Commun. Math. Phys. 70, 181-185 (1979)

Boundary Regularity for Some Nonlinear Elliptic Degenerate Equations*

Haïm Brezis and Pierre-Louis Lions

Department of Mathematics, University of Paris VI, F-75230 Paris, France

Abstract. We consider the nonlinear elliptic degenerate equation

$$-x^{2}\left(\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}}\right) + 2u = f(u) \quad \text{in } \Omega_{a},$$
(1)

where

 $\Omega_a = \{(x, y) \in \mathbb{R}^2, 0 < x < a, |y| < a\}$

for some constant a > 0 and f is a C^{∞} functions on \mathbb{R} such that f(0) = f'(0) = 0. Our main result asserts that: if $u \in C(\overline{\Omega}_a)$ satisfies

$$u(0, y) = 0$$
 for $|y| < a$, (2)

then $x^{-2}u(x, y) \in C^{\infty}(\overline{\Omega}_{a/2})$ and in particular $u \in C^{\infty}(\overline{\Omega}_{a/2})$.

1. Introduction

This paper deals with the question of boundary regularity of solutions of a nonlinear elliptic degenerate equation of the form

 $-x^2 \Delta u + 2u = f(u) \quad \text{in } \Omega_a, \tag{1}$

where

$$\Delta = D_x^2 + D_y^2$$

$$\Omega_a = \{ (x, y) \in \mathbb{R}^2 ; 0 < x < a, |y| < a \}$$

for some constant a > 0, and f is a C^{∞} function on \mathbb{R} such that

$$f(0) = f'(0) = 0.$$
⁽²⁾

^{*} Sponsored by the United States Army under Contract No. DAAG 29-75-C-0024

Our main result is the following:

Theorem 1. Assume $u \in C^{\infty}(\Omega_a) \cap C(\overline{\Omega}_a)$ satisfies (1) and

$$u(0, y) = 0 \quad for \quad |y| < a.$$
 (3)

Then $x^{-2}u(x, y) \in C^{\infty}(\overline{\Omega}_{a/2})$ and in particular $u \in C^{\infty}(\overline{\Omega}_{a/2})$.

Equation (1) occurs in the theory of multimeron solutions to Yang-Mills field equations [2]. More precisely the equation in [2] is:

 $-x^2 \Delta \psi + \psi^3 - \psi = 0$ in Ω_a

together with the boundary conditions:

 $\psi(0, y) = +1$.

If we set $u = \psi \mp 1$ we find

 $-x^{2}\Delta u + (u+1)^{3} - (u+1) = 0$

that is (1) with $f(u) = -u^3 \mp 3u^2$. In [3] it is only proved that ψ is continuous up to the boundary (except at the points where ψ changes sign). Theorem 1 shows that ψ is C^{∞} up to the boundary (except at the points where ψ changes sign).

2. Some Lemmas

The proof relies on some lemmas

Lemma 2. Assume
$$u \in C^2(\Omega_a) \cap C(\overline{\Omega}_a)$$
 satisfies:
 $|-x^2 \Delta u + 2u| \leq \alpha (u^2 + x^4)$ on Ω_a (4)

 $|-x^2 \Delta u + 2u| \leq \alpha (u^2 + x^4)$ on Ω_a

for some constant α , and

u(0, y) = 0 for |y| < a. (5)

Then, there is a constant β such that

 $|u(x, y)| \leq \beta x^2$ on $\Omega_{a/2}$.

Proof of Lemma 2. For b < a set

$$M_b = \sup_{\Omega_b} |u|.$$

Since by (5) $M_b \rightarrow 0$ as $b \rightarrow 0$, we may fix b so small that $\alpha b^2 < 1/2$ (6)

(7) $\alpha M_{b} < 1/400$.

We shall establish that

 $|u(x,0)| \leq Ax^2$ for 0 < x < b, (8)

where

$$A = \operatorname{Max}\left\{\alpha b^{2}, \frac{100M_{b}}{b^{2}}\right\}.$$
(9)

182

Boundary Regularity for Some Nonlinear Elliptic Degenerate Equations

The conclusion of Lemma 2 follows easily. In order to prove (8) we introduce the function

$$v(x, y) = Ax^2 - Bx^4 + Cy^4,$$
(10)

where A is defined by (9),

$$B = \frac{A}{2b^2},\tag{11}$$

$$C = \frac{M_b}{b^4}.$$
(12)

A direct computation shows that

$$-x^2 \varDelta v + 2v \ge \alpha (v^2 + x^4) \quad \text{on } \Omega_b,$$
⁽¹³⁾

$$v(x, \pm b) \ge M_b \quad \text{for} \quad 0 < x < b \,, \tag{14}$$

$$v(b, y) \ge M_b \quad \text{for} \quad 0 < y < a, \tag{15}$$

$$\alpha \sup_{\Omega_b} v \leq 1, \tag{16}$$

$$v \ge 0 \quad \text{on } \Omega_b.$$
 (17)

We now derive, using the maximum principle that

$$u \leq v \quad \text{on } \Omega_b. \tag{18}$$

Indeed by (14) and (15), $u \leq v$ on $\partial \Omega_b$.

Suppose, by contradiction, that (u-v) achieves a positive maximum at $(x_0, y_0) \in \Omega_b$. We would have

 $\Delta(u-v)(x_0,y_0) \leq 0.$

On the other hand, we deduce from (4) and (13) that

 $-x^2 \varDelta (u-v) + 2u - 2v \leq \alpha (u^2 - v^2) \quad \text{on } \Omega_b.$

Therefore

$$2 \leq \alpha [u(x_0, y_0) + v(x_0, y_0)].$$

$$\leq \alpha M_b + 1 \quad [\text{by (10)}]$$

and thus $\alpha M_b \ge 1 - a$ contradiction with (7).

Lemma 3. Under the assumptions of Theorem 1 there exist constant β_k such that

 $|D_y^k u(x, y)| \leq \beta_k x^2$ on $\Omega_{a/2}$,

for all k = 0, 1, 2, ...

Proof of Lemma 3. Since f(0) = 0 we have

 $|f(u)| \leq C|u|$ on Ω_a

and by (1)

 $|\varDelta u| \leq (C+2)\frac{|u|}{x^2} \quad \text{on } \Omega_a.$

It follows from Lemma 2 that $\Delta u \in L^{\infty}(\Omega_{a/2})$. We deduce from the L^p regularity theory (see e.g. [1]) that $u \in C^1(\overline{\Omega}_{a/4})$. In particular $D_y u \in C(\overline{\Omega}_{a/4})$ and

 $D_v u(0, y) = 0$ for |y| < a/4

[since u(0, y) = 0 for |y| < a]. Also, differentiating (1) with respect to y we find

$$-x^2 \Delta(D_v u) + 2(D_v u) = f'(u) D_v u \quad \text{on } \Omega_a.$$

By (2) we have

 $|f'(u)| \leq C|u|$

and from Lemma 2 we see that

 $|f'(u)| \leq C\beta x^2$, on $\Omega_{a/2}$.

Consequently

 $|f'(u)D_{v}u|^{2} \leq C\beta(|D_{v}u|^{2} + x^{4}),$

and Lemma 2 applied to $D_y u$ shows that

 $|D_y u| \leq \beta_1 x^2 \quad \text{on } \Omega_{a/8}.$

The conclusion of Lemma 3 for k=1 follows directly. When $k \ge 2$ we proceed in a similar way, by induction, differentiating (1) k times with respect to y.

Lemma 4. Assume $\varphi \in C^2(]0, a[) \cap C([0, a])$ satisfies

$$-x^2 D_x^2 \varphi(x) + 2\varphi(x) = h(x), \quad 0 < x < a,$$

where $h \in L^{\infty}(0, a)$.

Set $\psi(x) = x^{-2}\varphi(x)$, then

$$D_x \psi(x) = -x^{-4} \int_0^x h(t) dt, \quad 0 < x < a.$$

Proof. Indeed we necessarily have

$$\varphi(x) = \frac{C_1}{x} + C_2 x^2 + x^2 \int_x^a \frac{ds}{s^4} \int_0^s h(t) dt$$

for some constants C_1 and C_2 . Since the last term remains bounded as $x \rightarrow 0$ we must take $C_1 = 0$, and the conclusion follows.

3. Proof of Theorem 1

We have by (1)

$$-x^2 D_x^2 u + 2u = x^2 D_y^2 u + f(u).$$

184

Boundary Regularity for Some Nonlinear Elliptic Degenerate Equations

Let $v(x, y) = x^{-2}u(x, y)$. We deduce from Lemma 4 that

$$D_x v(x, y) = -x^{-4} \int_0^x \left[t^2 D_y^2 u(t, y) + f(u(t, y)) \right] dt \,.$$
⁽¹⁹⁾

Set $g(u) = u^{-2} f(u)$ so that by (2), g is a C^{∞} function on \mathbb{R} . Changing the variable t in (19) into $s = \frac{t}{x}$ we find

$$D_x v(x, y) = -x \int_0^1 \left[D_y^2 v(sx, y) + v^2(sx, y) g(s^2 x^2 v(sx, y)) \right] s^4 ds.$$
(20)

It follows from Lemma 3 (applied with k=0 and k=2) that

$$|D_x v(x, y)| \le C|x| \quad \text{on } \Omega_{a/2}.$$
(21)

Next, if we differentiate (2) k times with respect to y we obtain, using Lemma 3, that

$$|D_x D_y^k v(x, y)| \le C_k \quad \text{on } \Omega_{a/2},$$
(22)

for all k.

We may now differentiate (20) once with respect to x and k times with respect to y and we find that

 $|D_{xx}D_{y}^{k}v(x, y)| \leq C_{k}$ on $\Omega_{a/2}$

for all k. Proceeding by induction we obtain estimates for $D_x^{\ell} D_y^k v$ and the conclusion of Theorem 1 follows [note that we have even an estimate of the form $|D_x^{\ell} D_y^k v(x, y)| \leq Cx$ when ℓ is odd].

Acknowledgements. We thank A. Jaffe for suggesting the problem and C. Goulaouic for useful discussions.

References

- Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12, 623-727 (1959)
- Glimm, J., Jaffe, A.: Multiple meron solution of the classical Yang-Mills equation. Phys. Lett. B 73, 167–170 (1978)
- 3. Jonsson, T., McBryan, O., Zirilli, F., Hubbard, J.: An existence theorem for multimeron solutions to classical Yang-Mills field equations. Commun. Math. Phys. 68, 259–273 (1979)

Communicated by A. Jaffe

Received August 8, 1979

185