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 The theory of real-valued Sobolev functions is a classical part of analysis and has a 
wide range of applications in pure and applied mathematics. By contrast, the study 
of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces 
arose in the last forty years from geometry and physics. This monograph is the first 
to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting 
numerous results obtained by the authors and others. Many surprising connections 
to other areas of mathematics are explored, including the Monge-Kantorovich theory 
in optimal transport, items in geometric measure theory, Fourier series, and non-local 
functionals occurring, for example, as denoising filters in image processing. Numerous 
digressions provide a glimpse of the theory of sphere-valued Sobolev maps. 

   Each chapter focuses on a single topic and starts with a detailed overview, followed 
by the most significant results, and rather complete proofs. The “Complements 
and Open Problems” sections provide short introductions to various subsequent 
developments or related topics, and suggest new directions of research. Historical 
perspectives and a comprehensive list of references close out each chapter. Topics 
covered include lifting, point and line singularities, minimal connections and minimal 
surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, 
and gap phenomena. 

    Sobolev Maps to the Circle  will appeal to mathematicians working in various areas, such 
as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, 
and topology. It will also be of interest to physicists working on liquid crystals and 
the Ginzburg-Landau theory of superconductors. 
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Dedicated to the memory of Jean Bourgain,
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Preface

The theory of Sobolev functions from a domainΩ ⊂ R
N with values inR (orRk )

is by now a classical part of analysis, and has a wide range of applications in pure
and applied mathematics. By contrast, the study of Sobolev maps from Ω to N ,
where N is a compact manifold embedded in some R�, e.g., N = S

k , with k ≥ 1,
is relatively new, not yet fully developed, and, up to now, reserved for a small “club”
of researchers. The incentive to explore these spaces came, in recent years, from two
directions: geometry and physics. In geometry, they appear in the study of harmonic
maps. In physics, they arise, for example, in the Oseen–Frank theory of nematic
liquid crystals, in the Ginzburg–Landau theory of superconductors, in superfluids
and in micromagnetics. The reason one is led to work with Sobolev maps rather than

smooth maps is to allow singularities such as
x

|x| in 2D, or line singularities in 3D,

which occur naturally both in geometry and physics.

In this monograph, we only briefly mention the connections to harmonic maps
and to physics, for which we refer the reader to specialized works such as Schoen
and Uhlenbeck [317, 318], Bethuel, Brezis, and Hélein [31] and Sandier and Serfaty
[315]. Our main goal here is the study of the intrinsic properties of the Sobolev
spaces

W 1,p(Ω;S1) := {u ∈ W 1,p(Ω;R2); |u(x)| = 1 a.e. on Ω}, 1 ≤ p < ∞,

and, more generally, the fractional Sobolev spaces Ws,p(Ω;S1), 0 < s < ∞, 1 ≤
p < ∞.

In order to simplify the presentation, we concentrate on S1, rather than Sk , k ≥ 1,
since the S1 theory is fairly polished. However, wemention here and there, in Chapter
4 and in sections entitled “Complements and Open Problems,” what needs to be
modified – or what remains to be proved – when the target space is Sk .

Our decision (a long time ago) to write a book that would include “everything
you wanted to know” about Sobolev maps to the circle, prompted us to address many
unsettled questions. In turn, this led to a series of publications, whose results have
entered the current book. We traveled part of the road jointly with our dearly missed
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viii Preface

friend Jean Bourgain, a luminous and inspiring collaborator. As a matter of fact,
Jean became attracted by the subject when one of us (HB) asked him the seemingly
innocuous question whether a map u ∈ Hs((0, 1);S1) admits a lifting (i.e., a phase)
ϕ ∈ Hs((0, 1);R) when 0 < s < 1/2. Jean proved that the answer is positive, but
the question turned out to be tougher – and the proof much more involved – than
expected. This result became the heart of our first joint paper [50]. Incidentally, we
still do not have a simple proof of this fact (see Open Problem 7).

As the reader will discover, the classesWs,p(Ω;S1) have an amazingly rich struc-
ture. Topological and geometrical effects are already visible, even in this simple
framework, since S1 has non-trivial topology. Moreover, the fact that the target space
is S1 (as opposed to S

k ) offers the option to consider liftings of maps u : Ω → S
1.

The search for “optimal liftings” leads to an interesting connection with minimal
surfaces spanned by a curve.

The reader will also find throughout this book unexpected connections with a
range of topics such as the Monge–Kantorovich theory in optimal transport, items
in geometric measure theory, such as the fine theory of BV functions, rectifiable
currents, minimal surfaces, etc., Fourier series, non-local functionals occurring, for
example, as denoising filters in image processing, and more.

A final word of warning. Anyone familiar with standard properties of the space
W 1,p(Ω;R) should expect surprises.Here are, for example, three striking differences,
that we discuss in great length in this text:

a) C∞(Ω;R) is dense in W 1,p(Ω;R); by contrast, C∞(Ω;S1) need not be dense
inW 1,p(Ω;S1).

b) The trace space for W 1,p(Ω;R) is precisely W 1−1/p,p(∂Ω;R), 1 < p < ∞. By
contrast, the trace space for W 1,p(Ω;S1) is contained in W 1−1/p,p(∂Ω;S1), but
the inclusion can be strict.

c) Ifϕ ∈ W 1,p(Ω;R), thenu := eıϕ ∈ W 1,p(Ω;S1) and |∇u| = |∇ϕ| a.e. onΩ .One
might expect (by analogywith theCk case) that, conversely, any u ∈ W 1,p(Ω;S1)
comes from a ϕ ∈ W 1,p(Ω;R). This is not true!

We hope that intrigued readers will “join the club” and tackle some of the open
problems scattered throughout the book.
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Overview

Our text is structured as follows. Each chapter deals with a single topic. They
start with an Introduction, which consists of a rather detailed overview. The first
sections of each chapter are written in a textbook style, focusing on results and giving
rather complete proofs. The Complements andOpen problems sections provide short
introductions to various subsequent developments or related topics, and suggest new
directions of research. The Comments sections present some historical perspectives
on each topic, together with a rather comprehensive list of references.

For the sake of simplicity, we leave aside throughout the monograph (except in
Chapter 14) the topological effects that may possibly arise when Ω has non-trivial
topology. In order to further simplify the presentation, we assume in the overview of
Chapters 1–13 that Ω is a ball.

Chapter 1. We investigate here the question of lifting within the framework of
Sobolev spacesW 1,p. In the process,we are led to the introduction of two fundamental
tools, Ju and Σ(u), which are ubiquitous throughout the entire book.

Given a map u : Ω → S
1, we may always write u = eıϕ , for some ϕ : Ω → R.

The function ϕ is called a lifting or a phase of u. Some liftings ϕ can be very rough;
for example, u ≡ 1 admits non-measurable liftings. However, when u is continuous
(or better), we may find a lifting ϕ as smooth as u: for example, if u ∈ Ck , then we
may find ϕ ∈ Ck .

This need not be the case in the context of Sobolev spaces. More specifically,
consider, for 1 ≤ p < ∞, the space

W 1,p(Ω;S1) :={u ∈ W 1,p(Ω;C); |u(x)| = 1 for a.e. x ∈ Ω}

{u ∈ W 1,p(Ω;R2); |u(x)| = 1 for a.e. x ∈ Ω}.

When N = 1 and u ∈ W 1,p(Ω;S1), then u is continuous, and any continuous
lifting ϕ of u belongs toW 1,p. However, when N ≥ 2, a map u ∈ W 1,p(Ω;S1) need
not have a W 1,p(Ω;R) phase. For example, if N = 2, 0 ∈ Ω , and
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xii Overview

u(x) := x

|x| , (1)

then u ∈ W 1,p, ∀ 1 ≤ p < 2, but u has no lifting in W 1,p, and not even inW 1,1
loc .

This is a “typical” example of non-lifting. By contrast, when N ≥ 2 and
p ≥ 2, W 1,p(Ω;S1) does have the lifting property, i.e., every u ∈ W 1,p(Ω;S1) can
be written as u = eıϕ for some ϕ ∈ W 1,p (Ω;R).

In the “nasty” range N ≥ 2, 1 ≤ p < 2, where the lifting property fails, there are
two natural directions to investigate.

Direction 1. Characterize the u’s in W 1,p(Ω;S1) that can be written as u = eıϕ for
some ϕ ∈ W 1,p(Ω;R).

Direction2. Ifu ∈ W 1,p(Ω;S1) admits no lifting inW 1,p,what are the “best possible”
alternative classes in which a lifting exists?

In the first direction, a major role is played by the “distributional Jacobian” Ju.
To motivate its introduction in our context, we start with the following elementary
calculation. Let u = (u1, u2) ∈ W 1,p(Ω;S1) and assume that

u = eıϕ for some ϕ ∈ W 1,p(Ω;R). (2)

Differentiating the equalities

u1 = cosϕ, u2 = sin ϕ,

we find that

∇u1 = − sin ϕ ∇ϕ, ∇u2 = cosϕ ∇ϕ,

and therefore

∇ϕ = cosϕ ∇u2 − sin ϕ ∇u1 = u1∇u2 − u2∇u1 := u ∧ ∇u. (3)

Since the left-hand side of (3) is a gradient, it follows that the curl of the right-
hand side (3) (considered in the sense of distributions) vanishes. We can express this
fact as Ju = 0 in D ′(Ω), where Ju is the N × N antisymmetric matrix with entries
in D ′(Ω;R), given, ∀ 1 ≤ i, j ≤ N , by

(Ju)ij :=1

2

[
∂

∂xi
(u ∧ ∇u)j − ∂

∂xj
(u ∧ ∇u)i

]

=1

2

[
∂

∂xi

(
u ∧ ∂u

∂xj

)
− ∂

∂xj

(
u ∧ ∇ ∂u

∂xi

)]
.

(4)

For reasons that will be explained in Chapter 1, this object is called the distribu-
tional Jacobian of u.



Overview xiii

Thus, the condition Ju = 0 is a necessary condition for the existence of ϕ ∈ W 1,p

satisfying (2). Remarkably, this condition is also sufficient, and this gives a complete
and useful answer to Direction 1.

In particular, this implies that, for the u given by (1), we have Ju �= 0. More
specifically, we have the following formula (which will be generalized considerably
in Chapters 2 and 3):

Ju =
(

0 π δ0
−π δ0 0

)
. (5)

As we are going to see, there is a way to “quantify” the failure of the condition
Ju = 0. The quantity Σ(u) defined below measures the “deviation” of u ∧ ∇u from
the space of gradients. Given u ∈ W 1,1(Ω;S1), we set

Σ(u) := inf{‖u ∧ ∇u − ∇η‖L1; η ∈ W 1,1(Ω;R)}. (6)

In Section 1.5, we will prove (via duality) that Σ(u) coincides with ‖Ju‖ for
some appropriate seminorm ‖ ‖ on the space of distributions (W−1,1)N×N (to which
Ju belongs).

In summary, we have, ∀ u ∈ W 1,1(Ω;S1),

Σ(u) = 0 ⇐⇒ Ju = 0 ⇐⇒ u = eıϕ for some ϕ ∈ W 1,1(Ω;R). (7)

Here are three important occurrences of Σ(u).

A) From the above discussion, we know that, if u ∈ W 1,1(Ω;S1) is such that
Ju �= 0, then there exists no lifting ϕ of u with ϕ ∈ W 1,1(Ω;R). However, any
u ∈ W 1,1(Ω;R) may be written as

u = eıϕ for some ϕ ∈ BV (Ω;R), (8)

where BV denotes the spaces of functions of bounded variation – a space slightly
larger than W 1,1. For example, the map u in (1) can be written as u = eıϕ , where
ϕ := arg u ∈ [0, 2π) is the principal branch of the argument of u. This ϕ belongs to
BV , and jumps by 2π on Ω ∩ ([0,∞) × {0}).

As the above example shows, a major difference between BV andW 1,1 is that BV
allows discontinuities along hypersurfaces (e.g., line discontinuities when N = 2).

Another major difference between lifting in the space of continuous functions (or,
as we are going to see in Chapter 6, in W 1,1) and lifting in BV is that ϕ in (8) is not
unique, even (mod 2π ): for example, if B is a ball such that B ⊂ Ω and ϕ satisfies
(8), then ϕ + 2π χB still satisfies (8).

We may thus ask whether some BV liftings are “better” than others. It turns out
that a natural way of selecting “best” BV liftings involves the “energy”
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E(u) := min{|ϕ|BV ; ϕ ∈ BV (Ω;R) and u = eıϕ in Ω}, (9)

where |ϕ|BV is the mass of the measure |Dϕ|.
One of the main results in this chapter is that

E(u) =
ˆ

Ω

|∇u| + Σ(u), ∀ u ∈ W 1,1(Ω;S1).

B) As we are going to see in Chapters 2 and 3, the distribution (1/π) Ju is supported
by the “singular set” of u and carries information about the location and strength of
the topological singularities of u. With this in mind, the quantity

Sp(u) := inf

{ˆ
Ω

|∇v|p; v ∈ W 1,p(Ω;S1), Jv = Ju

}
,

defined, for every u ∈ W 1,p(Ω;S1), represents the least energy required to “produce”
a map v ∈ W 1,p(Ω;S1) having the same topological singularities as u.

Here again Σ(u) pops up:

S1(u) = 2π Σ(u), ∀ u ∈ W 1,1(Ω;S1). (10)

C) The relaxed energy is defined for every u ∈ W 1,p(Ω;S1) by

Rp(u) := inf

{
lim inf
n→∞

ˆ
Ω

|∇un|p; un ∈ C∞(Ω;S1), un → u a.e. on Ω

}
,

where the first inf is taken over all sequences (un) in C∞(Ω;S1) such that un → u
a.e. on Ω . We will prove that

R1(u) =
ˆ

Ω

|∇u| + Σ(u), ∀ u ∈ W 1,1(Ω;S1). (11)

Chapter 2. In this chapter, we give illuminating geometric interpretations for Ju and
Σ(u) when N = 2. In 2D, we naturally identify Ju, given by (4), with the scalar
distribution (Ju)12. Assuming, for example, that u ∈ W 1,1(Ω;S1) is smooth except
at some point a ∈ Ω , and that the winding number, deg(u, a), of u on small circles
around a, equals one, we have the following generalization of (5):

Ju = πδa in D
′(Ω). (12)

More generally, if u ∈ W 1,1(Ω;S1) is a “nice” map, i.e., continuous on Ω except
at a finite number of distinct points a1, . . . , ak , we have

Ju = π

k∑
j=1

deg(u, aj) δaj in D
′(Ω). (13)
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Nice maps u play an important role because they are “generic” in W 1,1(Ω;S1)
(as explained in Chapter 10). This allows results valid for nice maps to be transferred
to general u’s inW 1,1(Ω;S1). A typical result is the following extension of (13): for
every u ∈ W 1,1(Ω;S1), there exist points Pj,Nj ∈ Ω such that

∞∑
j=1

|Pj − Nj| < ∞, (14)

Ju = π

∞∑
j=1

(δPj − δNj ) in D
′(Ω). (15)

Conversely, given any points Pj,Nj ∈ Ω satisfying (14), there exists some u ∈
W 1,1(Ω;S1) such that (15) holds.

Next, we turn to the geometric interpretation of Σ(u) as a “minimal length”
required to “connect the singularities.”

For simplicity, assume again that u is a nice map, continuous except at the distinct
points Pj, Nj, j = 1, . . . ,m, satisfying deg(u,Pj) = 1, deg(u,Nj) = −1, ∀ j. Then
we have

Σ(u) = min
σ∈Sm

2π
m∑
j=1

d(Pj,Nσ(j)), (16)

where Sm denotes the group of permutations of the integers {1, . . . ,m} and d(P,N )

is the pseudometric defined on Ω by

d(P,N ) := min{dist(P, ∂Ω) + dist(N , ∂Ω), |P − N |}.

Obviously, the right-hand side of (16) has a flavor of optimal transport, and indeed
the Monge–Kantorovich formula plays a role in the proof of (16).

Again, we can adapt formula (16) to general u’s in W 1,1(Ω;S1); this involves
the minimization of the length of 1-rectifiable currents C (in the sense of geometric
measure theory) such that ∂C = (1/π) Ju.

Chapter 3. This chapter is the 3D (and higher) counterpart of the previous one. Here,
geometry enters decisively, the basic objects being curves of singularities, which play
in 3D the same role as points in 2D.

We illustrate this analogy when N = 3 and u has the simplest possible singular
set: a closed curve Γ .

In 3D, we naturally identify Ju given by (4) with a vector field whose entries are
scalar distributions:

Ju 
 ((Ju)23, (Ju)31, (Ju)12).
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Assume that u ∈ W 1,1(Ω;S1) ∩ C(Ω \ Γ ), where Γ ⊂ Ω is a smooth simple
closed oriented curve. If thewinding number of u aroundΓ equals one, then (1/π) Ju
can be identified with the integration along Γ , i.e.,

〈Ju, ζ 〉 = π

ˆ
Γ

τ · ζ, ∀ ζ ∈ C∞
c (Ω;R3),

where τ denotes the unit tangent to Γ ; this is the analogue of (12).

For such maps, we have the following counterpart of (16):

Σ(u) = 2π inf{|M |;M ⊂ Ω is a smooth oriented surface

with boundary Γ }, (17)

where |M | is the area of M and the inf in (17) is the quantity that arises in the
celebrated Plateau problem.

Incidentally, as a byproduct of our analysis, we obtain the following formula for
the least area spanned by a smooth simple closed oriented curve Γ ⊂ R

3:

inf{|M |; M ⊂ R
3 is a smooth oriented surface with boundary Γ }

= sup

{ˆ
Γ

τ · ζ ; ζ ∈ C∞
c (R3;R3), ‖ curl ζ‖L∞ ≤ 1

}
.

(18)

Note that assertion (18) does not involve S
1-valued maps. Instead, it provides

a new approach to minimal surfaces via a kind of “Monge–Kantorovich formula.”
Interestingly, the proof of (18) that we present transits via S1-valued maps.

Chapter 4.The purpose of this brief introduction to the world of sphere-valuedmaps
is to explain how some of the tools and results presented in the previous chapters
extend to maps u : Ω → S

k , with 1 ≤ k ≤ N − 1, and whereW 1,k(Ω;Sk) plays the
role of W 1,1(Ω;S1).

When k ≥ 2, lifting is not available, but there are natural counterparts for Ju,
Σ(u), Sp(u), and Rp(u).

The “historical” case k = 2, N = 3, which was originally motivated by liquid
crystals, is very similar to the case k = 1, N = 2 discussed in Chapter 2. When u is
nice, there are formulas similar to (13) and (16). The counterparts of (10) and (11)
are

S2(u) = 2Σ(u), ∀ u ∈ H 1(Ω;S2), (19)

and

R2(u) =
ˆ

Ω

|∇u|2 + 2Σ(u), ∀ u ∈ H 1(Ω;S2). (20)
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At the next levels of the extreme case k = N − 1, i.e., k = 3, N = 4, etc., the
situation is still rather satisfactory. Formula (19) has to be replaced by

Sk(u) = kk/2 Σ(u), ∀ u ∈ W 1,k(Ω;Sk). (21)

The analogue of (20) has not been established, but is highly plausible.

However, in the “intermediate” range, 2 ≤ k ≤ N − 2 (starting with N = 4,
k = 2), a new phenomenon occurs. One can still assert that Sk(u) ≥ kk/2 Σ(u), but
in general one may have strict inequality. However, the geometric flavor of Sk(u)
persists. Equality (21) has to be replaced by

Sk(u) = kk/2 Σ∗(u), ∀ u ∈ W 1,k(Ω;Sk), (22)

where Σ∗(u) corresponds to the least mass among all (N − k)-rectifiable currents
spanned by the singular set of u.

Here, it is also expected (but not proved when 3 ≤ k ≤ N − 1) that

Rk(u) =
ˆ

Ω

|∇u|k + kk/2 Σ∗(u), ∀ u ∈ W 1,k(Ω;Sk).

Chapter 5. Starting from this chapter, we introduce the reader into the realm of
fractional Sobolev spaces. The first question we ask, in the spirit of Chapter 1, is:
does any u ∈ Ws,p(Ω;S1) admit a lifting ϕ ∈ Ws,p(Ω;R)? Here, for 0 < s < ∞
and 1 ≤ p < ∞, we set

Ws,p(Ω;S1) :={u ∈ Ws,p(Ω;C); |u(x)| = 1 for a.e. x ∈ Ω}

{u ∈ Ws,p(Ω;R2); |u(x)| = 1 for a.e. x ∈ Ω}.

We give a full answer to this question.

When N = 1, the answer is positive, ∀ s, ∀ p, but the proof is surprisingly difficult
if sp < 1. When N ≥ 2, a significant “phase transition” occurs at s = 1. In the case
s < 1, the answer is positive if and only if sp < 1 or sp ≥ N . In the case s ≥ 1, the
answer is positive if and only if sp ≥ 2 – a fact that is consistent with the result in
Chapter 1 concerning s = 1.

Chapter 6. We investigate here the question of uniqueness (mod 2π ) of a lifting.
More precisely, assume that we have two liftings ϕ1, ϕ2 for the same u. Then, ϕ1(x) −
ϕ2(x) = 2π ψ(x) for some ψ : Ω → Z. Therefore, we are led to the question of
finding minimal assumptions on a measurable function ψ : Ω → Z implying that ψ
is constant a.e. Clearly, continuity is sufficient, but, as we are going to see, constancy
holds for a surprisingly large class of possibly discontinuous functions.

It is not difficult to see that any ψ ∈ VMO (Ω;Z) must be constant a.e., where
VMO denotes the space of functions of vanishing mean oscillation. This is a small
step beyond continuity.
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It is also well-known that any ψ ∈ W 1,1(Ω;Z) must be constant a.e., simply
because ∇ψ = 0 a.e. on Ω .

A more surprising (and not so well-known) fact is that any ψ ∈ W 1/p,p(Ω;Z),
1 < p < ∞, must be constant a.e. For the enjoyment of the reader, we present several
proofs of this result.

Our favorite one (but not the shortest one) goes as follows. If ψ ∈ W 1/p,p, then
(by definition)

ˆ
Ω

ˆ
Ω

|ψ(x) − ψ(y)|p
|x − y|N+1

dxdy < ∞,

and thus (using the fact that ψ(x) − ψ(y) ∈ Z)

ˆ
Ω

ˆ
Ω

|ψ(x) − ψ(y)|
|x − y|N+1

dxdy < ∞. (23)

At this stage, one can discard the assumption that ψ is integer-valued and prove
that any measurable function ψ : Ω → R satisfying (23) must be constant a.e.

Here enters the “BBM formula,” which asserts that, for any measurable function
f : Ω → R,

lim
ε→0

ˆ
Ω

ˆ
Ω

|f (x) − f (y)|
|x − y| ρε(|x − y|) dxdy = KN

ˆ
Ω

|Df |, (24)

where (ρε) is a family of radial mollifiers, KN is a constant depending only on N ,

and
ˆ

Ω

|Df | is understood to be +∞ if f is not a BV function. Applying (24) to

ρε(r) := Cε

rN−ε
χ(r), where χ is a cutoff function, and using (23), yields ψ ∈ BV

and Dψ = 0 in D ′, and thus ψ is constant a.e.

We seize this opportunity to “advertise” some of the many avatars of the BBM
formula, and its potential applications in a variety of directions, including “non-local
minimal surfaces,” “s-perimeters,” and image processing.

Chapter 7. As explained above, a map u ∈ Ws,p(Ω;S1), where N ≥ 2, 0 < s < 1,
1 ≤ p < ∞ and 1 ≤ sp < N , need not have a phase inWs,p.

The main (and highly non-trivial) result in this chapter asserts, in particular, that
any u ∈ Ws,p(Ω;S1), whereN ≥ 1, 0 < s < 1, 1 ≤ p < ∞ and sp ≥ 1, can be “fac-
torized” as

u = eıϕ v, with ϕ ∈ Ws,p(Ω;R) and v ∈ W 1,sp(Ω;S1),

with corresponding estimates.

Note that v has much better regularity than u – it admits a “full” gradient, as
opposed to u, which has only “fractional” derivatives – moreover,W 1,sp(Ω;S1) ↪→
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Ws,p(Ω;S1) when sp > 1. Consequently, we can apply to v all the results in Chap-
ters 1–3, including the analysis of its topological singularities. As we are going to
see in Chapter 8, this basic tool allows us to give a proper meaning to the topolog-
ical singularities of any u ∈ Ws,p(Ω;S1) with N ≥ 2, 0 < s < 1, 1 ≤ p < ∞, and
sp ≥ 1 – for example u ∈ H 1/2(Ω;S1).
Chapter 8. We present various applications of the factorization. Arguably the most
spectacular one is the possibility of giving a “robust” definition to u ∧ ∇u when u ∈
W 1/p,p(Ω;S1), with 1 < p < ∞. As a byproduct, we also obtain a robust definition
of the distribution Ju for such u. For the sake of completeness, we mention that there
exists a totally different technique for defining Ju when u ∈ W 1/p,p, that does not
rely on factorization and can be adapted to Sk -valued maps.

We explain how the factorization allows us to complement the results on lifting
obtained in Chapter 3, by providing alternative lifting spaces in the cases where the
answer to the lifting problem is negative.

Chapter 9. While the previous chapters were concerned with the existence and
uniqueness of a lifting, this chapter investigates the matter of estimates for the phase
ϕ of u.We exhibit two unusual aspects: “existence without estimates,” and “estimates
without existence.”

Chapter 10.We investigate here density questions. For real-valued Sobolev spaces,
C∞(Ω;R) is dense inWs,p(Ω;R), for any s > 0 and 1 ≤ p < ∞. This need not be
true for the Sobolev spacesWs,p(Ω;N ), whereN is a manifold. In particular, this
is not always the case when N = S

1.

We present the optimal conditions on s and p so that C∞(Ω;S1) is dense in
Ws,p(Ω;S1). More precisely, we prove that density holds except in the “nasty” range
N ≥ 2, s > 0, 1 ≤ p < ∞, and 1 ≤ sp < 2.

We prove that, in the nasty range, maps inWs,p(Ω;S1) that are smooth except on
“small sets” Σ ⊂ Ω are dense inWs,p(Ω;S1). In particular, when N = 2, Σ can be
a finite collection of points.

In the same range, we characterize the closure of C∞(Ω;S1) in Ws,p(Ω;S1).
More specifically, we prove that

C∞(Ω;S1)W
s,p

= {u ∈ Ws,p(Ω;S1); Ju = 0}.

When 0 < s < 1, we use here the definition of Ju introduced in Chapter 8.

Chapter 11. We present a complete trace theory for S1-valued maps. When s > 0
is not an integer and 1 ≤ p < ∞, standard trace theory for real-valued maps asserts
that

trΩ Ws+1/p,p(Ω × (0, 1);R) = Ws,p(Ω;R),

where we identifyΩ withΩ × {0}. WhenR is replaced by a manifoldN , in general
we only have the inclusion
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trΩ Ws+1/p,p(Ω × (0, 1);N ) ⊂ Ws,p(Ω;N ), (25)

and equality may fail.

In the special case where N = S
1, we prove that equality occurs in (25) if and

only if sp < 1 or sp ≥ N .

In the remaining cases, where 1 ≤ sp < N , we characterize the range of the map-
ping v �→ trΩ v, with v ∈ Ws+1/p,p(Ω × (0, 1);S1).
Chapter 12.We revisit the notion of topological degree deg f (aka index or winding
number) for maps f : S1 → S

1. This is a classical concept when f is continuous:
deg f counts “how many times f (S1) covers S1, taking into account algebraic mul-
tiplicity.” One can still give a robust definition for deg f when f belongs merely to
VMO (S1;S1), and thus, by the Sobolev embeddings, for maps in the critical spaces
W 1/p,p(S1;S1), with 1 < p < ∞. We establish some basic properties of this degree.

We also derive an integral formula for the degree of VMO maps, generalizing the
Kronecker formula

deg f = 1

π

ˆ
D

Jac u, ∀ f ∈ C1(S1;S1), ∀ u ∈ C1(D;R2) with u|∂D = f .

Note that, when f ∈ VMO (S1;S1) – or even f ∈ C(S1;S1) – standard trace theory
does not yield the existence of a map u : D → R

2 such that u|∂D = f and u ∈ H 1(D)

– and thereby Jac u ∈ L1(D). We will explain how to bypass this difficulty.

We investigate bounds of | deg f | in terms of somenatural norms; a typical estimate
is

| deg f | ≤ Cp |f |pW 1/p,p , ∀ f ∈ W 1/p,p(S1;S1), ∀ 1 < p < ∞.

A full section is dedicated to the formula

deg f =
∑
n∈Z

n |an|2, ∀ f ∈ H 1/2(S1;S1),

where the an’s are the Fourier coefficients of f .

This striking formula is the starting point of the intriguing saga “Can one hear
the degree?,” which involves deep interactions with Fourier analysis and still raises
challenging open problems.

Chapter 13. We investigate minimization problems of the form

min

{ˆ
Ω

|∇u|p; u ∈ W 1,p
g (Ω;S1)

}
, (26)

where 1 ≤ p < ∞ and g ∈ C∞(∂Ω;S1) is a given boundary condition (satisfying
also deg g = 0 when N = 2).
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We prove that a “phase transition” appears at p = 2. When p ≥ 2, the minimizer
in (26) is unique and smooth; lifting theory from Chapter 1 enters in the proof. By
contrast, when 1 < p < 2, minimizers may have singularities. This is a consequence
of the following “gap phenomenon,” which occurs for some g’s:

min

{ˆ
Ω

|∇u|p; u ∈ W 1,p
g (Ω;S1)

}
< inf

{ˆ
Ω

|∇u|p; u ∈ C1
g (Ω;S1)

}
< ∞.

We discuss the nature of these singularities when N = 2.

We also survey what happens to (26) when the class W 1,p
g (Ω;S1) is empty.

This occurs, for example, when N = 2, p ≥ 2, g ∈ C∞(∂Ω;S1), and deg g �= 0.
Alternatively, this may occur when N ≥ 3 and 2 ≤ p < N , for some g’s such that
g ∈ W 1−1/p,p(∂Ω;S1), whereas W 1,p

g (Ω;S1) = ∅ (see Chapter 11). These are typ-
ical examples of “infinite energy” minimization problems, and they can be tackled
via a Ginzburg–Landau-type approximation

min

{ˆ
Ω

|∇u|p + 1

ε2

ˆ
Ω

(|u|2 − 1)2; u ∈ W 1,p
g (Ω;R2)

}
,

analyzing the asymptotic behavior of minimizers as ε → 0. This analysis can be
extremely delicate, and we only sketch some of the highlights, whose details are
beyond the scope of this book.

Chapter 14. We investigate the impact of the topology of Ω on the main topics
presented above (existence of lifting, relaxed energy, density of smooth maps, etc.).

Appendices. In the final appendices, we recall standard properties of Sobolev spaces
used throughout the book, andwegather themost technical parts of someof the proofs
presented in the main text.
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