− i)≥ x(h− i) for all 0≤ i ≤ h−1 since h ≤ x . 2

• In fact, we actually strengthen Plünnecke’s estimate:

Proposition
For all h ∈ N, x ∈ R such that x > h ≥ 2, one has 1 < θ(x ,h)< e.

Proof by elementary manipulations, using
hh

h!
< ∑

k∈N

hk

k!
= eh.
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Proposition (Asymptotic behavior)
Let h ≥ 2 be an integer. Then for x large,

θ(x ,h)∼ (2x−h)e

2x(2πh)1/(2h)
.

In particular,
lim

x→∞
θ(x ,h) = (2πh)−1/(2h) e.

The proof uses the following

Approximation formulas, including Stirling’s

n! ∼
√

2πn
(n

e

)n

(
n
k

)
∼ (n/k−1/2)k ek

√
2πk
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Proposition
limx→∞ θ(x ,bx/2c) = 2.

Indeed, Stirling’s formula implies θ(n,bn/2c)≈ 2

(
2

πn

)1/n

.

Figure: Values of θ(1000,h) for h = 1, . . . ,1000
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Numerical behavior of improvement factor θ(x ,h)

θ(x ,3) > 1.5 x ≥ 12
θ(48,2) > 2
θ(x ,6) > 2 x ≥ 1210

θ(1210,h) > 2 h ∈ [6,595]
θ(x ,h) > 2.70 x ≥ 200000 h ∈ [1200,1300]
θ(x ,h) > 2.71 x ≥ 1100000 h ∈ [2600,3700]

Theoretical and numerical evidence suggest:

lim
x→∞

θ(x ,bx1/2c) = e.
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Thank you for your attention!
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