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Abstract

A new and simpler proof is given of the result of P. Rabinowitz for nontrivial time periodic
solutions of a vibrating string equation u, —u,, + g{u) =0 and Dirichlet boundary conditions on a
finite interval. We assume essentially that g is nondecreasing, and g(u)/u—> as |u|—o, The
proof uses a modified form (PS), of the Palais-Smale condition (PS).

0. Introduction

Let g : R— R be a continuous nondecreasing function such that g(0) = 0. Set

t
G(t)= L g(s) ds. We seek a nontrivial solution of the equation
(1) Au+g(u)Eutt_uxx+g(u)=0, 0<x<7r, teRa
under the boundary conditions
(2) u(0, t)=u(m, t)=0
and periodicity condition

3 ulx, t+2m=ulxt).
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We assume
(4) tim 84— oo
fthree T
(5) there exist constants a >0 and C such that

Itg ()- Gz alg()|-C forall 1.

Our purpose is to provide a new proof of the following theorem which is
essentially due to P. Rabinowitz [9].

THEOREM 1. There exists a nontrivial (weak) solution ue L™ of (1), (2), (3).

Remarks. 1. We show in fact that there exists a nontrivial solution with
any given time period T which is a rational multiple of 7. By a nontrivial
solution we mean that g(u(x,t))#0 on a set (x,t) of positive measure; in
particular, u(x, t) #0 on that set. N(A) and R(A) will denote the kernel and
range of A.

2. Our proof relies on an elementary but useful variational principle: the
“mountain pass” theorem of Ambrosetti and Rabinowitz [1]. Our approach
was stimulated by the paper of I. Ekeland [6] and especially by his use of a
“duality” argument in conjunction with the mountain pass theorem. The main
observation is that problem (1), (2), (3) can be formulated as a variational
problem in R(A) “ignoring” the component in N(A). The component of u in
N(A)—which is usually the most difficult to control—appears here as a
“Lagrange multiplier”.

3. We have slightly weakened the assumptions of P. Rabinowitz [9]. He
also assumes that lim,_,(g(t)/t)=0; or, more generally, he solves
Au+au+g(u)=0 with a 20 and g nondecreasing with lim,_,, (g(¢)/t) =0 (see
Theorem 5.13 in [9]). In place of (4), (5) he assumes that there exist 8 [0, 3)
and C such that

GH=6tg(t) for |t=c,

which is a slightly stronger assumption than (4), (5).

4. In case g is C” and strictly increasing, it was shown in [4] and [9] that
any solution is in C~,

In order to make the proof more transparent we start with the case where
g(u)=|ulP"2 u, p>2, which is especially easy, and prove the existence of a
nontrivial 27r-periodic solution.
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1. The Case g(u)=|ul>?u,p>2

Set Q=(0, 7)x (0, 2m).
The kernel N of the operator Au=u,—u,, acting on functions in L!
satisfying (2), (3) consists of functions of the form

2w
N= {p(t+ x)~p(t—x); p is 2w-periodic, pe LL.(R) and J. p= 0}

0

(N is closed in LY).
Recall that given fe L'()) such that I fé=0 for all pe NNL™, there
(9]
exists a unique function ue C()) such that Au=f and J u¢p =0 for all
. Q2

$eN.
In fact an explicit formula for u is given by Lovicarova {7]:

(6) u(x, t)=(x, )+ p(t+x)—p(t—x),
where
_ 1 T t—x+& (’77“ x)
v =3 | de[ﬂ‘g fig 7 dr+ T
c =% Lﬂdé'[::f (& 7)dr (c is a constant) ,

p(y) 22—1‘ Lﬂ[ll/(& y—s)—ui(s, y+s)]ds.
T

We set u=Kf(=A"'f). We list some properties of K which are well known
or easily verified:

7 IKf - = C Il

®) [ ®pe=] o) toran fg,
(¢} )

(©) |Kflco- = Clfle with a=1-1/q.

In particular K is a compact selfadjoint operator in {fe L?; J fé =0 for all

¢ NN L™, its eigenvalues are 1/(j>—k?), j=1,2,3,---,and k=0,1,2,-- -,
i# k.
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Consider the space (herel/p+1/p'=1)
E= {veL"'(Q); J- v =0 forall ¢eNﬂL"}
(e}

provided with the L? norm. It follows from (9) that
9N K:E—LP" is compact .

On E we define
1 1 .
F(v)=—I (Kv)v+—,J o™ .
2 g P ‘o
It is clear that F is C! on E; in fact,
(F'(0), Op+p = J (Kv)§+J |vfP"2v¢ forall v-and {cE.
Q (93

Using the Hahn-Banach theorem we may write
(10) Kv+joP2v=w+y
with we L, ||wl. =|F'(0)llg», xeNNLP.

MOUNTAIN Pass Tueorem (cf. [1]). Assume F satisfies the Palais—Smale
condition:

(PS) Whenever a sequence {v;} in E satisfies
|F(v,)|=M and F'(v)—0 in E*,
there exists a subsequence of v; which converges in E.
Assume also:

(11) there are constants r>0 and p>0 such that F(v)Zp
for every ve E with |jofj=r;

(12) F(0)<p and F(v,) <p for some vy€ E with |Jv||>r.

Then c = inf, . max, ., F(V)Z p is a critical value. Here P denotes the class of
all paths vy joining 0 to v,.
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VERIFICATION OF (PS). We write

Ky +ylP 2 = w; + x

with
w,eLP, lw;ll.- —0, x;eNNL®?.
We have
1 1 J 1 1
5: L (Kv)y, +§ L |Uj|p =§ “ﬂ Wiy; é”i““’j”u””f Lo s
1 1 ,
li J’n (Kv]-)v,-+? L ly, P |=M.
Therefore,

(G3)] tor =p 45 Dol s

and so v; remains bounded in L”. We extract a subsequence—still denoted by
v,—such that v; converges weakly to v in E. By the convexity of the function
|tl” we have

1

1 , ,
= |of? —?lvfl" zlyP?y(v-1v)
=(wj+x—Ky)v—v,).

Thus
1 A | ,

(13) = | -5 lulP'z| (w—Kv)v-v).
P Ja P Ja )

It follows from (9’) that the right-hand side of (13) goes to zero, and thus
tim [|o;l- =flolle .

Hence v;—v strongly in L7
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VERIFICATION OF (11). Note that, by (7),
IR I ST
F(v)z —Cllolii: o [olf»z~-C Ilvllu'+; flollf-

and the conclusion follows immediately since p’<2.

VERIFICATION OF (12). Simply choose v, of the form v, = av,, where v, is

any element in E such that J’ (Kvy)v; <0 and a 1s large enough.
Q

We now deduce from the mountain pass theorem that there exists v e E,
v# 0, such that F'(v)=0. Thus Kv+|v[? 2v=x for some x€ NNLF. Letting
u=yx—Kv we find

(14) Au+v=0,
(15) v=|ufPu=g(u).
Finally, we show that uc L™()). Indeed we have

x(x )=p(t+x)—p(t—x),

where

a

1
p(0 =5 [ Txtx 1= xCx 1+ )] de
2 by
and pe L?(0,2w) since x € LP(Q)). Since ve E, we have
(16) J."[v(x, t—x)—o(x, t+x)]dx=0 ae.t.
4]

Set M =|Kuv|.~; then
-M+pt+x)—pit—x)=ulx, )=M+p{t+x)—p(t—x)
and so

g(—M+p(t+x)—pt—x)N=vix,)=gM+p(t+x)—p(t—x)).
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It follows easily from (16) that
2ar
J’ g(=M+p(t)—p(s)) ds =0 ae.t
Q .
and
27
j g(M+p(t)—p(s)) ds =0 a.e. t
0

and consequently p e L*(0, 27r).

Remark. Instead of using the “mountain pass” theorem one can give a
still more elementary argument. One simply minimizes I (Kv)v on the set
{ve E;||v[l,»=1}. The minimum is achieved at some v,¢ Eﬂwith llvoll.» =1 and
j (Kvo)vo <0. Clearly, we have Kvy+ A|vg|? 21, = x for some constant A >0
Q

and some x € NN LP. Then v = av, satisfies Kv+|v|""2v e N provided « is an
appropriate constant. Note that this proof works as well for 1<p<2.
Unfortunately it relies heavily on the fact that g(u) is homogenous.

2. The Case of a General Function g

Assume first that g is strictly increasing. Set h =g ! and
1
H(t)= J h(s) ds = G*(1) .
V]

(G* is the conjugate convex function of G.) Given k>0 (k will be fixed,

large, later) we set
h(k) for =k,
hk(t)={h(t) for |f|=k,
t

h(=k) for =—k.
Set Hk(t)=I h.(s) ds. By (4) and (5) we have
0

H(s) _
2

17 lim h—(s—)=0, lim

|s|—>0 S |s|—>00 S

0,

(18) H(s)-3sh{(s)zals|-c forall s.
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(Recall Young’s equality tg(t) = G(t)+ H(g(1)) for all t.) It follows easily that
(19) H, (s)—3sh(s)Z als|-C for all s,

provided k = k,, where k, is large enough so that h(ky)=2q, |h(—ko)|=2a.
Let T=2mw/n, where n is a large integer to be chosen later. We shall seek a
solution of (1), (2), and

(20) ulx, t+Ty=ulxt}.

The kernel N of the operator Au = u, —u,, acting on functions satisfying
(2) and (20) consists of functions of the form

T
N= {p(t+ x)—p(t—x); p is T-periodic, p € Lj, (R) and I p= 0}.

0

Set Q=(0, m)x(0, T). Given a function feLQ) such that J fo=0 for
_ 2

all ¢ e NN L™, there exists a unique function uc C(Q) such that Au=f and

qub:O, ¢ eN. In fact, u is given by the same expression as in Section 1

(formula (6)). Set u= Kf. We shall work in the Banach space
E={v€L1(Q);J vp=0 for all cf)GNﬁL‘”},
)

provided with the L' norm.
We list some properties of K which are easy to check:

C
(21) KAl é? 1Al forall feE
(C independent of T),

22) | (Kf>g=[n f(kg) forall f gcE,
O

(23) [Kfllcos@n =Crlfls  forall feE, a=1-1/.

In particular, K is a compact selfadjoint operator in ENL?, its eigenvalues
are 1/(j?—n%k?, j=1,2,3,--- and k=0,1,2,- -, j# nk.
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In addition we shall use the following

LemMma 1. We have

(24) jﬂ (KNfz 2| forall fcE.

Proof: Recall that j (Kf)f=J Wf, where  is defined in (6). Set
Q Q

n() = L f(¢, ) dr. Noting that

[\ e ar= [ | no remaincer

t+x—&

([2(¢£ — x)/T] denotes the integer part of 2(¢§—x)/T), we may write

2(6-%) L
2J; n(¢)dé+c’'—+R(x, 1)

={(x)+R(x, 1),

Ylx, t)=

where '
1
'=§I —gn(é) d¢
and
IR =cn = 2fllrcn -
Hence
I Yf= rg(x)n(x) dx + J' Rfdx dt
] (] (93
= [ s ax-21e
But

L=, {O)=Lm=0
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and so
[“on=1[wr=o0.
] 0
On the space E we define the function

Fk(v):-%j (KU)U'*'J’ Hk(v)
Q) (9

and we shall now apply to F, the following theorem—which is a variant of
the. mountain pass theorem. We first introduce a modified form of (PS).
Assume F is a Gateaux differentiable function on a Banach space E and let
c €eR. We say that F satisfies condition (PS). provided:

Whenever a sequence {y;} in E is such that F(v;)—c¢ and

(PS). F'(v;)—0 in E*, then c is a critical value .

Note the difference from (PS) on page 670.

THEOREM 2. Assume F is Gateaux differentiable and F': E— E* is con-
tinuous from the strong topology of E into the weak™ topology of E*. Assume

there exist a neighborhood U of 0 and a constant p >0 such

(25) that F(v)Zp for every v in the boundary of U,

(26) F)<p and F(vy)<p for some vo¢ U.

Assume (PS). where ¢ = inf max F(v)Zp and P denotes the class of paths

, . pe® veP
joining 0 to v,.

Conclusion: ¢ is a critical value.

The proof of Theorem 2—which is an easy modification of a well-known
argument—is sketched in the Appendix.
Since H, € C*'(R), it is clear that F, is Gateaux differentiable and that

(Fi(v), {)E-,E=J‘ (Kv)§+J‘ﬂ h(v)l forall veE and (€E.
(¢}

For fixed { € E, the mapping v—(F.(v), {) is obviously continuous; note that
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in general F, is not C' on E. Using the Hahn-Banach theorem we may write
27) Kv+h (v)=w+y

with we L™, ||w|j.-=|Fi(v)|g« and xe NNL"
We shall now verify the assumptions of Theorem 2 for F, provided k is
sufficiently large.

VERIFICATION OF (25). We may take p=% and U={veE;|v|..<%}. In-
deed, by Young’s inequality we have v = H, (v) + G, (1), where G, denotes
the conjugate convex function of H, so that G, (t) = G(t) for te[g(—k), g(k)].
Thus

lo|= H, (v)+ G()+ G(-1),

provided k is chosen large enough (|g(+k)|=1). Hence, if v lies on the
boundary of U we have ||lv||,»=3% and

ol = [ HL)+ G0+ G o).

On the other hand, by (24),
F (v)z—lolz: + vl —(G(1) + G(-1)) |Q| =3
when |[v|l.: =3 and the period T is so small that (G(1)+ G(-1))nT=3.

VERIFICATION OF (26). In fact we shall find a v, independent of k such

that F,(v,) =0 and J H,(vy) =% for all k large enough. Indeed fix v, e ENL”
(%)

such that J’ {Kv,)v, <0 {choose for example for v, an eigenfunction of K
(9]
corresponding to a negative eigenvalue of K). Assume |lv,,-=1. Next, fix

L (Ko,

some constant C. Set v,= av, so that

e >0 with e<l . By (17) we have, H(s)=<es*>+C, for all s, for

Fk(vo)=%azj0 (Kvy)vy + L H, (av,)

iA

%azL (KU1)01+L H(av,)

A

az[e +%j (Kvl)v1]+ CclQ|=0,
Q
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provided a is large enough. By further increasing a we may assume that
llavll_:>1. Finally we assume that k =k, =|v|l.~ and then H,(ve) = H(vo).
In order to check (PS). we shall use the following

LemMma 2. Given M >0, there exist constants k,, and Cy, such that, for all
k=ky, the set S, ={veE;F(v)=M and |Fi.(v)|ls+=«a} is a bounded set in
L= and its norm is less than Gy (a occurs in (5)).

Proof: Let veS,; we have
(28) Kv+h (v)=w+y

with ||w|;-=a and x€ NNL~. Thus

—1

2 =sa “U“L‘

%L (Kv)v ‘I—%J‘n hy (v)v

JW‘U
Q

and
%J (K‘D)D+J H (v)=M.
(9] (9]

Consequently,

| )= 301 = M+ Sl

(¢}
and by (19)

ool =M+ ClQ|.

Hence
(29) ol = Cr,

where, in what follows, C,,; denote various constants depending only on M.
Set

(30) u=yx—-Kv
so that by (28) we have

(31 h(v)=w+u.
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Note that
k if s=k,
glh(s)=m(s)=q s if [s|=k,
—~k if s=-k.
Therefore, by (31), we have
(32) n(v)=glw+u).
On the other hand, since v e E, we have
(33) J’ [v(x, t—x)—v(x, t+x)]dx =0 for a.e.t
0

and since x€ NNL” we may write

x(x, )=p(t+x)—p(t—x)

679

T
for some pe L™ which is T-periodic and such that J; p=0. It follows from

(28), (29), and (17) that
(34) lIxlle: = Gy

and therefore

(35) ”P”Ll(o,'r) =Cy-
Next we estimate ||pl|;- using the same device as in [2] (see also [4]).
Set
[ = ess sup p.
©.T
We have

wrtu=w—-Kvo+y

and since ||w — Kovl|;-= C,, it follows from (32) that

g(=Cy+pt+x)—pt—x))=7.(v(x, 1)) =g(Cyy +p(t+x)—p(t—x)) .
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In particular,
(36) g(—Cp+p(t) = pt—2x)) = 7 (vx, t—x)) .
Choosing t, such that p(t;)=Zu —1 we see that

g(=Cy -1 =n(v(x, ty—x)) for ae.x.
If we take k ={g(—Cy—1)] we find that

vix, ta—x)=—k for a.e. x,
and in particular
T (0(x, to—x)) =v(x, t,—x) .

Therefore, by (36),

g(—Cp +p(te) —p(ts—2x)) = v(x, ty— x) for a.e.x.
Similarly if we choose k = g(C,,+1) we obtain
g(Cu+plto+2x)—plte)) = v(x, tp+x)  for ae.x.

We deduce now from (33) that

| “T8(-Cuu+ pt) = p(to=26)~ 8(Cus + Ui+ 20) = p(10)] dx S0,
0

i.e.,
(37) [ &G ot -p(s) ds =0,
(¢]

where g(u)=g(u)—g(—u). Let
S={se(0,27); p(s)=3iu} and 3¢ its complement.
It follows from {(35) that

2C
meas 3= and measE‘.Z_(Zw-&>.
uw
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Splitting the integral in (37) on 3 and 3¢ we obtain
Qm—QCW/r)E(—Cy~1+3p) =278(Cpy +1)

which provides a bound for g in terms of C,, (assuming k=
max {|g(~Cy — 1), g(Cy, + 1)}). We estimate in the same way ess infq 1) p.
Thus we have proved that ||x|.-= C,, and also (by (30)) {jull.-= C\,. Finally,
we derive from (32) the bound |[v|l;-= C,, provided k = ky, (ky, sufficiently
large).

VERIFICATION OF (PS).. Let

¢, = inf max F (v)
Pe® veP

(P denotes the class of paths joining 0 to vy—which we recall, is.independent
of k). In particular,

¢, = max Fk(svo)éj H(v,) .
se(0,1] (9}

Set M=J H(vy)+1. Let v; be a sequence in E such that F,(v;)—c¢, and

Q
Fi(v;)—0 in E*. We wish to prove that ¢, is a critical value of F,. We may
always assume that

Fk(vj) =M and “F‘I‘(Ul)ng 84
and so, by Lemma 2, the v; are uniformly bounded in L* provided k Z k.
Extracting a subsequence we may assume that v;—v weakly in w*L*® and

also Ky,—Kv in () (by (23)). We use now the same monotonicity device
as in [3], [4]. Let {€ E; we have

[ e -ni0)w-0=0.
Q

On the other hand, we know that
Ky +h (v)=w;+x

with ||w;]l.-—0 and x; € NNL=. It follows that

[ =Ko - m(0)w- 020
0
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and in the limit
J (-Kv—h (O))(v—8)=0 forall (e€E.
Q
Choosing {=v+1n, ne E, t>0, we conclude easily that
J (Kv+h ()m=0 forall neE,
Q
i.e., F.(v)=0. Finally we have, by the convexity of H,,
[ -z hE@)e-u)
0 Q
= j (w; = Ky)(v—v;) .
Q
Since the right-hand side tends to 0 we conclude that
ﬁj Hk(v,-)_S_J H,(v),
Q Q
and by lower semicontinuity, we have

_1_1_111L H.(v)=z L H, (v).

Thus I Hk(vj)—>‘[ H, (v) and so F (v;)— F, (v). It follows that ¢, is a critical
Q Q
value.

CONCLUSION OF THE PROOF OF THEOREM 1: By Theorem 2 we know that for
each k = k, there exists v, € ENL”" such that

Fl’((vk)zo and Fk(vk):ck_z..‘llg.

On the other hand, ckéjH(vo) and therefore, by LLemma 2, v, remains

bounded in L*. Choosing k large enough we have

KUk +h(vk)= Kvk +hk(vk)= Xk ENan
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Letting u = x, — Kv, we obtain a nontrivial solution of Au+ g(u)=0. Finally,
in the case where g is not strictly monotone we replace g(u) by g.(u)=
g(u)+eu and then pass to the limit as £ —>0 using the same technique as
above. We omit the details.

Appendix

Proof of Theorem 2

The proof follows a well-known argument, as in P. Rabinowitz [8]. (K. C.
Chang [5] has recently proved a very general result of this kind for functions F
which are merely locally Lipschitz in a reflexive Banach space.) Before describ-
ing the proof of the theorem we observe first that F is locally Lipschitz, since
F' is locally bounded by the uniform boundedness principle.

Suppose ¢ is not a critical value. By condition (PS)., there exist £, b>0
such that |F'(x)|2b in E={xcE;c-é=F(x)=Sc+£}. We may take
£ <min (p — F(0), p— F(vy)); then 0 and v, are not in E.

By Lemma 1.6 of [8], on E there is a pseudogradient vector field v for F,
i.e., a locally Lipschitz continuous vector field satisfying

o)l =2|F (x)Il,
(F'(x), v(x))Z[|[F (x)|?,
so that

loxzZIF(x)zb.

Lemma 1.6 of [8] assumes F to be in C' but the proof works exactly the
same under our condition on F. Set E={xeE;c—-is <F(x)<c+1&} and let
0=g(x)=1 be a locally Lipschitz continuous function on E satisfying

_ {1 on E,
§= 0 outside E,

and define the vector field in E:

v(x) in E,

v =4 T

0 outside E.

Clearly, V(x) is locally Lipschitz and ||V(x)||=b~".
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Consider the flow y(t) = y(t, x) defined by

%=V(y), yho=x for xcE.

There is a unique solution y(t)=y(t, x) for 0=t << satisfying
(A1) forallt, y(t,x)=x ifxisnotinFE.

Furthermore we have

(A2) %F(y(t)):@'(y(t)), Viy) = —28(y(D) .

Indeed, y(t+8t)=y(t)+ 8tV (y(1))+ o(8t) and since F is locally Lipschitz

F(y(t+8t)) = F(y(t))+ 8tV(y(t)) + 0(81)
=F(y(t)+ 8t < F'(y(1), V(y(1))>+0(5t)

and the result follows.

Now, by the definition of ¢, there is a path P joining 0 to v, such that
F(x)=c+4& on P. From (Al) and (A2) it follows easily that the path P(4%),
i.e., the points y(4¢, x) for x € P, is also a path joining 0 to v,, and on it we
have F(y)=c—3é—a contradiction.
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