Question 1

An automorphism of a group G is an isomorphism from G to itself. Denote the set of automorphisms of G by Aut(G).

- (a) Given $x \in G$, define a map $c_x : G \to G$ by $c_x(g) = x^{-1}gx$. Prove that this is an automorphism of G. (We call these *inner* isomorphisms, and denote the set of such by Inn(G)).
- (b) Prove that Aut(G) is a group and Inn(G) is a subgroup.
- (c) Describe Inn(G) when G is abelian.
- (d) Consider the map $G \to Inn(G)$, $x \to c_x$. Prove that this is a surjective homomorphism with kernel Z(G) (the *center* of G).