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LET Q BE a domain in R? with compact smooth boundary I (Q could be for example a bounded
domain or an exterior domain). Consider the equation

i%—Au+k|u|2u=0 in Q x [0, )

u(x,t) =0 in T x [0, ) 1))
u(x, 0) = uy(x),
where u(x, t) is a complex valued function and k € R is a constant. Problem (1) which occurs in
nonlinear optics when Q = R? has been extensively studied in this case (see [1-3, 5, 8]), but we

are not aware of any known result when Q # R>.
Our main result is the following:

THEOREM 1. Let u, € H*(Q) n H(Q). Assume that one of the following conditions holds
(a) either k > 0,
(b) or k < 0 and |k|f|u,(x)|> dx < 4.

Then there exists a unique solution of (1) such that

ue C([0, 0); HA ) n C'([0, 00); IZ(Y).
The proof of Theorem 1 relies on several lemmas. The first lemma is of interest for its own sake;

it is a new interpolation-embedding inequality.
In what follows we denote by C various constants depending only on Q.

LEMMA 2. We have

[u]l = < C(1 + /log{T + Jul ) 2)

for every u e H*(Q) with |u| ., < 1.

Proof. It is well known that an H? function on Q can be extended by an H? function on R?.
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More precisely one can construct an extension operator P such that:
P is a bounded operator from H'(Q) into H'(R?)
P is a bounded operator from H?(Q) into H*(R?)
Pu, = ufor every ue H'(Q).

Let u € H*(Q) with |ju|| ;. < 1. Let v = Pu and denote by  the Fourier transform of v. We clearly
have

1+ €Dl arzy < € 3)
< C““HHZ(Q) @)
l|uHL @ S ” “L (RY) S < Clp ||L1(R2)‘ ®)

For R > 0 we write

|wu=f |mww+j @) e
[€l<R Ié|ZR

= 1 dé + 1+
J':|<R( + |€') IU(€)|1 + !é| é J"<‘>R( l‘fl |U(é ll + ’5[2 é

1 d 1/2 1 1/2
< R pe Ty )
C[chlqz(l + [¢)? {I + Cluly [LPRU + &7 é:l

by Cauchy-Schwarz, (3) and (4). A straightforward computation leads to
18]l < Cllog(l + RYJ'* + Clluf .1 + R
by every R > 0. We obtain (2) by choosing R = |u] ..

LEMMA 3. We have
s go < Cllu= [ull 4 forevery ue H*Q). ©)
Proof of Lemma 3. Let D denote any first order differential operator. For u € H? we have
ID*(uf*0] < Cuf*D?u] + u]Dul
and so
uPul s < Clazel el s + Cl o ful. )
On the other hand an inequality of Gagliardo-Nirenberg (see [6]) implies that
lelypie < Clluf 2 |l - ®
Combining (7) and (8) we obtain (6).

Finally we recall the following well known result essentially due to Segal [7]:

LEMMA 4. Assume H is a Hilbert space and 4: D(4) = H — H is an m-accretive linear operator.
Assume F is a mapping from D(A) into itself which is Lipschitz on every bounded set of D(A).
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Then for every u, € D(A), there exists a unique solution u of the equation

%‘i + Au = Fu
u(0) = u,
defined for t € [0, T, ) such that
ue CY([0, T,.,.); H) 0 €0, T,,,.); D(4))

with the additional property that

either T =@

max

or T < o and lim )] + |Au@)| = oo.}

max
Tmax

Proof of Theorem 1. We apply Lemma 4 in H = I2(Q) to Au = iAu, D(4) = H¥(Q)n H L),
Fu = ik|u|*u. We shall show that T, = oo by proving that |u(t)|| 4> remains bounded on every
finite time interval.

First we multiply (1) by i and consider the imaginary part. This leads to

[u@®] . = lluo]l = 9
Next we multiply (1) by 8ii/0t and consider the real part. This leads to

%ﬁVu(x, 1|*dx + gﬁu(x, t*dx = E, (10

where

E,= %J [Vu(x)]> dx + j |ug(x)|* dx.

We claim that ||u(r)],, remains bounded for ¢ > 0. Indeed, this is clear when k > 0. While if
k < 0 we have

J|Vu(x, N < @ﬁu(x, n|* dx + 2E,. (11)

On the other hand an inequality of Gagliardo and Nirenberg ([6]) shows that*

* In order to obtain the constant } one proceeds as follows. For g e C°(R?) we have

+ o +
[o(x,, x,)| < %J~ |(Px1(t’ xz)ldt’l‘/’(xl’xz)' <%f l¢x2(xl,5)|ds

j lo|? dx < j o, |dx j ¢, dx.
R2 R2 R2
Choosing ¢ = |u|* leads to

j]u]“dx < j|u|2dx<j|un|2dx>”zgu |2dx> J|u|2de|Vu| dx.

Thus
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J‘|u|4 dx < §J|u|2 dxﬁVul2 dx (12)
=§jluo|2 dxﬁVul2 dx.

Combining (11), (12) and assumption (b) in Theorem 1 we see that
lu)] g < € (13)

where C is independent of .
We now denote by S(r) the I isometry group generated by — 4. From (1) we have

u(t) = S(e, + ikft S(t — s) Ju(s)[2u(s) ds
and so O
Au(t) = S(t)Au, + ik j St — 94 [Ju(s)? u(s)] .
Thus o
[ 4u@)] 2 < || Auq|l 2 + [K] L | Allu(s)*u(s)]|| .- ds. (14)

Lemma 3 implies that
[ 4llus) ws)]] 2 < Cllu(s)] 7 |uls)] -

From Lemma 2 and estimate (13) we deduce that

)], < C(1 + JIOBT + T

Hence (14) leads to

|u@)||,» < C+C f t |u(s)]| o[ 1 + log(1 + [u(s)] ;)] ds. (15)
We denote by G(r) the RHS in (15); thuz
G'(t) = Cllu(®)]| y=[1 + log(1 + [|u(®)] z2)] < CGO[1 + log(1 + G(©))].
Consequently
%log[l +log(l + G)] < C

and we find an estimate for ||u(t)| ,, of the form
lu®)] gz < e

for some constants « and B. Therefore [u(r)] ;. remains bounded on every finite time interval
and so we must have T = co.
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Remarks. (1) The proof of Theorem 1 leads to an estimate of the form ||u(r)]|,. < ae®. We do
not know whether |u(t)|| - remains actually bounded as t —» .
(2) When k < 0 and [k|f|u,|* > 4, it is known (see [4] and [2]) if @ = R? that the solution of
2 P

ma

1 Qimi1 ™
A11EV. [X OLLRIL omenon

correenanding ta come intial canditione mav hlaw 1n in finite nhan
w pPlacuviivavi

{1\
(1) CULIUOPULIULLIE LU SULLIV Liiuddl VULIUIUVLLS Lliay UIUW up 1 i

presumably occurs when Q # R2.
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