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0. Introduction 

Let fl be a bounded domain in Iw" with n 23. We are concerned with the 
problem of existence of a function u satisfying the nonlinear elliptic equation 

-Au = u P + f ( x , u )  on R, 

(0.1) u > o  on fl, 
u = o  on aR, 

where p = ( n  + 2 ) / ( n  - 2), f ( x ,  0) = 0 and f ( x ,  u )  is a lower-order perturbation of 
u p  in the sense that limu-r+mf(x, u ) / u p  = 0. A typical example is f(x, u )  = Au, 
where A is a real constant. The exponent p = ( n  + 2 ) / ( n  -2) is critical from the 
viewpoint of Sobolev embedding. Indeed solutions of (0.1) correspond to critical 
points of the functional 

where F(x, u )  = f," f (x, t )  dt. Note that p + 1 = 2n/(n - 2) is the limiting Sobolev 
exponent for the embedding HA(fl) c Lp+'(R). Since this embedding is not 
compact, the functional CP does not satisfy the (PS) condition. Hence there are 
serious difficulties when trying to find critical points by standard variational 
methods. In fact, there is a sharp contrast between the case p < ( n  + 2 ) / ( n  -2) 
for which the Sobolev embedding is compact, and the case p = (n + 2 ) / ( n  -2). 
Many existence results for problem (0.1) are known when p < ( n  + 2 ) / ( n  - 2) 
(see the review article by P. L. Lions [20] and the abundant list of references 
in [20]). On the other hand, a well-known nonexistence result of Pohozaev [24] 
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asserts that if R is starshaped there is no solution of the problem 

on R, 

u >o  on R, 

u = o  on aR; 

see (1.4). But, as we shall see, lower-order terms can reverse this situation. 
Our motivation for investigating (0.1) comes from the fact that it resembles 

some variational problems in geometry and physics where lack of compactness 
also occurs. The most notorious example is Yumabe’s problem: find a function 
u satisfying 

( n + 2 ) / ( n - 2 )  -Au = u 

u > o  on M, 

for some constant R’. Here A4 is an n-dimensional Riemannian manifold, A its 
Laplacian, and R (x) is the scalar curvature. 

But there are many other examples: 
(a) Existence of extremal functions for isoperimetric inequalities, Hardy- 

Littlewood-Sobolev inequalities, trace inequalities, etc. ; see Jacobs [ 14]’, Lieb 
[19], P. L. Lions [21]. 

(b) Existence of non-minimal solutions for Yang-Mills functionals; see 
C. Taubes [29].’ 

(c) Existence of non-minimal solutions for H-systems3 (Rellich’s conjecture 
concerning the existence of ‘‘large’’ surfaces of constant prescribed mean cur- 
vature spanned by a given curve in R3); see [ S ] .  

(d) See K. K. Uhlenbeck [31] for still more. 
Our paper is organized as follows. In Section 1, we investigate the model 

problem 

- A u = u P + A u  on R, 
(0.2) u > o  on R, 

u = o  on aR, 
where p = (n +2)/(n - 2 )  and A is a real constant. Surprisingly, the cases where 
n = 3 and n 2 4  turn out to be quite different: 

(a) when n 24, problem (0.2) has a solution for every A E (0, Al), where A l  
denotes the first eigenvalue of -A; moreover it has no solution if A E! (0, A and 
R is starshaped (see Theorem l .l),  

’ This reference was brought to our attention by L. Carleson. 
This reference was brought to our attention by M. Atiyah. 
This problem was mentioned to us by S. Hildebrandt. 



POSITIVE SOLUTIONS ON NONLINEAR ELLIPTIC EQUATIONS 439 

(b) when n = 3 ,  problem (0.2) is much more delicate and we have a complete 
solution only when R is a ball. In that case, problem (0.2) has a solution if and 
only if A E ( f A 1 ,  A l )  (see Theorem 1.2). 

This unexpected phenomenon can perhaps shed some light on Yamabe’s 
problem which was solved by Th. Aubin [3] in high dimensions, namely n 26,  
in case the Weyl curvature tensor of the Riemannian metric is not identically 
zero. (In case it is identically zero, and the manifold has finite PoincarC group, 
the problem is also solved in [3 3.) 

Our approach for proving the above results is the following. The solutions 
of (0.2) correspond to nontrivial critical points of the functional 

Another viewpoint-which we shall use-is to look for critical points of the 
functional J IVu l 2  - A  J u2 on the sphere IIu Ilp+l = 1. Such a critical point u satisfies 
the equation 

-hu -Au = p u p ,  

where p is a Lagrange multiplier. After “stretching” the Lagrange multiplier 
we obtain a solution of (0.2). We prove indeed that for suitable A’s we have: 

(0.3) inf [ IVuIZ-A J’ u 2 )  is achieved. 
lX€H:, 

l l~Ilp+1=1 

The major difficulty in proving (0.3) stems from the fact that the function 
u H I I U I J , , + ~  is not continuous under weak convergence in Hh(fl) .  The decisive 
device in order to overcome this lack of compactness is to establish that for 
suitable A ’s we have 

(0.4) 

where S corresponds to the best constant for the Sobolev embedding HA(R) c 

Our arguments are inspired by the work [3] of Aubin. The main point of 
L + (R) . 

the proof consists in evaluating the ratio 

for 

(0.5) & >o, 
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where cp is a cut-off function. The functions ( E   XI*)-(^-^)'^ play a natural role 
because they are extremal functions for the Sobolev inequality in R“. This 
approach has served as a source of inspiration in [S] where a similar method is 
used; in [ S ]  it is not the Sobolev inequality but a certain isoperimetric inequality 
that plays the key role. 

Finally, for the nonexistence part of Theorem 1.2 (i.e., A S : A l )  we use an 
argument ‘‘a la Pohozaev” with more complicated multipliers. 

In Section 2, we turn to the general form of problem (0.1). Once more there 
is a difference between the cases n = 3 and n 2 4. We summarize our result on 
the following simple example: 

- A u = u P + p u q  on R, 

(0.6) u > o  on R, 

u = o  on an, 

where p = ( n  + 2) / (n  - 2) ,  1 < q < p ,  and p > 0 is a constant. When n 24, problem 
(0.6) has a solution for every p > 0. When n = 3 ( p  = 5 ) ,  problem (0.6) is again 
much more delicate: 

(a) if 3 < q  < 5 ,  problem (0.6) has a solution for every @ > 0;  
(b) if 1 < q S 3, it is only for large values of p that (0.6) possesses a solution. 
The proofs involve a combination of various ingredients. We start with a 

geometrical result which is an expression of the Ambrosetti-Rabinowitz [ 11 
mountain pass theorem without the (PS) condition: 

THEOREM 2.2. Let @ be a C‘ function on a Banach space E. Suppose 
there exists a neighborhood U of 0 in E and a constant p 
such that @(u)  Z p  for every u in the boundary of U, (0.7) 

(0.8) 

Set 

@(O)<pand @ ( v ) < p  forsorne u &  U. 

c = inf max @( w )  Z p ,  
P E P  W € P  

where 9 denotes the class of paths joining 0 to v.  
Conclusion ; 

there is a sequence (ui)  in E such that 
@(uj )+cand @‘(uj)+Oin E*. 

When applying Theorem 2.2 to (0.6) we choose E = H$R) and 
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Condition (0.7) is clearly satisfied (U being a small ball). The major difficulty 
lies in using the conclusion of Theorem 2.2. For this purpose we prove (see 
Theorem 2.1) that if 

(0.9) 

then one can pass to the limit in the sequence (ui)  and obtain a nontrivial critical 
point of a. Thus we are left with the question: can one find a u such that the 
corresponding c satisfies (0.9)?4 This last step is rather technical; it is achieved 
by choosing some special v’s, for example of the form (0.5). We believe that 
this method can be useful in solving other problems where one is in a borderline 
situation for the (PS) condition-so that the standard approach fails. 

Our thanks to E. Lieb for his kind help (see Lemma 1.2), to F. Browder and 
P. Rabinowitz for stimulating discussions, and to 0. Bristeau (at INRIA) for 
suggestive numerical computations at stages where we could not guess the answer. 

1. Existence of Positive Solutions for 
-Au = u p  +hu on a, u = 0 on i3n with p = (n  +2) / (n  -2) 

Let R c R“, n 2 3, be a bounded domain. We are concerned with the problem 
of existence of a function u satisfying: 

- A u = u P + A u  on R, 

(1.1) u > o  on 0, 

u = o  on an, 
where p = (n  +2)/(n -2) and A is a real constant. As we have indicated, the 
cases n = 3 and n 2 4 are different and will be treated separately. 

In subsections 1.1 and 1.2 we consider the cases n 2 4  and n = 3, respectively. 
In subsection 1.3 we have collected a number of additional properties and 

open problems. We denote by A the first eigenvalue of -A with zero Dirichlet 
condition on SZ. 

1.1. The case n 2 4. Our main result is the following: 

THEOREM 1.1. Assume n 2 4. Then for every A E (0, A 1) there exists a solution 
of (1.1). 

Remark 1.1. There is no solution of (1.1) when h 2 A 1. Indeed, let cpl be 
the eigenfunction of - A  corresponding to A with cpl > 0 on R. Suppose u is a 

Note that c depends on u. 
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solution of (1.1). We have 

and thus A < A l .  

Remark 1.2. There is no solution of (1.1) when A SO and R is a (smooth) 
starshaped domain. This follows from Pohozaeu’s identity (see Pohozaev [24]) 
which we now recall. Suppose u is a (smooth) function satisfying 

-Au = g ( u )  on 0, 

u = O  on dR, 

where g is a continuous function on R. Then we have 

where 

G ( u )  = l U g ( t )  0 dt 

and v denotes the outward normal to 8R. In particular, when g ( u )  = up +Au we 
deduce from (1.3) that 

(1.4) 

If n is starshaped about the origin we have (x * v ) > O  a.e. on an. When A < O  
it follows immediately from (1.4) that u = O .  When A = 0 we deduce from (1.4) 
that au/& = 0 on dR and then by (1 . l )  we have 

thus u = 0. 
The situation can be quite different when R is Qor starshaped. For example 

if n is an annulus, there exists a radial solution of (1.1) for every A E (-m, A I ) ;  
this fact was first pointed out by Kazdan and Warner [16]; see also subsection 
1.3  (point 3)  below. 

Set 
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so that 

corresponds to the best constant for the Sobolev embedding HA(R) c L””(R), 
p + 1 = 2n/ (n  - 2) .  We start with some remarks concerning the best Sobolev 
constant S : 

(a) S is independent of R and depends only on n. This follows from the fact 
that the ratio IIVul12/11ullp+l with p + 1 = 2n/ (n  - 2 )  is invariant under scaling; in 
other words, the ratio IIVukll2/11ukllP+l is independent of k, where u k ( x )  = u ( k x ) .  

(b) The infimum in (1.6) is neuer achieved when R is a bounded domain. 
Indeed, suppose that S were attained by some function u EHA(R). We may 
assume that u 2 0 on R (otherwise replace u by lul). Fix a ball f l ~  R and set 

u on R, 
o on A\R. ;=I[ 

Thus S is also achieved on fl by u” and u” satisfies -A6  = pdP for some constant 
p > 0; this contradicts Pohozaev’s result. 

(c) When R = R”, the infimum in (1.6) is achieved by the function 

(1.7) U(x)=  C(l+lx12)-(n-2)/2 

or (after scaling) by any of the functions 
2 -(n-2)/2 (1.8) U E ( X ) = C e ( E  + [ X I  1 , E >o, 

where C and C, are normalization constants; see Th. Aubin [ 2 ] ,  G. Talenti [28]  
(both are based on some earlier work of G. A. Bliss [4]) and also E. Lieb [19]. 

Our first lemma plays a crucial role in the proof of Theorem 1.1; it is an 
adaptation of an original argument due to Th. Aubin [3] in the context of 
Y amabe’s conjecture. 

LEMMA 1.1. We have 

(1.9) sA < s for all A > 0. 

Proof: Without loss of generality we may assume that OER. We shall 
estimate the ratio 

with 

(1.10) E >o, 
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where cp E 9+(n) is afixed function such that cp (x) = 1 for x in some neighborhood 
of 0. We claim that, as E + 0, we have 

(1.11) IlVu$ = & ( . - 2 1 , 2 + 0 ( 1 ) .  Ki 

Kz 
(1.12) Il&ll;+l = - + O ( E ) ,  

8 

(1.13) 

[ K j l l o g & / + O ( l )  if n =4, 

where K , ,  K 2  and K3 denote positive constants which depend only on  n and 
such that K11K2 = S. 

VERIFICATION OF (1.11): We have 

Since cp = 1 near 0, it follows that 

VERIFICATION OF (1.12): We have 

where 



Thus (1 .12 )  follows with K2 = IIUII:+1, and K1/K2  = S .  

VERIFICATION OF (1 .13 ) :  We have 

When n 2 5, we have 

and (1.13) follows with 

When n = 4, we have, for some constants R and R 2 ,  

and 

where w is the area of S 3 ;  thus (1 .13)  follows with K 3 = &  Combining ( l , l l ) ,  
( 1 .12 )  and (1 .13 ) ,  we obtain 

In  all cases we deduce that QA(u, )<S provided e > O  is small enough. 

LEMMA 1.2. 

Proof: 

(E. Lieb) IfSA < S ,  the infimum in (1.5) is achieved. 

Let (u,) c Hd be a minimizing sequence for (1.5), that is, 

( 1 . 1 4 )  I I ~ I I I P I I  = 1 ,  
( 1 .15 )  I ~ V U $ - A I ~ U , ~ I : = S ~  + o ( I )  as j - a o .  

Since uj is bounded in H:I we may extract a subsequence-still denoted by 
u,-such that 

u,-u weaklyin HA, 

u, + u  strongly in L ~ ,  

u i + u  a.e. on a, 
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with I)u[JP+, s 1. Set ui = u i -u ,  so that 

v j  - 0 weakly in HA 

u, + O  a.e. on 0. 
By (1.6) and (1.14) we have I I v ~ ~ l l ~ Z . 9 .  From (1.15) it follows that 
AIlu1122S-SA >oO and therefore u f O .  Using (1.15) we obtain 

(1.16) IIvu112’+IIVUjIlz’-Allu1I22 = s A  +0(1) 
since uj -0 weakly in HA. On the other hand, we deduce from a result of Brezis 
and Lieb [8] that 

2 

I I u  +ujll::: =Ilull:I:+IlujII;I: + O U )  

(which holds since u, is bounded in Lpt l  and uj  + 0 a.e.). Thus (by (1.14)) we have 

1 =lIu/I:I: +IIujIIE:: +0(1) 
and therefore 

2 1 5 JJu JIp+t + IIujII;+ 1 + 0 (1) 
which leads to 

(1.17) 

We claim that 

this will conclude the proof of Lemma 1.2 since u f 0. 
We distinguish two cases: 
(a) SA > O  (i.e., O < A  <Al), 
(b) SA S 0 (i.e., A Z A 1). 

In case (a) we deduce from (1.17) that 

(1.19) SA sSAIIuII;+l +(sA /s ) l~v~ j l l ~+o ( l ) .  

Combining (1.16) and (1.19) we obtain (1.18). 
In case (b) we have SA s s A I I U l l i + l  since IIu(lp+l 5 1. We deduce, again, (1.18) 

from (1.16). 
F. Browder has pointed out that this argument proves more: in fact, ttj + 0 

strongly in HA; in other words, every minimizing sequence for (1.5) is relatively 
compact in HA for the strong HA topology. 

Proof of Theorem 1.1 concluded: Let u E HA be given by Lemma 1.2, that is, 

I1ullp+~ = 1 and [lVull:-Allu)l; =SA. 
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We may as well assume that u 2 0  on R (otherwise we replace u by 1 ~ 1 ) .  Since 
u is a minimizer for (1.5) we obtain a Lagrange multiplier p E [w such that 

- A u - A u = p u P  on R. 

In fact, p = S, , and S, > 0 since A < A  1. It follows that ku satisfies (1.1) for some 
appropriate constant k > O  ( k  = S i ’ ( p - l ) ) ;  note that u > 0 on R by the strong 
maximum principle. 

Remark 1.3. Our first proof of Theorem 1.1 did not involve Lemma 1.2. 
Instead, we considered, as in the works of N. Trudinger [30] and Th. Aubin [3]: 

inf , { I I v u  11: - A  JJu I/:> for q < p .  ” = u e H < ,  
(1.20) 

I l~l lq f l  = 1 

It  is easy to check that limq+p p, = S, .  Moreover since the embedding HA c L4+’ 
is compact, the infimum in (1.20) is achieved by some u, E HA such that uq 20 
on R, JJu,JJ,+1= 1 and 

(1.21) - Au, - Au, = p , ~ : .  

It follows that 

(1.22) SIIUq112,+1 - ~ l l ~ , l l ~ ~ l l ~ ~ , l l ~ - ~ l l ~ , l l ~  = Pq. 

As q + p  (through a subsequence), u, - u weakly in HA. Passing to the limit in 
(1.22) we obtain 

s - A  I I u  11; 5 S,  

and thus (by Lemma l . l ) ,  u $0. Finally, we deduce from (1.21) that u satisfies 

-AU -Au =SAU’. 

Stretching S,, as above, we obtain a solution of (1.1). 

1.2. The case n = 3. Let R c R3 be a bounded domain. We are concerned 
with the problem of existence of a function u satisfying 

(1.23) 

- A u = u 5 + A u  on 0, 

u > o  on fl, 

u = o  on an, 
where A is a real constant. This problem turns out to be rather delicate and we 
have a complete solution only when R is a ball (see subsection 1.3 for more 
general domains). Our main result is the following: 

THEOREM 1.2. Assume R is a ball. There exists a solution of (1.23) if and 
only if A E (aA1 ,  A l ) .  
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For simplicity we take 

R={xER3;IXI<1} 

so that A 1  = 7r2 (the corresponding eigenfunction is Ix 1-l sin ( r l x  1). 
subsection 1.1). As in subsection 1.1 we set 

We already know that (1.23) has no solution for A I A l  and for A SO (see 

SA = infl {\\Vu11’2-Allu11$} with A €88, 
U E H ~  

(1.24) 
l/ul16=1 

and S =So. 
The counterpart of Lemma 1.1 is 

LEMMA 1.3. We have 

(1.25) S , < S  forall A > $ A ~ .  

Proof: We shall estimate the ratio 

with 

(1.26) r = 1x1, E >O,  

where cp is a fixed smooth function such that cp(0) = 1, cp’(0) = 0 and cp(1) = 0. 
We claim that, as E + 0, we have 

(1.27) 

(1.28) 

(1.29) 

where K1 and K z  are positive constants such that K J K 2  = S and w is the area 
of s2. 

VERIFICATION OF (1.27): We have 
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and thus 

Integrating by parts we find 

and therefore 

(1.30) 

Using the fact that cp(0) = 1 and cp'(0) = 0 we obtain 

(1.31) 

(1.32) 

Also, we have 

Combining (1.30)-(1.32) and (1.33) we obtain (1.27) with ' 

Finally we note that K 1  = 
the fact that 

(VUI2 dx, where U(x)  = 1/ (1+ ( x ( ~ ) " ~ ;  here we use 

VERIFICATION OF (1.28): We have 

=I1+12.  

Since cp(0) = 1 and cp'(0) = 0 we obtain 
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Next we have 

Therefore we find 

ds + O ( E ) ]  
* s 2  

and (1.28) follows with 

VERIFICATION OF (1.29): We have 

Combining (1.27), (1.28) and (1.29) we obtain 

(1.34) Q ~ ( u ~ ) = S + E  [I,’ Iq’(r)I2 dr - A  lo1 q 2 ( r )  dr] + O ( E ) .  
K2 

Choosing q ( r )  = cos ( h r )  we have 

J Irp’(r)12 dr =&rz J rp2(r) dr 
0 0 

and thus 

Q*(u,) = s + ( i t r 2 - h  )cE ‘ I 2+  o(&) 
for some positive constant C. The conclusion of Lemma 1.3 follows by choosing 
E > 0 small enough. 

The next Lemma is a crucial step in the proof of Theorem 1.2: 

LEMMA 1.4. There is no solution of (1.23) for A I : A l .  

Proof: Suppose u is a solution of (1.23); by a result of Gidas-Ni-Nirenberg 
[13] we know that u must be spherically symmetric. We write u ( x )  = u ( r ) ,  
where r = 1x1, and thus u satisfies 

(1.35) 
2 
r -u”--u’=u5+Au on (0, l ) ,  

(1.36) u’(O)=u(l) =o. 
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We claim that 

for every smooth function 4 such that $(O) = O? Indeed, we first multiply (1.35) 
by r2$u’ and obtain 

1 
‘ 2 1 2  f [ ~u I (2r + - r + )  dr-ilul(l)12$(1) 

Next we multiply (1.35) by ($r2$f-r$)u and obtain 
1 1 lo Iu ’ 2 1 2  I (2r  $ f - r $ ) d r - a l 0  u2r2$”‘dr 

= I, I, 2 1 2  

(1.39) 1 1 

u6($r2$’-r$)dr+A u (Ir #-r$)dr .  

Combining (1.38) and (1.39) we obtain (1.37). We already know that there is 
no solution of (1.23) for A SO; thus we may assume that O < A  S$T’. In (1.37) 
we choose $ ( r )  =sin ((4A)l”r) so that $(1) 20, 

A$‘ +&ha’ = 0, 

r$ -r2$’= r sin ((4A)”2r)-r2(4A)1/2 cos ((4h)li2r)>0 on (0, 13 
and 

(since sin 8 - 8 cos 8 > 0 for all 8 E (0, T ] )  and we obtain a contradiction. 

Proof of Theorem 1.2 concluded: If A > $A we know that SA < S (see Lemma 
1.3). We may proceed exactly as in the proof of Theorem 1.1 (Lemma 1.2) and 
conclude that the infimum in (1.24) is achieved. Thus we obtain some u EHA 
with u 2 0 on 51, IIu 116 = 1 and 

5 -Au-Au =SAU . 
If, in addition, A < A l ,  then S, > O  and after stretching, we obtain a solution of 
(1.23). 

1.3. Additional properties, miscellaneous remarks and open problems. 

(1). REGULARITY OF SOLUTIONS. The solution u of (1.1) given by 
Theorem 1.1 (respectively Theorem 1.2) lies in HA(Cl). In fact, u belongs to 

Note that Pohozaev’s identity corresponds to the case where @ ( r )  = r. 
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L"(R). This is proved by Trudinger [30] for Yamabe's problem (on a manifold 
without boundary) but the same argument applies here. Alternatively, one could 
also invoke the following Lemma which is essentially contained in Brezis- 
Kato [7]: 

. 

LEMMA 1.5. Assume u E H6 (0) satisfies 

- A u = a u  in 9'(0), 

w h e r e a ( x ) ~ L n ' * ( R ) a n d n E 3 .  Then UEL'(R) f o r a l l t < c o .  

For our purpose we use Lemma 1.5 with a = A + up-' EL"" (since u E L'+'). 
Finally we note that u E C"(R) (since u > 0 in 0) and, up to the boundary, 

u is as smooth as dR and p permit. 

( 2 ) .  THE CASE p > (n +2) / (n  -2) WITH n 2 3 .  It follows from general 
bifurcation theory-see e.g. Rabinowitz [25]-that for any p > 1 (even p > 
( n  + 2 ) / ( n  -2)) problem (1.1) possesses a component V of solutions (A, u )  which 
meets ( A l ,  0) and which is unbounded in R xL"(R). Theorem 1 . 1  suggesfs that, 
when p = (n + 2 ) / ( n  - 2 )  and n 24, the projection of V on the A-axis contains 
the interval (0, A l )  (with the obvious modification when n = 3 and p = 5 ) .  

On the other hand when p > (n + 2 ) / ( n  - 2 )  and R is starshaped, problem 
( 1 . 1 )  has no solution if A S A *, where A * is some positive constant which depends 
on R and p. This was pointed out by Rabinowitz [26]  in the case n = 3 and p = 7, 
but the same argument works in the general case: suppose u satisfies ( 1 . 1 ) ;  
Pohozaev's identity leads to (assuming star-shapedness about the origin) 

and thus we find 

(1.40) 

We deduce from ( 1 . 1 )  and (1 .40)  that 

that is, 

n - 2  p - (n  + 2 ) / ( n  - 2 )  A > A 1  
n P - 1  
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(3). UNIQUENESS-NONUNIQUENESS When R is a ball, every solution of 
(1.1) is spherically symmetric (see [13]). Even in this case we do  not know 
whether (1.1) has a unique solution. Uniqueness results for some semilinear 
elliptic equations in all of R" have been obtained by Coffman [9], L. A. Peletier 
and J. Serrin [23], and K. McLeod and J. Serrin [22].6 On the other hand, if R 
is an annulus, say R={xER"; 1 < / x ) < 2 }  with n 1 4 ,  then (1.1) admits both 
radial and nonradial solutions for all A > 0 sufficiently small.' Indeed, set 

(1.41) 

where H, = {u E HA; u is radial}. Since the injection H, c Lpfl is compact, the 
infimum in (1.41) is achieved (for any A E R) by some uA EH, such that 

U A  2 0  on R, IIuAIlp+l= 1 

and - A u A  -Aun = ZAuf on R. If A < A l ,  then ZA > 0 and, after stretching ZA, we 
obtain a solution of (1.1). Next we consider SA defined by (1.5). It is easy to 
check that the functions A + + &  and A-SA are continuous (even Lipschitz 
continuous). We have S = So < Zo (otherwise the best Sobolev constant would 
be achieved-which is impossible; see subsection 1.1). Thus for A > 0 sufficiently 
small, SA <Z, ,  and the infimum in (1.5) is achieved (see Lemma 1.2) by some 
nonradial function; in this way we obtain a nonradial solution of (1.1). We do 
not know whether the nonradial solutions occur by secondary bifurcation from 
the branch of radial solutions 

A similar argument shows that the problem 

-Au = u 4  on theannulus R, 
(1.42) u > O  on R, 

u=O on an, 
admits both radial and nonradial solutions for all q < (n + 2)/(n - 2) sufficiently 
close to ( n  + 2)/(n - 2). 

(4). EQUATIONS WITH VARIABLE COEFFICIENTS. Let c R", n 8 4 ,  be a 
bounded domain. Assume a (x) E Lm(R) is given such that 

( 1.43) a ( x ) Z S  on some open subset of R, 

Other uniqueness results have been obtained by W. M. Ni: Uniqueness of solutions of nonlinear 
Dirichfetproblems, J. Diff. Eqns., to appear, and in a paper by Ni and R. Nussbaum (in preparation). 
' Of course this fact does not contradict the result on spherical symmetry of [13] which holds 

only on balls. Nonradial solutions for some semilinear equations on the annulus have also been 
investigated by D. Schaeffer [27] and C. Coffman [lo]. 
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(1.44) 

and for some constant S > 0. Then there exists a solution of the following problem: 

-Au = u p  + a ( x ) u  on R with p = (n + 2 ) / ( n  - 2) ,  

(1.45) u > o  on R, 
u = o  on aR. 

By the same argument as in subsection 1.1 we first prove that 

(1.46) 

(here we use (1.43)). Then, we show that the infimum in (1.46) is achieved. 
Therefore we obtain some u E HA satisfying 

u 2 0  on R, IIullPcl = 1, 

-Au - a ( x ) u  = Jup.  

Since J > O  (by (1.44)) we obtain, after stretching, a solution of (1.45). 
On the other hand, the problem 

-Au = a ( x ) u P + A u  on R with p = (n  + 2 ) / ( n  -2), 

(1.47) u > o  on R, 

u = o  on aR, 
where a ( x )  is a smooth function on i? with a ( x ) Z 8  7 0 ,  seems more delicate 
and we have only partial results. 

(5). SHARP SOBOLEV INEQUALITIES. As a by-product of the proof of 
Theorem 1.2 we obtain the following surprising inequality: 

COROLLARY 1.1. Assume R c R3 is a bounded domain. Then there exists a 
constant A * with 0 < A  * < A  1 (A * depends on R) such that 

(1.48) llvu114 2 S ~ I U  112 + A  * I I u I $  for all u E H A .  
We may take A * = am’ (3 meas R / ~ T ) - ” ~  (this value is sharp when R is a ball). 

Let R* be the ball such that meas R* = meas R. Let u * denote the 
symmetric decreasing rearrangement of u. It is known (see e.g. the Appendix 
in Lieb [18] or Talenti [28]) that if u EH~(SZ) ,  then u* E HA (a*) and 

(1.49) 

Proof: 

llVU *1122Kl*) 5 llVU l l 2 Z m  
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On the other hand, for every u * E HA(R*), 

(1.50) llvu * I I i z ( n * )  2 SJlu *lI:"(n*) + i(fl*)IIu *IIEz(n*). 

Indeed (1.50) just says that S,  2 S when A = $Al(R*); and indeed we have S, 2 S, 
because the strict inequality S, < S  would imply (through Lemma 1.2) the 
existence of a solution of (1.23) on R* with A =hl (R*)  contradicting Theorem 
1.2. 

Finally we note that Al(R*) = .rr2/R2, where R is given by %rR3 = meas R. 
Combining (1.49), (1.50) and the fact that IIu*IILq(n*) = IIuI(Lq(n) for all q, we obtain 
(1.48). 

In other words, Corollary 1.1 asserts that given a bounded domain R c R 3  
there is a number A * attached to R, with 0 < A  * < A  1 ,  such that 

(1.51) 
SA<S for A > A * ,  

SA=S for O S A S A * .  

When R is a ball we have A *  =:Al. 

Remark 1.4. When n 2 4 ,  there is no inequality of the type: 

(1.52) IIVull~2Sllull~n,(n-2)+A*IIu1122 for all u €HA, 

with A * > 0. 

Indeed, (1.52) would imply that S,* 2s and we know (see Lemma 1.1) that 
SA* < S. On the other hand, the following inequality holds: 

(1.53) 

for each n 2 3 and each q < n/(n - 2), where A, > 0 is a constant depending on 
q and 0. See appendix for the proof. 

llV~11~2Sllu115~,(~-~)+A~lluII~ 2 for all u 

Remark 1.5. Assume Q c R " ,  n 2 3 ,  is a bounded domain and let A SO. 
Then S, = S  and the infimum in (1.5) is not attained. Indeed, the proofs of 
Lemma 1.1 and Lemma 1.3 lead to 

s + O ( & )  if n 2 5 ,  

s + O(& if n = 3 ,  

and therefore S, SS.  On the other hand, the function A -SA is nonincreasing 
and thus S, 2.9 for A S O .  We already know that the infimum in (1.5) is not 
attained when A = 0; a fortiori it cannot be attained when A < 0 (since S, = S). 



456 H. BREZIS A N D  L. NIRENBERG 

(6) FURTHER RESULTS AND OPEN PROBLEMS CONCERNING THE CASE 

n = 3. Let R c R3 be a bounded domain. 

result: 
(a) Assume R contains a ball of radius R. Then we have the following positive 

THEOREM 1.2'. Problem (1.23) possesses a solution for each A such that 

r L  

4R2 
---<A <A,(R) 

(this set may be vacuous). This is a consequence of the arguments used in the 
proof of Theorem 1.2. 

(b) Consider R strictly starshaped about the origin, meaning that x v > 0 
on 3 0  (assumed smooth). 

THEOREM 1.2". If (1.23) has a solution, then 

A ZAo(R)>O. 

Proof: By Pohozaev's identity, (1.4), 

+ ,  2 c >o, 
since A-' is a bounded operator from L' to Lz (by duality, from standard elliptic 
estimates for n = 3). 

(c) Let A * be defined by (1.51). Is the infimum in (1.5) attained when A = A * ?  
(In view of Theorem 1.2 we suspect that the answer is negative.) 

(d) Set A = inf {A E R;  problem (1.23) possesses a solution} so that S A *. 
When is A = A *? 

2. Existence of Positive Solutions for -Au = up +f(r, u)  on a, u = 0 on a, 
where p = (n  + 2 ) / ( n  - 2) and f ( x ,  u )  is a Lower-Order Perturbation 

Let n=lR", n 1 3 ,  be a bounded domain. We assume that 
f ( x ,  u ) : R x [ O ,  +oo)+R is measurable in x, continuous in u and that 
S U ~ , ~ ~ , ~ ~ , , ~ ~  I f ( x ,  u) l<m for e v e r y M > ~ .  
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Let p = (n + 2)/(n - 2). We assume that f ( x ,  0) = 0 and that f is a lower-order 
perturbation of u p ,  that is, 

- 0. lim -- f(x9 u )  
u + + m  u p  

We are concerned with the problem of existence of a function u satisfying 

- A u = u P + f ( x , u )  on 0, 

(2.1) u > o  on 0, 

u = o  on an. 
In subsection 2.1, we present a general tool for the study of (2.1), which is 

based on a variant of the mountain pass theorem. 
In subsection 2.2, we discuss some technical (but concrete) assumption under 

which the above tool may be used. 
In subsections 2.3, 2.4 and 2.5, we present some examples. The cases n 2 5 ,  

n =4, and n = 3  turn out to be different and we treat them separately. In 
subsection 6, we consider the problem 

- A U = A ( I + U ) ~  on 0, 

u > o  on n, 
u = o  on an. 

Using our previous results we establish the existence of at least two positive 
solutions for each A > 0 small enough. 

2.1. A general tool. We assume that f ( x ,  u )  can be written as 

(2.2) f(x, u )  = a ( x ) u  + g ( x ,  u ) ,  

with 

(2.3) 

(2.4) g ( x ,  u )  = o ( u )  as u +o+, uniformly in x, 

(2.5) g(x, u )  = o ( u p )  as u + +a, uniformly in x .  

Moreover we assume that the operator -A -a  ( x )  has its least eigenvalue positive, 
that is 

(2.6) 

or equivalently 

ff >o,  
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The values of f (x, u )  for u < 0 are irrelevant and we may define 

Set 
f ( x , u ) = O  for x ~ n ,  u d 0 .  

F(x,  u ) =  f ( x ,  t ) d t  for x ~ n ,  u ER, I 
and 

(2.7) for u € H A .  

The main result of subsection 2.1 is the following: 

THEOREM 2.1. Assume (2.2)-(2.6) and suppose, moreover, that 

1 
I 2 0  n 

1 there exists some uo E H o ,  vo  Z 0 on R, uo f 0,  such that 
(2.8) 

sup * ( t U O )  < - S"'*. 

Then, problem (2.1) possesses a solution. 

Remark 2.1. In case f ( x ,  u )  = AM, assumption (2.6) corresponds to A < A l  

Indeed we have q( tuo)  = $AtZ - (B/ (p  + l)) tp+l with A = ( (VUO~~;  - A  Iluoll; and 
while assumption (2.8) is equivalent to S, <S. 

B = 1lu011;;: ; thus 

Therefore Theorem 2.1 implies Theorem 1.1 and the positive part of 
Theorem 1.2 once we know that SA < S .  

The proof of Theorem 2.1 relies on the following variant of the mountain 
pass theorem of Ambrosetti and Rabinowitz without the (PS) condition : 

THEOREM 2.2. Let @ be a C' function on a Banach space E. Suppose 
there exists a neighborhood U of 0 in E and a constant p 
such that @(u)  2 p for every u in the boundary of U, (2.9) 

(2.10) @(O)<p  and @ ( u ) < p  for some V &  U. 

Set 

(2.11) c = inf max @(w) z p ,  
P E P  W € P  

where 9 denotes the class of continuous paths joining 0 to u. 
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Conclusion : 
there is a seauence (uil  in E such that 

(2.12) 

The proof of Theorem 2.2 is exactly the same as in Ambrosetti and Rabinowitz 
[l] (see also the Appendix in Brezis, Coron and Nirenberg [6] ) ,  and we shall 
omit it. Note that here we do  not assume condition (PS). If condition (PS) (or 
condition (PS), from [6] )  is satisfied, then we deduce from (2.2) that c is a critical 
value. Theorem 2.2 is reminiscent, in some ways, of I. Ekeland’s theorem in 
[12] (which asserts that if @ is a C’ function on a Banach space E and @ is 
bounded below on E, there exists a sequence (ui) in E such that @(ui) + infE @ 
and @‘(ui) + 0 in E*).  

Proof of Theorem 2.1. Using (2.2)-(2.5) we may fix a constant p ZO large 
enough so that 

(2.13) - f ( x ,  u) 3 ~u + u p  for a.e. x E R, and for all u 2 0 

(in case f ( x ,  u) 2 0 for all u Z 0 we may, of course, choose p = 0). On E =HA 
we define 

Clearly @ is C’ on E; we shall verify the assumptions of Theorem 2.2. 

VERIFICATION OF (2.9): By (2.4) we have, for any E > 0, there is a S > 0 
such that 

g ( x , u ) S E u  for a.e. X E R ,  andforall O S u S 6 ,  

thus, by (2.5), we obtain 

g ( x , u ) s & u + C u P  for a.e. X E R  for all u r O ,  

and for some constant C (depending on E ) .  Therefore we have 

Hence we find, for all u E Hh,  



460 H. BREZIS A N D  L. NIRENBERG 

Using (2.6’) and the fact that J IVuI2 =I ~ V U ’ ~ ~ + I V U - ~ ~  we conclude that (with E 

small enough) there exist constants k > 0 and C’ such that 

@.(u)~kllull2Ht-CC’IIuIIR+~ for all u EM:, 
which implies (2.9) with some p > 0 (and U a small ball in H i ) .  

VERIFICATION OF (2.10): For any u EHA,  u 2 0 ,  u f  0, we have by (2.5) 
lim,++oo @(tu) = -a. Thus, there are many u’s satisfying (2.10). However, it will 
be important for later purposes to use Theorem 2.2 with a special u, namely 
u = touo, where uo is given by (2.8) and t o > O  is chosen large enough so that 
u& U and @ ( v ) S O .  

It follows from (2.8) that 

1 
1 2 0  n 
sup @(to)  < - s“’2 

and therefore we have 

1 
n 

(2.15) c < - s”’2. 

Applying Theorem 2.2 we obtain a sequence (ui) in H i  such that @(uj )  -+ c and 
@’(ui) + 0 in H - * ,  that is, 

(2.16) ($IVu,l’+tpu: --(u, 1 + ) p t l  -F(x, u f ) - $ p ( u ; ) ’ ]  = c  +o( l ) ,  
P + l  

and 

(2.17) 

with f ;  + 0 in H-’. We claim that 

(2.18) Ilu, 1 1 ~ : )  5 C. 
Indeed, multiplying (2.17) by u, we obtain 

(2.19) 

Taking (2.16)-4 (2.19) yields 

- A U J  + p U ,  -(U;)’-f(X, U : ) - p U :  = ( J  

I { I V U , ~ ~ + ~ U :  - ( u : ) ’ ” - f ( x ,  u:)u:  - p ( ~ ; ) ~ } = ( ( , ,  u J ) .  

On the other hand, from (2.5) we have 

for all E > O  there is C such that 

(2.21) I f ( x ,  u ) l S  EU’ + C for a.e. x E a, and for all u L 0, 
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so 

& (2.22) IF(x, u ) ~ ~ - u p p + ' + C  for a.e. x ER, and for all u 8 0 .  

We deduce from (2.20)-(2.22) (with E small enough) that 

(2.23) J ( u f ) ~ + 1 ~  c + cllujllH:, . 

Combining (2.16) and (2.23) we obtain (2.18). Extract a subsequence, still 
denoted by ui, so that 

P + l  

uj - u weakly in H i ,  

uj -$ u strongly in Lq for all q <p + 1, 

uj + u a.e. on R, 

(u f )p - (u ' )p  weakly in (Lp")* 

(L"")*. f(x, uf)-f(x, u') weakly in 

Passing to the limit in (2.17) we obtain 

(2.24) -Au +pu = ( u + ) ~ + ~ ( x ,  u+)+&u+ in H-'.  

We deduce from (2.13) and (2.241, in which the right-hand side is greater than 
or equal to 0, and the Stampacchia maximum principle, that u 20 on R and 
therefore u satisfies 

(2.25) -Au = u p  +f(x, u). 

We shall now verify that u f O  (and consequently u > O  on R by the strong 
maximum principle). 

Indeed, suppose that u = 0. We claim that 

(2.26) 

(2.27) J q x ,  u f ) - + ~ .  

From (2.21) and (2.22) we deduce that 
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Since uj remains bounded in Lp" and ui --* 0 in L2 we obtain (2.26) and (2.27). 
Extracting still another sequence we may assume that 

(2.28) puj12 --* I 

for some constant I20. Passing to the limit in (2.19) and then in (2.16) we obtain 

(2.29) 

and 

(2.30) 
1 
- I = c .  
n 

On the other hand, we have 

IIVujIIS ZsIIujIiftl ~stt~j+II~+l 

and (using (2.28) and (2.29)) we find in the limit 
(2.31) 1 2 spJ+"* 
From (2.30) and (2.31) we deduce that 

(2.32) 

a contradiction to (2.15). Thus u f  0. 

an additional property. 
Remark 2.2. The solution u of problem (2.1) which we have obtained has 

Namely, we claim that: 
either 

(2.331) @(u)  = c, 

or 

(2.3 32) 

In some cases, (2.332) is excluded for instance if we assume that 

(2.34) F(x,  u )  5 ff(x, u ) u  +1 up+' for a.e. x E R, and for all u 2 0. 

(Assumption (2.34) holds for example when f ( x ,  u )  = a ( x ) u  + p u 4  with a EL", 
j . ~  LO and 1 5  q < p . )  Indeed if u is a solution of (2.1) we have 

1 
n 

@(u) 5 c -- snlZ < 0. 

n 

(2.35) [ Ivu)2 = [ { U P + l  + f ( x ,  u ) u }  
J J 
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and thus 

Therefore, using (2.34), we have @(u) 20. In fact, when we assume (2.34), the 
argument below shows that satisfies the condition (PS), (introduced in [6]) for 
every c < (l /n)S"/2.  

VERIFICATION OF (2.331)-(2.332): We consider again the sequence ( u j )  as in 
the proof of Theorem 2.1. It is easy to check that 

(2.36) 1 f ( x ,  uf)uf + I  f ( x ,  u+)u+ and F(x, uf ) +  F(x,  u )  

(this follows from the fact that f ( x ,  u )  is of lower order than u p ,  that (u,) is 
bounded in Lp+' and that uj + u a.e. on $2). We set u, = u j  -u ,  so that 

(2.37) 

and from [8] we deduce that 

(2.38) 

Combining (2.16) and (2.19) with (2.36), (2.37) and (2.38) leads to 

(2.39) 

J {Ivu12-up+1 - f ( x ,  .).}+I {Ivuj12- (uf)""} = o( l ) ,  

which reduces (with the help of (2.35)) to 

(2.40) 

Therefore (2.39) becomes 

(2.41) * (u )+-  (vuj(2=c+o(1) .  
n 'I 

Finally, we may assume (for a subsequence) that 

(2.42) 

Sobolev's inequality leads to k ~ S / C ~ / ( ~ + ' ) .  Thus we have, either k = 0, or k 2 
Snl2, which (together with (2.41) and (2.42)) proves (2.331) and (2.332). 
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2.2. Towards the verification of condition (2.8). Lemma 2.1 below furnishes 
a general, though awkward, assumption under which the crucial condition (2.8) 
of Theorem 2.1 holds. With its aid we shall present some applications in 
subsections 2.3-2.6. 

LEMMA 2.1. Assume f ( x ,  u )  satisfies (2.2)-(2.5). Suppose also that there is 
some function f ( u )  such that 

(2.43) f ( x ,  u )  Z f ( u )  2 0 for a x .  x E w ,  and for all u 2 0, 

where w is some nonempfy open set in 12 and the primitiue F ( u )  = J: f ( t )  dt satisfies 

(2.44) l im&lo E -0 F [ ( k )  1 +s ] s " - ' d s = m .  

Then condition (2.8) holds. 

E - 1 / 2  - 1 / 2  (n-2)/2 

Proof of Lemma 2.1: First we recall that if f ( x ,  u )  = Au, then condition (2.8) 
amounts to 

I lv~ol l :  - A  11fJo11: < s, 
l l ~ O I l % + l  

Therefore it is natural to use for uo the same type of function as in Lemma 1.1. 
Assume 0 E o and fix a function q5 E 9 + ( w )  such that q5(x) = 1 for 1x1 < R 

(R > O ) .  Set 

(2.45) & >o, 

and 

(2.46) 

We claim that u, satisfies condition (2.8) for E > 0 sufficiently small. The computa- 
tions in the proofs of Lemma 1.1 and Lemma 1.3 show that 

where K depends only on n, 

(2.48) ((VUJJ: = s + O(&(n-2)'2 ), n Z 3 ,  

if n 2 5 ,  

& I )  if n = 4, 

if n =3. 
(2.49) 
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We set X, = IlVu,I& and so we have 

Note that W(tu,)S$t2X, - t p f l / ( p  + 1) and thuslim,,,, W(ru,) = -a. Therefore, 
sup,,o W u , )  is achieved at some r, > 0 (if t, = 0, then suptpo * ( rue )  = 0 and there 
is nothing to prove). Since the derivative of the function r-W(ru,) vanishes at 
t = rE, we have 

tex, - t," - f ( x ,  t,~,)t), = o J (2.50) 

and therefore 
(2.51) r, < x ; / ( P - l )  = 

Set 

Since the function t -(4r2X, -rP+'/(p + 1)) is increasing on the interval 
[0, X;'(p-l)] we have, by (2.51), 

Using (2.48) we obtain 

1 
n YE I - S"lZ + O(& (n-2)/2) - 1 F(x,  fEuE) .  (2.52) 

On the other hand, we claim that 

Indeed, by (2.50) we have 

Thus, it suffices to verify that 

(2.54) 

Using (2.2)-(2.5) we see that for all S >0, there is C such that 

I f (x ,  u)l l S u p  + Cu for a.e. x E R, and for all u 20. 
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Therefore we have 

which implies (2.54) and thereby (2.53). 
It follows from (2.53), (2.45)-(2.47) that, for E > 0 sufficiently small, 

(2.55) 

for some constant A > 0. From (2.52) and (2.55) we deduce that 

Finally we claim that 

(2.57) 

which implies, together with (2.56), that Y, < ( l / t ~ ) S " / ~  for E > 0 sufficiently 
small. 

VERIFICATION OF (2.57): We have 

- 1 / 2  ( n - 2 ) / 2  R ~ - 1 / 2  

= W E !  0 F[A(L) 1 + s 2  ]s" - 'ds ,  

where w is the area of S"-' and r = E '"s. After rescaling E we see that (2.57) 
is equivalent to 

(2.58) 

for some constant R'>O. When R ' Z l ,  (2.58) is a consequence of (2.44). 
Otherwise, when R '  < 1, consider 

F - 1 / 2  -1 /2  ( n - 2 ) / 2  

z ~ = & I , . , - l / 2 F [ ( b )  1sn- 'ds 

and note that (for some constant C) 
<C&F(C&(n-~)/4)~-n/2 12, I = 

which is bounded as E + O  (because of (2.2)-(2.4)); and thus (2.58) is again a 
consequence of (2.44). 
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2.3. The case n 25. We assume here that n 2 5 and, moreover, 

(2.59) f ( x ,  u)20 for a.e. x E W ,  and for all u 20, 

(2.60) f ( x ,  u ) Z p  > O  for a.e. x E W ,  and for all u E I ,  

where w is some nonempty open subset of a, I c (0, +a) is some nonempty 
open interval and p > 0 is some constant. 

COROLLARY 2.1. Assume that (2.2)-(2.6), (2.59), (2.60) hold. Then problem 
(2.1) possesses a solution. 

EXAMPLE 2.1. All the assumptions of Corollary 2.1 are satisfied if f ( x ,  u) = 
f ( u ) ,  where f ( u )  is a C’ function on [0, +a) such that 

(2.61) 
f ( O ) = O ,  f ( u ) ~ O  for all u 20 ,  f Z 0 ,  

f ’ (0)<A1 and lim ?=O,  f ( u )  
u-coo u 

(for instance we may take f ( u )  = Au with 0 < A  C A or f ( u )  = wuq with p > 0 and 
1 <4 < P I .  

Proof of Corollary 2.1: We shall use Theorem 2.1 with Lemma 2.1. Apply- 
ing (2.59) and (2.60) we see that 

f ( n ,  u )  Z p x r ( u )  = f ( u )  for a.e. x E w, and for all u 2 0 

(,Y~ is the characteristic function of I). Thus we have 

F ( u ) Z @ > O  for all u 2 B ,  

for some constants p > 0 and B > 0. 

VERIFICATION OF (2.44): We have 
-112 ( n - 2 ) / 2  -1/2 

E 

F[ (b) ] E@ .for all s such that - l+s2  gB21(n-2) ,  

and in particular for all s 5 C E - ” ~ ,  where C is some constant and E is small. 
Thus we have for E small 

e-1/2 -112 ( n - 2 ) / 2  CE-1/4 

E F [  (k) I s n - ’  ds Z@E lo S n - l  ds = c t E 1 - ( n / 4 )  

1 + s  

and the right-hand side tends to +a as E + 0 (since n 2 5 ) .  

2.4. The case n = 4. We assume here that n = 4 and 

(2.62) f ( x ,  u)BO for a.e. x E W ,  and for all u 2 0  
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together with one of the following conditions: 
either 

(2.631) f ( x ,  u )  Zpu for a.e. x E w, and for all u E [0, A ] ,  

or 

(2.63J f ( x ,  u )  2 p u  for a.e. x E w ,  and for all u E [A, +a), 

where w is some nonempty open subset of and p > 0, A > 0 are some constants. 

COROLLARY 2.2. Assume that (2.2)-(2.6), (2.62), (2.631) or (2.632) hold. 
Then problem (2.1) possesses a solution. 

EXAMPLE 2.2. All the assumptions of Corollary 2.2. are satisfied if 
f ( x ,  u )  = f ( u ) ,  where f ( u )  is a C* function on [0, +a) such that 

~ ( o ) = o ,  f ( u ) 2 0  for all U Z O ,  ~ ( O ) C A ~ ,  lim f ( u ) / u 3 = 0 ,  

and either f ’ (0)  > 0 or lim inf f ( u ) / u  > 0, 

(for instance we may take f (u )  = hu with 0 < A  C h l  or f (u )  = puq with p > 0 and 

u + + m  

(2.64) 

u-cm 

l < q < 3 ) .  

Proof of Corollary 2.2. Again we use Theorem 2.1 with Lemma 2.1. We 
have 

f(x, u) 2 pu,yI(u) =f(u) for a.e. x E w, and for all u 2 0, 

where I is either [0, A] or [A, +a). Thus we obtain: 
either 

or 

(2.652) F ( u ) = & ( u 2 - A 2 )  for u ZA.  

VERIFICATION OF (2.44): In case (2.651) holds we have, for E small, 

as E + 0. 
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In case (2.652) holds we have, for some positive constant B and E small, 

as E + 0. 

A CURIOUS EXAMPLE. Let g be a smooth function which is positive on the 
interval (1,Z) and zero elsewhere and consider the problem: 

-Au = u 3 + p g ( u )  in R c R 4 ,  

u > o  in 0, 

u = o  on an. 

THEOREM 2.3. For p large there is a solution, while for p > 0 and small and 
R strictly starshaped, there is none. 

Proof: The proof of existence for p large is similar to the proof of Corollary 
2.4 below and will be omitted. We shall simply show that there is no solution 
for p small and R starshaped about the origin. Indeed, if u is a solution, then, 
by Pohozaev’s identity (1.3) (c will denote various positive constants), 

2 

p I 4 G ( u ) - u g ( u ) = $ I ( x  .v)($) 

where 

[ u ] ~ , ~  =sup A [meas {u >A}]””  
A >O 

which is equivalent to the L”-weak norm. 
The last inequality follows from the fact that 

and the fact that Ix E Lz-weak. In particular, 

[ u ] : , ~  z meas {u > I}. 
On the other hand, since g has support in (1,2), 

4 G ( u ) - u g ( u ) 5  C meas {u > 1). 
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If meas {u > 1) = 0, then u would be a solution of Au + u = 0, which is impossible. 
Thus it follows that 

p 2po(W. 

2.5. The case n = 3. The case n = 3 is rather delicate and we have two 

For the first result we assume that 
different results, depending upon the behavior of f(x, u )  as u + +a. 

(2.66) f ( x ,  u ) Z O  for a.e. x E W ,  and for all u 20 

lim f(x, u ) / u 3  = +a uniformly as x E w ,  
u + + m  

(2.67) 

where w is some nonempty open subset of a. 
COROLLARY 2.3. Assume that (2.2)-(2.6), (2.66), (2.67) hold. Then problem 

(2.1) possesses a solution. 

EXAMPLE 2.3. All the assumptions of Corollary 2.3 are satisfied if f ( x ,  u )  = 
f ( u ) ,  where f ( u )  is a C’ function on [0, +a) such that 

(2.68) 
f ( O ) = O ,  f ( u ) Z O  for all u 2 0 ,  f’(0)<Al, 

lim f ( u ) / u 5  = 0, lim f ( u > / u 3  = +a, 
U - r + C C  U‘+CC 

(for instance we may take f ( u )  = pu“ with p > 0 and 3 < q  < 5) .  

Proof of Corollary 2.3: Once more we apply Theorem 2.1 together with 
Lemma 2.1. We shall verify (2.44). We set f(u)=infx.,f(x,u), so that 
l imu-+mf(u ) /~3  = +a. Therefore we have 

for all 1.1 > O  there is an A > O  such that F ( u ) 2 p 4  for all u Z A .  

It follows that, for some constant B > 0 and E small, 

Hence we obtain 

for all p > 0; this implies (2.44). 
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We discuss now a second type of result. It is convenient to introduce a 
parameter p > 0 and to consider the problem 

-Au = u 5  + a ( x ) u  + p g ( x ,  u )  on R, 
(2.69) u > o  on n, 

u = o  on an. 
We shall assume that 

g(x, u ) 2 0  for a.e. x ~w and for all u 20, 
(2.70) 

g(x, u)>O for a.e. x ~w and for all u €1, 

where w (respectively I )  is some nonempty open subset of R (respectively 
(0, +a)). 

COROLLARY 2.4. Assume that (2.3)-(2.6) and (2.70) hold. Then there is 
some po Z 0 such that problem (2.69) is solvable for each p 2 po. 

EXAMPLE 2.4. Corollary 2.4 applies to the problem 

- A u = u s + p u q  on R with l < q S 3 ,  

(2.71) u > o  on R, 

u = o  on an. 
It says that there is some p~ (which depends on q and n) such that problem 
(2.71) is solvable for each p 2po.  

Remark 2.3. 

(a) If q = 3,  there is some po>O such that 

Numerical computations due to 0. Bristeau (at INRIA) con- 
cerning the problem (2.71) when R is a ball suggest that the following holds: 

(i) for p 7 p 0  there is a unique solution of (2.71), 
(ii) for p S p 0  there is no solution of (2.71). 

(b) If 1 <q < 3, there is some po>O such that 
( i )  for p >po  there are two solutions of (2.71), 

(ii) for p = po there is a unique solution of (2.71), 
(iii) for p < p o  there is no solution of (2.71). 

Here is a related result in R3. 

THEOREM 2.4. Let R be strictly starshaped about the origin; in R, u is a 
solution of (2.71) with 1 <q 5 3 .  Then 

I.L Zpo(q, n,>o. 
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Proof: We carry out the proof only for the case q =3-  if q < 3 ,  the 
argument is a bit simpler. By Pohozaev’s identity (1.3), 

From the equation, we also have IAu I 2 u 5  and hence 

Using the interpolation inequality: 

and combining with the previous inequalities we find 

and the claim follows. 

Proof of Corollary 2.4: We use again Theorem 2.1. But here we shall verify 
condition (2.8), directly, without invoking Lemma 2.1. We fix u o ( x )  = ~ $ ( x ) \ x l - ~  
(provided 0 E o) with 0 < k < $, 4 E 9+(0), 4(0 )  = 1 and 11~0116 = 1. We have 

*,( tuo)  =;At2- - ibb-p  I G(x, tuo), 

where A = J {(Vuolz - auX}. 
We claim that 

(2.72) lim sup 9, (ru0)  = 0, 
P-+m ,ZO 

and therefore condition (2.8) is satisfied when p is large enough. First note that 
limt++m Y,(tuo) = -a and thus suprao 9 , ( t u o )  is achieved at some t ,  for which 
we have 

I 5 (2.73) t , A - t , - p  six, t , ~ o ) ~ o = O  
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and therefore tF SA”4. It follows that 

lim tp  = 0 (2.74) 

(if not we could find some sequence tF, + I > 0 with pi + 00, and by (2.73) we 
would have f g(x ,  vo)uo = 0-a contradiction with (2.70) and the choice of vo) .  

sup qF (m0) 5 $At: - g t F  

r++m 

Finally we observe that 
1 6  

I 2 0  

and we deduce (2.72) from (2.74). 

2.6. Existence of positive solutions for -Au = A(1+  u)’ on a, u = 0 on an, 
where p = (n + 2)/(n - 2) and A > 0. We conclude with another application 
answering a question mentioned to us by P. Rabinowitz. Let c R”, n 2 3 ,  be 
a bounded domain. We consider the following problem: 

- A u = A ( ~ + u ) ~  on a, 
(2.75) u >o on n, 

u = o  on an, 
where p = (n + 2) / (n  - 2) and A > 0 is a constant. 

COROLLARY 2.5. There is a constant i > 0 such that for every A E (0 ,h)  
there exist at least two solutions of (2.75); there is a unique solution of (2.75) 
when A = i and no solution for A > 1. 

Proof: It is known (see J. Keener and H. Keller [17] and M. Crandall and 

(a) for every A E (0,i) there is a minimal solution u of (2.75) with the 
P. Rabinowitz [ 113) that there is a 1 satisfying: 

property that 

(2.76) the least eigenvalue of -A-Ap(1 +y(x))’-l is positive, 

(b) for A = I\ there is a unique solution of (2.75), 
(c) for A > i there is no  solution of (2.75). 

In fact, for this result, no restriction on p > 1 is needed. 
We look for a second solution u of (2.75) of the form 

u = y + v  

with v > O  on n. Thus we have 

-Av = h ( l + g + v ) P - A ( l + g ) P  on a, 
v > o  on a, 
v = o  on an. 
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In other words, we have to find u such that 

- A u = h u P + h ( x , ~ )  on R, 
u > o  on R, 

u = o  on an, 
with h ( x ,  v) = A (1 + g ( x )  + u)’ - A  (1 + g (x ) ) ’  - huP.  Finally, by stretching, we 
are reduced to solving 

- A w  = w ” + f ( x , w )  on R, 

(2.77) w > o  on R, 

w = o  on aR, 

with f ( x ,  w )  = ( l /k)h(x,  k w )  and hkP- ’  = 1. 
Clearly, f ( x ,  w )  satisfies the assumptions (2.2)-(2.5) with a (x) = 

Ap(1 + u ( x ) ) ” - ’  and (2 .6)  holds in view of (2.76). We examine now separately 
the cases n 2 5, n = 4, and n = 3. 

( i )  Case n 2 5 .  Since g E L“(R), there is some p > 0 such that 

(2.78) f ( x , w ) z p  forall X E R ,  forall W E [ I , ~ ] . ’  

Therefore we may use Corollary 2.1 and obtain a solution of (2.77). 

(ii) Case n = 4 ( p  = 3). Here we have 

h ( x ,  u )  = 3h (1  + g ( x ) ) u * +  3h (1 + ~ ( x ) ) ~ Y  

and so 

f ( x ,  w )  2 3Aw for all x E Q, and for all w 2 0. 

We use now Corollary 2.2 and obtain a solution on(2.77). 

(iii) Case n = 3 ( p  = 5) .  Here we have 

h ( x ,  u )  = 5h (1 + g ( x ) ) u 4  + 10A (1  + g ( x ) ) ~ u ~  + 1 O A  (1 + g ( x ) ) ~ u ’  

+ 5 A  (1  + ~ ( x ) ) ~ u  

and so 

f ( x ,  w )  2 5h 1 ’4w4 for all x E a, and for all w 2 0. 
f’ 

We may use Corollary 2.3 and obtain a solution of (2.77). 

* Note that since p > 1 we have (a + b ) p  - a p  - b P  > 0  for all a > 0, and for all b > 0; we deduce 
(2.78) from a standard continuity and compactness argument. 
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Remark 2.4. When p < (n + 2)/(n - 2) a result similar to Corollary 2.5 has 
been proved by M. Crandall and P. Rabinowitz [ 111. When 1 < p  5 (n + 2)/(n - 2) 
and fl is a ball, it is known that (2.75) has exactly two solutions for A <I (see 
D. Joseph and T. Lundgren [15]). 

Appendix 

and the 
expansion in E of subsections 1.1 and 1.2, one sees that (1.53) cannot hold for 
q = n / (n  -2). However, E. Lieb, by a quite different approach, recently derived 
an improved version, in which IIuII, is replaced by [ K ] , , / ( , - ~ ) , ~ ,  and derived even 
more general forms. 

2 l -n/Z We shall prove inequality (1.53). Using u = ~ ( x ) ( E  +IxI ) 

Proof of (1.53): By symmetrization we may assume that 0 is a ball. Let 

Inequality (1.53) asserts that $A = S for some positive A =A,.  Suppose not; i.e., 
suppose that 

$A < S  for all A >o. 
As in Lemma 1.2, it follows that gA is achieved by some u. After stretching we 
obtain a solution of 

u > o  

u = o  

in fl, 

on afl. 

By Pohozaev's identity (1.3), we find 

2 c[ul:/("-*Lw z CllUII:. 
Thus A ZAo> O-a contradiction. 
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