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A RELATION BETWEEN POINTWISE CONVERGENCE 
OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS 

HAIM BREZIS AND ELLIOTT LIEB 

ABSTRACT. We show that if (J,,} is a sequence of uniformly LI-bounded functions 
on a measure space, and if.f, -fpointwise a.e., then lim,,_(I{lf,, 1 -IIf,, - fII) 

If I,' for all 0 < p < oc. This result is also generalized in Theorem 2 to some 
functionals other than the L P norm, namely I. /( J,, -(f, - f) f ) -1 0 for 
suitablej: C -C and a suitable sequence (fJ}. A brief discussion is given of the 
usefulness of this result in variational problems. 

1. Introduction. Let (Q, 2, ,) be a measure space and let { Lf,= I be a sequence of 
complex valued measurable functions which are uniformly bounded in L" = 

L P(Q, 2, [ ) for some 0 < p < x. Suppose that fn - f pointwise almost everywhere 
(a.e.). What can be said about 11 f 11 p? 

The simplest tool for estimating 11 f li p is Fatou's lemma, which yields 

Ilf llp < lim inf llf,11p . 
,, - 00 

The purpose of this note is to point out that much more can be said, namely 

( I ) ~~~~~lim (lnlp lln f llp )=l1AlP, 

More generally, if j: C - C is a continuous function such thatj(O) = 0, then, when 

L - f a.e. and f lj(fn(x)) I dt,(x) s C < x, it follows that 

(2) lim [i( fn) -( fn -f)] i( f) 
-o 00 

under suitable conditions on ] and/or { fn }. 

Heuristically, (2) says the following. If we writef = f + gn with gn - 0 a.e., then, 
for large n, fj( f + gn) decouples into two parts, namely Jj( f ) and Jj( g,,). 

Equation (1) is not merely an idle exercise, but it is actually useful in the calculus 
of variations to prove the existence of maximizing (resp. minimizing) functions in 
some cases in which compactness is not available. In fact (1) was first used by one of 
us (E. Lieb), but with a different notion of convergence than pointwise convergence 
of f,, -f f, to solve a variational problem [1]. Later, it was also used in another 
variational problem [2]. At the end of this note we shall give a brief account of how 
(1) can be used. 
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Two theorems will be stated: (i) the LP case (0 < p < ox), (ii) the general case (2). 
Although (i) is a corollary of (ii) we state it separately because it is an important 
special case and because the assumptions are especially transparent. 

E. Lieb is most grateful to the Institute for Advanced Study for its support and 
hospitality. Both authors thank the Summer Research Institute for bringing them 
together in Melbourne, Australia, where this note had its origin. 

2. The LP case (0 <p < x). 

THEOREM 1. Suppose f, - f a.e. and II fn II p C < ox for all n and for some 
0 < p < ox. Then the limit in (1) exists and the equality in (1) holds. 

REMARKS. (i) By Fatou's lemma, f E LP. 
(ii) In case 0 < p < 1, and if we assume that f E LP, then we do not need the 

hypothesis that I fn II P is uniformly bounded. [This follows from the inequality 

I If, IP - If - f IP I < I f IP and the dominated convergence theorem.] However, when 
1 < p < oo, the hypothesis that II fn II p is uniformly bounded is really necessary (even 
if we assume that f E L P) as a simple counterexample shows. 

(iii) When 1 < p < oo, the hypotheses of Theorem 1 imply that fn - f weakly in 
LP. [By the Banach-Alaoglu theorem, for some subsequence, fnA converges weakly to 
some g; but g = f since fn -- f a.e.] However, weak convergence in LP is insufficient 
to conclude that (1) holds, except in the case p = 2. When p =# 2 it is easy to 
construct counterexamples to (1) under the assumption only of weak convergence. 
When p = 2 the proof of (1) is trivial under the assumption of weak convergence. 

3. The general case. In order to prove (2), some conditions are needed on the 
function j and the sequence { fn}. To make this point clear we shall later give an 
example for which (2) fails. On the other hand, we shall not attempt to find the most 
general conditions for which (2) holds but shall, instead, content ourselves here with 
conditions which are reasonably simple, yet general enough to cover many examples. 

Let j: C -- C be a continuous function with j(O) = 0. In addition let j satisfy the 
following hypothesis: 

For every sufficiently small e > 0 there exist two continuous, nonnegative func- 
tions p? and 44 such that 

(3) lj(a + b) -j(a)| < E99,E(a) + E) 

for all a, b E C. 

THEOREM 2. Let j satisfy the above hypothesis and let fn =f + gn be a sequence of 
measurable functions from Q to C such that: 

(i) gn ?-* a. e. 

(ii) j( f ) E L'. 
(iii) fq9(gn(x)) d,u(x) ? C < x, for some constant C, independent of e and n. 

(iv) f4(ft(x)) d,i(x) < x for all e > 0. 

Then, as n - , 

(4) fIi(f+ gn)- j(gn) -(f) IdM - 0. 
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REMARKS. (i) It is not assumed thatj( f,) or]j(g,) are separately in L'. 
(ii) Note that the convergence in (4) is in the strong L' topology. This is a stronger 

statement than (2). 
PROOF OF THEOREM 2. Fix e > 0 and let 

wE,,,(x) =[1j(f"(x)) j ( g"(X)) - j(Afx))|I- EggE( g"(X))]+ 

where [aI+ = max(a, 0). As n -x 0, W, n(X) - 0 a.e. On the other hand, 

1A fn) f(gn) 
- 

Af ) I 1A jfn) j(gn) I + 1A f) I 

<MEq'( n ) + /e(ft + lI(f A 

Therefore, W4' < V4E( f) + I j( f ) I E Ll. By dominated convergence, J WE d,u 0 as 
n -- x. However, 

li(fn) -j(gn) (f ) I< WE,n + EqPE(gn) 

and, thus, 

In- fj(fn)-j(gn)-j(f)IdA <f[WE,n + &pe(g)] d4. 

Consequently, lim supn . In < eC. Now let e -- 0. [1 
EXAMPLES. (a) j(t) = It 1P, 0 < p < x. Here (3) is satisfied with ie(t) = I t IP and 

{'E(t) = CE I t IP for some CE sufficiently large. Therefore hypotheses (ii)-(iv) are 
simply thatf E LP and the {gn} are uniformly bounded in LP. This proves Theorem 
1. 

(b) Suppose that j is a continuous, convex function from C to R with j(O) = 0. 
Choose some number k > 1. Then (3) holds for ek < 1 with 

qe(t) = j(kt) -k](t) and 4e(t) = lj(Cet) I + j(Cet), 

with 1/Ce = e(k - 1). This is proved in Lemma 3 below. Therefore, the hypotheses 
of Theorem 2 are satisfied if there is some fixed k > 1 such that I j(kgn) - kj(gn)] is 
uniformly bounded in L1, and if j(Mf ) is in Ll for every real M. 

(c) The condition in example (b) that j(kgn) - kj(gn) is uniformly bounded in Ll 
for some constant k > 1 can be essential, not only for the hypotheses of Theorem 2 
but for the conclusion as well. Let Q = [0, 1], j(t) = elti - 1, d,i = dx, f(x) = 1, 

gn(x) = ln(l + n) if 0 < x < 1/n, and gn(x) = 0 otherwise. Then fj(fn) = 2e - 1, 

ij(gn) = 1 and fj( f ) = e - 1. In this example we see that (2) does not hold even 

though j(gn) is uniformly bounded in Ll and j(Mf ) E Ll for all real M. Note that 
for this sequence {gn}, j(kgn) is not uniformly bounded when k > 1. However since 
j(t) is convex, (b) above tells us that the conclusion of Theorem 2 would be valid for 
any other sequence gn such that j(kgn) is uniformly bounded in LI for some k > 1. 

LEMMA 3. Letj: C -* R be convex and let k > 1. Then 

Ij(a + b) -j(a)I < e[ j(ka) - kj(a)] + [j(Ceb)I + ij(-Ceb) 

for all a, b E C, 0 < e < 1/k and 1/Ce = E(k - 1). 
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PROOF. Let a = 1- ke, = E, y = (k - 1)E. Then a + / + y = 1 and (a + b) 
aa + 13(ka) + y(CFb). By convexity, 

j(a + b) < aj(a) + fj(ka) + yj(C,b). 

This implies that 

j(a + b) -j(a) < e[j(ka) - kj(a)] + Ij(Cb)I. 

For the reverse inequality let 

a = 1/ (1 + ke), / - E/ (1 + ke), y = E(k - 1)/(1 + ke), 
whence a = a(a + b) + f3(ka) + y(-CFb). Then 

j(a) -j(a + b) < e[j(ka) - kj(a)] + e(k - 1)j(-CFb). M 

4. Applications. In the calculus of variations an oft-met problem is to show that an 
infimum or supremum is achieved. We shall outline by two examples how Theorem 
1 can be used for this purpose. 

(A) If K is the sharp constant in the inequality 11 Af q 4 K 11 fP , where A is a 
bounded linear operator from LP to L , can one find f such that equality holds? We 
shall assume that x > q 2 p a 1. In fact, the problem in [1] that motivated 
Theorem 1 was the Hardy-Littlewood-Sobolev inequality on LP(R", dx). Namely, A 
is the integral kernel A(x, y) =Ix - y , 0 < X < n and p' + X/n = 1 + q-'. Let 
K = sup{R(f ) if E LP, f # 0}, where R(f ) = ll Af ll q/ll f ll p. The problem we 
address here is to prove the existence of a maximizingf, i.e. R(f) = K. Suppose that 
an L P-bounded sequence { fn} can be found such that (i) R( f) - K, (ii) f, - f a.e., 
(iii) f # 0. (For the H.L.S. inequality, this can be done by using a rearrangement 
inequality.) The difficulty that one faces is to show R( f ) = K. This difficulty can be 
overcome by Theorem I if we make the additional assumption that Afn - Af a.e. 
(This can also be verified for the H.L.S. problem.) With these assumptions we have 
that 

KP= lim IIAJq = lim {IIAfIIq+ 
t_Oo l gellp t-O? lli lp + llgnllp) 

withf, =f+ g,, as before. Since p/q ? 1 and (a + b)' < a' + b' for a, b 2 0 and 
t < 1, and since IlAgn, q < K l gn lip (by definition), it follows that KP < 

II Af I Ip/l f I p. Thusf is maximizing, as desired. For further details see [1]. 
(B) This is taken from [2]. Let Q C RW, n > 3, be a bounded domain. Let X 2 0 

and let 

f_ JVf F XJ1f If 2n 
RA( f ) 11 f 112 AJ Ifl with p = 2 

The problem is to show that KA = inf{R ( f ) If E Ho(), f # 0) is achieved. 
Suppose that we know that KA < KO (this is indeed the case for every X > 0 when 

n 2 4, and for X sufficiently large when n = 3; see [2]); then KA is achieved. 
To prove this, let {fn} be a minimizing sequence with 11 f,II = 1. Since fn is 

bounded in H'() we may assume thatfn -f weakly in H',fn f strongly in L2 and 
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f t? f a.e. We have 

IVn2 If f| vfn| -1 ;\||ts =2 Kx ? o(I), 

and since f vf,? 2 KO J2 = KO (by definition of KO), it follows that XJ f 2 ? 

KO -K > 0. Thereforef #- 0. On the other hand, let g,t - f. We have 

|Vft? v, |~ xf In n2 K K I ? p o(1), 

and since g,t - 0 weakly in H', we obtain 

f vf12? + vg 
2 

_ X If 12 Kllftf 
2 

+ o(1). 

Consequently, 

I Vf1 + Kollg 
2 _ - Iff SKxlf|,ll|2 + o(l). 

On the other hand, it follows from Theorem 1 that 

llfnIlp =lifip + lig,?llp + o(l). 

Since p > 2 we deduce that 

,f4II <If 1? 112?o(l). ltip SllP + llgn lp+o() 

If KA ? 0, we conclude that 

KXllfnllp Kx KAlp + Kollgnlp +ol 

and, therefore, 

fVf 12 X If l2- ? KxIjf,,2 + o(l), 

i.e. f is minimizing, as desired. 
If KA < 0, we have 

IVf12 - If 1j2 s Kx + o(i) s KxIif,,2 + o(l) 

since II f II ps 1. Here again, f is minimizing, as desired. For further details see [2]. 
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