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Abstract 

A new and simpler proof is given of the result of P. Rabinowitz for nontrivial time periodic 
solutions of a vibrating string equation utt - ux, + g(u)  = 0 and Dirichlet boundary conditions on a 
finite interval. We assume essentially that g is nondecreasing, and g(u) /u+m as Iu(+w. The 
proof uses a modified form (PS), of the Palais-Smale condition (PS). 

0. Introduction 

Let g : R-+R be a continuous nondecreasing function such that g(0) = 0. Set 

G(t )  = g(s) ds. We seek a nontrivial solution of the equation 6' 
under the boundary conditions 

(2)  u(0,  t )  = U(T, t) = 0 

and periodicity condition 

( 3 )  u(x, t + 2 7 r ) =  u(x, t ) .  
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We assume 

(4) 

there exist constants LY > O  and C such that 
1 2 tg ( t )  - G ( t )  2 a Ig( t ) l -  C for all t . (5) 

Our purpose is to provide a new proof of the following theorem which is 
essentially due to P. Rabinowitz [9]. 

THEOREM I .  There exists a nontrivial (weak)  solution u E Lm of (l), (2), (3). 

Remarks. 1. We show in fact that there exists a nontrivial solution with 
any given time period T which is a rational multiple of T. By a nontrivial 
solution we mean that g(u(x ,  t ) ) # O  on a set (x, t) of positive measure; in 
particular, u(x, t ) # O  on that set. N(A) and R(A)  will denote the kernel and 
range of A. 

2. Our proof relies on an elementary but useful variational principle: the 
“mountain pass” theorem of Ambrosetti and Rabinowitz [ 11. Our approach 
was stimulated by the paper of I. Ekeland [6] and especially by his use of a 
“duality” argument in conjunction with the mountain pass theorem. The main 
observation is that problem (l), (2), (3) can be formulated as a variational 
problem in R(A)  “ignoring” the component in N ( A ) .  The component of u in 
N(A)-which is usually the most difficult to control-appears here as a 
“Lagrange multiplier”. 

3. We have slightly weakened the assumptions of P. Rabinowitz [9]. He 
also assumes that limt-o ( g ( t ) l t )  = 0; or, more generally, he solves 
Au + au + g ( u )  = 0 with a 2 0 and g nondecreasing with limt-o ( g ( t ) / t )  = 0 (see 
Theorem 5.13 in [9]). In place of (4), (5) he assumes that there exist OE[O,$)  
and C such that 

G(t)SO tg(t)  for J t ( Z c ,  

which is a slightly stronger assumption than (4), ( 5 ) .  
4. In case g is C” and strictly increasing, it was shown in [4] and [9] that 

any solution is in C”. 
In order to make the proof more transparent we start with the case where 

g ( u )  = JuJP-* u, p >2, which is especially easy, and prove the existence of a 
nontrivial 2 7~ -periodic solution. 
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1. The Case g ( u )  = IuIp-2 u, p >2 

Set 1R = (0, r r )  x (0,27r). 
The kernel N of the operator A u =  &t-h acting on functions in L' 

satisfying (2), (3)  consists of functions of the form 

N = p(t + x)- p(t - x); p is 2 ~ p e r i o d i c ,  p E L,',,,(R) and r p  = 01  ( 
(N is closed in L1). 

Recall that given f c L' (0)  such that f4 = 0 for all 4 E N n  L", there 

u 4  = 0 for all 

h 
exists a unique function u E C(a) such that Au = f  and 
+EN. b 

In fact an explicit formula for u is given by Lovicarova [7]: 

where 

( c  is a constant), 

We set u = Kf( =A-'f). We list some properties of K which are well known 
or easily verified: 

In particular K is a compact selfadjoint operator in { f ~  Lz;  f4 = 0 for all 

4 E N n L"); its eigenvalues are l/(j" - k'), j = 1,2,3,  * - * , and k = 0, 1,2, * * - , 
I 

if k.  
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Consider the space (here l / p  + l /p’  = 1) 

v ~ L ~ ’ ( i 2 ) ;  v$=O for all 4 E N n L P  h 
provided with the Lp’ norm. It follows from (9) that 

(9’) K : E --3. Lp is compact . 

On E we define 

1 

P n  
(Kv)v +y IvIp‘ . 

It is clear that F is C’ o n  E ;  in fact, 

(F’(v), f ; ) E * , E  = (Kv)<+ ( z ) ( ~ ’ - ~  v f ;  for all u .and f; E E h I ,  
Using the Hahn-Banach theorem we may write 

MOUNTAIN PASS THEOREM (cf. [l]). Assume F satisfies the Palais-Smale 
condition: 

(PSI 
Whenever a sequence {vi} in E satisfies 

(F(u , ) ISM and F’(vi)-+O in E”, 

there exists a subsequence of ‘ui which converges in E. 

Assume also: 

there are constants r > 0 and p > 0 such that F(v)  2 p 
for every v E E with llvll= r; (11) 

(12) F(0)  < p and F(v,) < p for some v, E E with llvoll > r. 

Then c = infYe9 rnaxuEY F(v) P p is a critical value. Here 9 denotes the class of 
all paths y joining 0 to uo. 



NONLINEAR WAVE EQlJATION 67 1 

VERIFICATION OF (PS). We write 

Kuj + lujlp'-2 uj = wj + xi 

We have 

Therefore, 

and so uj remains bounded in Lp'. We extract a subsequence-still denoted by 
uj-such that uj converges weakly to u in E. By the convexity of the function 

we have 

= (Wi +xi - k'U,)(u - Ui) . 

Thus 

It follows from (9') that the right-hand side of (13) goes to zero, and thus 

- 
lim IlvjllLv~~llullLp~ . 

Hence uj+u  strongly in L ~ ' .  
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VERIFICATION OF (11). Note that, by (7), 

and the conclusion follows immediately since p' < 2. 

VERIFICATION OF (12). 

any element in E such that 

Simply choose uo of the form uo = au,, where u1 is 

(Kul)ul < O  and a is large enough. I, 
We now deduce from the mountain pass theorem that there exists v EE, 

u # 0, such that F'(u) = 0. Thus Kv + IuIp'-2u = x for some ,y E N n Lp. Letting 
u = x - K v  we find 

A u + u = O ,  

v = 1uJp-*u = g ( u )  

Finally, we show that u E L"(i2). Indeed we have 

where 

and p E Lp(O, 2 ~ )  since ,y E Lp(f l ) .  Since v E E, we have 

(16) /:[v(x, t - x ) - u ( x ,  r + x ) ] d x = O  a.e. t .  

Set A4 = \\Ku\IL-; then 

- M +  p(t + x)- p(t - x) s u(x, t ) S M +  p(t+ x ) - p ( t  - x) 

and so 

g ( - M + p ( t + x )  - p ( t - x ) ) S  u(x,  t>s g(M+ p ( t +  x ) - p ( t -  x)) . 
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It follows easily from (16) that 

and 

and consequently p E LW(0,2w) .  

Remark. Instead of using the “mountain pass” theorem one can give a 

still more elementary argument. One simply minimizes (Kv)v on the set 

{ v  E E ;  IlvllL.,S 1). The minimum is achieved at some vo E E with J(volILn~= 1 and 
h 

( K V , ) ~ ,  <O. Clearly, we have Kv, + A JuOIp’--*vo = x for some constant A > 0 

and some x E N n Lp.  Then v = avo satisfies Ku + E N provided a is an 
appropriate constant. Note that this proof works as well for l < p < 2 .  
Unfortunately it relies heavily on the fact that g(u) is homogenous. 

n 

2. The Case of a General Function g 

Assume first that g is strictly increasing. Set h = g-’ and 

h ( s )  ds = G*(t) . 

(G” is the conjugate convex function of G.) Given k > O  ( k  will be fixed, 
large, later) we set 

for t ?  k ,  
for ltlS k, 

h ( - k )  for t 5 - k .  

hk(s) ds. By (4) and (5) we have 
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(Recall Young’s equality t g ( t )  = G(t )+H(g( t ) )  for all t.) It follows easily that 

provided k Z k o ,  where ko  is large enough so that h ( k o ) Z  2a, lh ( -ko) (22a .  
Let T =  2 ~ / n ,  where n is a large integer to be chosen later. We shall seek a 
solution of (l), (2),  and 

(20) u ( x , t + T ) = u ( x , t ) .  

The kernel N of the operator Au = u,, - u, acting on functions satisfying 
(2)  and (20) consists of functions of the form 

N = p ( t  + x) - p ( t  - x); p is T-periodic, p E L;oc (R) and joTp = 0) { 
Set R =  (0, T ) x ( O ,  T ) .  Given a function f~ L’(l2) such that f& = 0 for 

all 4 E N n L”, there exists a unique function u E C(a) such that Au = f and 

u&=O, &EN.  In fact, u is given by the same expression as in Section 1 

Q 
I 
(formula (6) ) .  Set u = Kf. We shall work in the Banach space 

provided with the L’ norm. 
We list some properties of K which are easy to check: 

for all ~ E E  C 
(21) lIKfllL“(n) S T  llfllL’(n) 

(C independent of T) , 

In particular, K is a compact selfadjoint operator in EnL’, its eigenvalues 
are l/(jz- n2k2) ,  j = 1,2, 3,  * and k = 0,1,2,  - - * , j #  nk. 
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In addition we shall use the following 

LEMMA 1. We have 

Proof: Recall that h (Kf)f= $f, where $ is defined in (6). Set 

q (6) = 

n 
T 

f(6, T) d ~ .  Noting that 

t-x+< 1 f(&, 7) dT = r?] q (6) + remainder 
t+x-< 

( [2(5 - x ) / T ]  denotes the integer part of 2(&- x)/T), we may write 

where 

and 

Hence 

But 

67 5 
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and so 
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On the space E we define the function 

and we shall now apply to Fk the following theorem-which is a variant of 
the. mountain pass theorem. We first introduce a modified form of (PS). 
Assume F is a Gateaux differentiable function on a Banach space E and let 
c ER. We say that F satisfies condition (PS), provided: 

Whenever a sequence {u,} in E is such that F(v i )+c  and 
F'(u,)+O in E", then c is a critical value. (ps)c 

Note the difference from (PS) on page 670. 

THEOREM 2. Assume F is Gateaux differentiable and F':E+E* is con- 
tinuous from the strong topology of E into the weak* topology of E*.  Assume 

there exist a neighborhood U of 0 and a constant p > 0  such 
that F ( v )  2 p for every v in the boundary of U ,  (25) 

(26) F(0)  < p and F(uo) < p for some vo y! U .  

Assume (PS), where c = inf maxF(v)Zp and 8 denotes the class of paths 
joining 0 to uo. 

p c 8  U t P  

Conclusion: c is a critical value. 

The proof of Theorem 2-which is an easy modification of a well-known 

Since Hk E C'(R),  it is clear that Fk is Gateaux differentiable and that 
argument-is sketched in the Appendix. 

(F; (u ) ,  &l,E = h (Ku){+ hk(u)c for all u E E and E E .  

For fixed L E  E, the mapping u+(FL(u), 5) is obviously continuous; note that 
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in general Fk is not C1 on E. Using the Hahn-Banach theorem we may write 

(27) K U + h k ( U ) =  W + X  

with w E I.", IIwIIL-= IIFL(u)llE* and x E N n  L". 

sufficiently large. 
We shall now verify the assumptions of Theorem 2 for Fk provided k is 

VERIFICATION OF (25).  We may take p = g  and U = { U E  E ;  ~ ~ u ~ ~ ~ I < ~ } .  In- 
deed, by Young's inequality we have fu SHk(u)  + Gk(*l), where Gk denotes 
the conjugate convex function of Hk so that Gk(t)= G(t) for t ~ [ g ( - k ) ,  g ( k ) ] .  
Thus 

I Hk ( v )  + G( 1) + G(- l), 

provided k is chosen large enough ( / g ( * k ) l Z  1). Hence, if u lies on the 
boundary of U we have l(ul(L~ = $ and 

(Iul(~l(n)s I&(V)+(G(1)+ G(-l)) 101 . 

VERIFICATION OF (26). In fact we shall find a uo independent of k such 

that Fk(uo) I 0 and Hk(u0) Z i for all k large enough. Indeed fix ul E E n L" 

such that h (Kul)vl<O (choose for example for u1 an eigenfunction of K 

corresponding to a negative eigenvalue of K ) .  Assume ( lul l lLz= 1. Next, fix 

e>O with E < $  (Kul)ul . By (17) we have, H ( s ) 5 & s 2 + C ,  for all s, for 

some constant C. Set uo= au, so that 

b 

16 I 



678 H. BREZIS, J.-M. CORON, AND L. NIRENBERG 

provided a is large enough. By further increasing a we may assume that 
llavllLl >+. Finally we assume that k 2 k ,  = (Ivo(IL- and then H k ( U 0 )  = H(u,,). 

In order to check (PS), we shall use the following 

LEMMA 2. Given M >0, there exist constants kM and CM such that, for all 
k 2 kM, the set s k  = { V  E E ;  F k ( U )  S M  and llF;(~)llE* S 0 1 )  is a bounded set in 
L" and its norm is less than C, (a  occurs in ( 5 ) ) .  

Proof: Let v E S k  ; we have 

with \lw\lL-S a and ,y E N fl L". Thus 

and 

Consequently , 

and by (19) 

Hence 

where, in what follows, C, denote various constants depending only on M. 
Set 

so that by (28) we have 
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Note that 

679 

Therefore, by (31), we have 

(32) Tj((21) = g(w + 1.4) 

On the other hand, since u E E, we have 

(33) lom[u(x, t-x)-u(x, t+x)]dx=O for a.e. t 

and since x E N n L" we may write 

for some p EL" which is T-periodic and such that 

(28), (29), and (17) that 

p = 0. It follows from I' 
and therefore 

Next we estimate Ilpllr- using the same device as in [2] (see also [4]). 
Set 

p = ess sup p. 
(0. T )  

We have 

w + u =  W - K V + X  

and since Ilw - Kvlir-5 CM it follows from (32) that 



680 

In particular, 

(36) 

Choosing to such that p ( t o )  I k - 1 we see that 
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g(-C, + p ( t )  - p ( t  - 2 X ) )  d Tk (v(X, r - x ) )  , 

g ( - C , - l ) S T k ( u ( x ,  t o - x ) )  for a.e.x 

If we take k 2 l g ( - C ,  - 1)1 we find that 

z1 ( x ,  to - x )  2 - k for a.e. x , 

and in particular 

T ~ ( u ( x ,  t , - x ) ) S u ( x ,  t o - x ) .  

Therefore, by (36), 

g (- C, + p ( to) - p ( to - 2 x ) )  5 v ( x ,  to - x )  for a.e. x . 

Similarly if we choose k 2 g(C, f 1) we obtain 

g ( C , + p ( r o + 2 x ) - p ( r o ) ) ~ u ( x ,  t o + x )  for a.e. x .  

We deduce now from (33) that 

i.e., 

where g ( u )  = g(u ) -  g(-u) .  Let 

C = { s  E (0,27r); p ( s )  S&} and c' its complement. 

It follows from (35) that 
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Splitting the integral in (37) on 2 and 2' we obtain 

1) 

which provides a bound for c~ in terms of C, (assuming k S  
max {lg(-C, - 1)1, g(C, + 1))). We estimate in the same way ess info,,, p. 
Thus we have proved that \ I x \ \ ~ - S C ~  and also (by (30)) l\u\lL-s5C,. Finally, 
we derive from (32) the bound l\ullL-S CM provided k L k ,  ( k ,  sufficiently 
large). 

VERIFICATION OF (PS),. Let 

ck = inf max Fk ( u )  
P E P  " E P  

(9 denotes the class of paths joining 0 to uo---which we recall, kindependent 
of k ) .  In particular, 

ck 5 max Fk(sz)O) s h ~ ( u , )  . 

Set M = I n  H(vo)+l. Let uj be a sequence in E such that Fk(uj)+ck and 

F;(u,)-+O in E*. We wish to prove that c, is a critical value of Fk. We may 
always assume that 

S€CO*11 

and so, by Lemma 2, the vj are uniformly bounded in L" provided k 2 k , .  
Extracting a subsequence we may assume that uj+u weakly in w*L" and 
also Kuj+Kv in C(a) (by (23)).  We use now the same monotonicity device 
as in [3] ,  [4]. Let ~ E E ;  we have 

On the other hand, we know that 

with 11 W ~ I ( ~ - - +  0 and xi E N f l  L". It follows that 
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and in the limit 

(-Ku-h,(LJ)(u-<)ZO for all ~ E E .  In 
Choosing 5 = + tq, q E E, t > 0, we conclude easily that 

(Ku + h k ( U ) ) q  = 0 for all q E E ,  Jn 
i.e., F;(u) = 0. Finally we have, by the convexity of H k ,  

= ( wj - Kv,)( 2, - U; ) . I, 
Since the right-hand side tends to 0 we conclude that 

and by lower semicontinuity, we have 

Thus h H k ( U ; ) +  h H k ( U )  and SO F k ( U , ) + F k ( U ) .  It fOllOWS that ck iS a Critical 

value. 

CONCLUSION OF THE PROOF OF THEOREM 1: By Theorem 2 we know that for 
each k 2 ko there exists Uk E E n L" such that 

On the other hand, c k s  H(u,) and therefore, by Lemma 2, u k  remains 

bounded in L". Choosing k large enough we have 
I 



NONLINEAR WAVE EQUATION 683 

Letting u = x k  - Kuk we obtain a nontrivial solution of Au + g ( u )  = 0. Finally, 
in the case where g is not strictly monotone we replace g(u )  by g E ( u ) =  
g(u)+Eu and then pass to the limit as E-+O using the same technique as 
above. We omit the details. 

Appendix 

Proof of Theorem 2 

The proof follows a well-known argument, as in P. Rabinowitz [8]. (K. C .  
Chang [5]  has recently proved a very general result of this kind for functions F 
which are merely locally Lipschitz in a reflexive Banach space.) Before describ- 
ing the proof of the theorem we observe first that F is locally Lipschitz, since 
F’ is locally bounded by the uniform boundedness principle. 

Suppose c is not a critical value. By condition (PS),, there exist E, b > O  
such that IIF’(x)llZ b in E = {x E E ;  c - F I F(x)  I c_ + E} .  We may take 
E <min ( p - F ( O ) ,  p-F(u,));  then 0 and u,, are not in E. 

By Lemma 1.6 of [8], on E there is a pseudogradient vector field II for F, 
i.e., a locally Lipschitz continuous vector field satisfying 

so that 

Lemma 1.6 of [8] assumes F to be in C1 but the proof works exactly the 
same under our condition on F. Set E = {x E E ;  c - & E  < F ( x )  < c + $ E }  and let 
0 5 g(x) 5 1 be a locally Lipschitz continuous function on E satisfying 

1 o n E ,  
0 outside 8, 

and define the vector field in E :  

(0 outside E 

Clearly, V(x) is locally Lipschitz and IIV(x)(\S b-’. 
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Consider the flow y(t) = y(t, x) defined by 

There is a unique solution y(t)= y(t, x) for O S t < m  satisfying 

Furthermore we have 

Indeed, Y ( t  + st) = Y( t )+  GtV(y(r))+ o(8t)  and since F is locally Lipschitz 

F(y(t+6t))= F(y(t))+GtV(y(r))+o(6t) 

= F(Y(t))+ 6t < F’(y( t ) ) ,  V ( Y ( ~ > >  > +o(W 
and the result follows. 

Now, by the definition of c, there is a path P joining 0 to  u0 such that 
F ( x ) S c + i E  on P. From (Al) and (A2) it follows easily that the path P(4E), 
i.e., the points y(4C, x) for x E P, is also a path joining 0 to  uo, and on it we 
have F( y)  5 c - !E-a contradiction. 
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