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Introduction 

This paper treats forced vibrations for a nonlinear wave equation of the 
form 

on 0 < x < .rr, under the boundary conditions 

(1.2) u(0, t )  = U ( T ,  t )  = 0 . 

We seek solutions which are periodic in time with a prescribed period 

T = 2.lr/A, A rational. 

Set R =  (0, a ) X ( O ,  T) .  F is assumed to be periodic in t with period T, 
continuous in f i x  , and to satisfy 

HYPOTHESES. (i) F is nondecreasing in u for all (x, t )  E R; 
(ii) IF(x, t, u)l+ as IuI +- CQ for all (x, t )  E R, and 

there is some U , E L ~ ( R )  such that F(x, t, uo(x, t ) ) = O .  

In Sections 1-3 we treat the case A = 1 and in Section 4 we indicate the 
necessary changes for any rational A = alb. With A =1 ,  assume that F 
satisfies, for some constants y, C, 

(iii) IF1 S y IuI + C 
with y < 3  or y < l  according to whether we have + or - in (1.1). 
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The kernel N of the operator 

acting on functions satisfying (1.2) and periodic in t of period 27-r consists of 
functions of the form 

p periodic of period 27-r; we may suppose that 

[ p ( t )  dt = 0 .  

All the functions we consider are assumed to be time-periodic with period T. 
Any u E L2(iR) has the orthogonal decomposition 

u = U' + u 2 ,  U ~ E  N, u l €  N'-. 

The range of A, R ( A ) ,  in L2 is N'-. 
The reason one can treat A rational but not irrational is that for A rational the 

range of A, acting on D ( A )  in L2, is closed while this is usually not the case for A 
irrational. For A rational the kernel of A is infinite-dimensional, and this 
indeed is the main difficulty. But A-' acting on the orthogonal complement of 
the kernel is compact. 

Our first main result is 

THEOREM 1. Assume A = 1 and that F satisfies conditions (i), (ii), (iii). 
Then there exists a generalized solution of (1.1) and (1.2), 

u = u1 + u2 , 

with u1 E CoS1, U ~ E  Lm. 

Here CoY1 is the space of Lipschitz continuous functions in fi. 

Remark. In general, if F is not strictly increasing, solutions need not be 
smooth. For instance if F=O for l u l d  k,  then there is a solution which is in 
L" but not smooth: 

u = p (  t + x) - p (  t - x )  , p periodic, period 27r, 
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with p E L", sup Ipl54k and p not smooth. In Section 3, under further 
conditions on F, we prove that every such solution is regular. 

A number of authors have treated the problem (l.l), (1.2) with F of the 
form E ~ ( x ,  t, u)  and E small, i.e., a perturbation problem. See Vejvoda 
[32]-[34] ([33] in particular contains an extensive bibliography), Rabinowitz 
[22], [23], DeSimon and Torelli [4], and Lovicarova [16] as well as [2], [8], 
[5], [7], [14], [15], [31], [19)-[21], [29], [27], [17], [28]. In addition some 
papers take up higher-order operators in the space variables such as [9] and 
[12], [13]. A number of authors have described interesting formal expansions 
for the solutions, see for instance [ll], [18] and [6]. 

Few papers study the global nonlinear problem, i.e., without E. Rabinowitz 
[24] has treated them; see also [12], [13], [lo]. 

In [l], Section 1.2, we proved that there is an L2 solution of (l.l), (1.2) 
and that the solution is in Cm(fi) in case F, > 0 everywhere, and we shall use 
that result as a step in our proof. In a recent, striking paper, Rabinowitz [26] 
has treated (l.l), (1.2) requiring F to be superlinear, i.e., to grow at infinity 
faster than a power (>1) of u. He obtains solutions as stationary points of a 
suitable functional. Furthermore, and this is most striking, he proves the 
existence of nontrivial solutions u Z 0  even if F(x, t, 0)-0. In general our 
existence theorem does not gurantee the existence of a nontrivial solution. In 
Section 5 we introduce some cases in which nontrivial solutions are assured. 
Our method of proof does not extend to superlinear F. In Section 6 we consider 
F of the form g(u) - f (x ,  t ) ,  with g(0) = 0 and f small. 

We wish to extend our thanks to P. Rabinowitz for several useful 
conversations. 

Before tackling the theorem we recall some well known facts concerning 
the operator A in under (1.2) and its inverse, see Rabinowitz [22], 
Lovicovara [16], DeSimon and Torelli [4]. If f~ L2 is in the range of A, then 
f E N* and 

u1 = A - l f ~  H' n P 2 n  N* , 

i.e., u1 has square integrable first derivatives in fl and is Holder continuous 
with exponent $. Furthermore, here 11 11 denotes L2 norm in fl, 

These assertions follow easily from the Fourier series representation of the 
solution u l ,  as a sine series in x: With 

so that 

j s 0  k 
lk l f i  
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we have 

(1 -4) 

Then one derives, easily, the inequalities: 

for all x ,  r m u : '  df 5 c Ilf 112 Y 

for all f , C u : .  d x  S C 11 f 112 . 

These, in turn, yield (1.3). To continue, if f E  Ck(fi), then U ~ E  Ck"(fi), 
k = 0 ,  1 , 2 , - . . ,  

(1.3') IUlICk+'S C(k) I f l c k .  

Similarly, f E L " j  u1 E C0.', i.e., u1 is Lipschitz continuous; 

(1.3") f E H k  3 u l ~  Hk+'.  

We shall prove Theorem 1 by first considering the equation, for E > O ,  

(1.5) * ~ ~ ~ , + ( d ? - d E ) u , * F ( x ,  t, u , ) = O ,  ~ ~ ( 0 ,  f)=u,(T, t ) = O ,  

and then letting E + 0. According to Theorem 1.8 in [l], under the conditions 
of Theorem 1 there is a C"(fi) solution u, of (1.5). If P2 is the orthogonal 
projection of L2 onto N, we find from (1.5) (dropping the E in u,) 

EuZ+P~F(X,  t, u ) = O .  

We shall use the following simple form of this relation (see [4] and [16]): for 
u =  u , + u 2 ,  u * = p ( t + x ) - p ( f - x ) ,  

O = E P ( S ) + -  [F(x,  S-X,  P ( S ) - P ( S - ~ X ) +  U I ( x ,  S-x))  (1.6) 27.r I" 0 

- F ( x ,  S + X ,  P ( S + ~ X ) - P ( S ) +  U l ( x ,  s+x))]  d x  

For convenience we write the integral as 

using ( I )  and (11) to denote the respective arguments. 
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Our aim is to derive estimates for u, independent of E and let E + O ,  to 
obtain a limit u which solves (1.1) and (1.2). In doing this we follow the setup 
of DeSimon-Torelli [4] which makes use of (1.6), rather than the method of 
Rabinowitz in [22] which is set in the variational formulation of the problem 
and makes use of special variations. 

2. Proof of Theorem 1 

We have to consider the cases + and - in (1.1). Since the arguments differ 
only slightly we shall suppose that we have the + sign in (1.5): 

(2.1) &u2 + A u ,  + F(x, t, u )  = 0 

(a) We shall first establish a bound for the L2 norm of F(x, f, u(x ,  t ) ) .  
From now on the letter C is used to denote various constants independent of 
E.  Taking L2 scalar with u we find 

(Au, , u,) + (F(x ,  f, u ) ,  u )  5 0 . 

From the Fourier series representation formulas in the preceding section we 
see easily that 

3 ( A u 1 ,  ul) + IIAu,I12 2 0 . 

On the other hand, 

and so 

Hence 
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and since y < 3  we infer that 

I t  now follows from (1.3) that I I U , I ( ~ I + ( U ~ ( ~ I , Z S C  independent of E. In 
particular, 

(b) Next we wish to establish the estimate 

Recall that 

u h ,  t )  = p(t+ x ) - p ( t - x )  and p(r) dr = 0 .  
JO 

Set M = max IpI; we shall derive an upper bound for M independent of E. 

suppose p ( s ) > O .  Let 
In (1.6), fix s at  the point where Ip(t)l takes its maximum. We may 

c = (x € [O, TI I p ( s ) -  p(s -2x) 2;M) I 
Since 

o =  p(s-2x)dx= I, + jzc -M meas c +;M(rr - meas C) , l 
we find that meas Z Z$T. Note that 

p(s + 2 x )  - p ( s )  + U I ( X ,  s + x) s p 

and consequently 

F(II) 5 F(x,  s + x, p) d yp + C , 
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so that 

Also 

and so 

Hence 

p(s) - p ( s  - 2x)+ u,(x, s - x) 2 - p  

F ( I )  h F(x,  s - x, -0)  2 - yp - c . 

F(x,  s - x , $ M - p )  d x - $ ( y p + C ) .  
1 

Using (1.6) we conclude that 

I F ( x , s - x , ~ M - p ) d x ~ C , .  

In order to emphasize the dependence on E we write 

F(x, S, - X, $ME - p )  dx 5 C, . I,. 
Arguing by contradiction suppose that ME. + +a; extracting a subsequ- 

ence we may also assume s," + S. It follows from Egorov's lemma and the 
assumption F(x,  r, u )  + +a as u -+ +a, that 

for all L>O, there are 8 and E c [ O ,  a] with meas E<&T 

such that 

F(x, S- x, 8) Z L for x E [0, .rr]\E . 
Therefore, 

F ( ~ , s , ~ - x , 8 ) 2 ? L  for x~[O, . r r ] \E  and n Z N .  

Write 

2 - (yp + C ) ~ T  ++Lam for n large enough. 
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This is impossible if we fix L so large that 

~ L . r r > C , + ~ . r r ( y p + C ) .  

(c) Since we have a bound for maxlul, it follows that 

max IF(x, t, u ) lS  C 

and hence from the properties of A-l 

l U , l C I S  c .  
Thus we have established the following bounds independent of E :  

(d) PROOF OF EXISTENCE IN THEOREM 1. We wish to pass to the limit as 
E + O .  For a suitable sequence of values of E tending to zero we have ule 
converging uniformly to u1 with u1 E C0,l and uZE converging weakly to u2 in 
L2 with u2e  L". We repeat an argument from [l], Section 1.3, to show that u 
is a generalized solution of (1. l), (1.2). 

For any (E Lz we have, by monotonicity of F, 

Since A-' is a compact map: NL 4 N'-, it follows that Aule  - A u ,  . Going to 
the limit in the preceding inequality we obtain 

( - A u ~  - F(x,  t, t), u - 5) 2 0 . 

We now use Minty's trick: for u E L 2  and T > 0, set 5 = u - TU. After dividing 
by T we find 

( A u ,  + F(x, t, u - T U ) ,  u )  S 0. 

Letting T 
Au + F(x,  f, u )  = 0. 

0 and using the fact that u is arbitrary in L2 we conclude that 

3. Regularity 

THEOREM 2.  Let A = 1. Assume F E  Cm(OxIR) is periodic in t with period 

(iv) F is strictly increasing in u for all (x, t ) ~ a .  Then every L" generalized 

2~ and 
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solution u of (I.I), (1.2) is continuous on sl (more precisely, there is a 
continuous function on fi which coincides a.e. with u ) .  

Assume in addition. 

( v )  Each connected component of the set {(x ,  t, u )  I F,(x, t, u )  = 0)  admits a 
C" representation u = ~ ( x ,  t) .  

Then every continuous solution u of (l.l), (1.2) belongs to C-(a). 

Remark. (v) holds in particular when F(x,  t, u )  = F(u) - f ( x ,  t ) ,  and F(u)  

Proof: Recall that since F(x, t, u(x ,  t ) )  E L" we have u = u1 + u2 with 

is strictly increasing in u. It also holds of course if Fu(x, t, u ) >  0. 

u1 E Co3' and u2 E La, 

Since 

it follows that p E L". 
(a) We first prove that p is continuous. For fixed h with lhl<$, set 

fi(t) = p(t  + h ) - p ( t )  and let M =  Mh =sup ess, IS(t)l. Fix s such that I f i (s ) l>  
M(1- lhl); we may suppose that f i ( s )  > 0. We can also assume that (1.6) holds 
at s and s + h. Taking the difference we find, for E(x,  t, r) = F(x,  t, r + ul(x ,  t)) ,  

0 = E(x, s + h - x, p( s + h )  - p ( s  + h - 2x) )  1: 
- E(x, s - X ,  p ( s  + h )  - p(s + h - 2 ~ ) )  dx 

+ J,"(x, s - x, p ( s  + h )  - p ( s  + h - 2x)) -  E(x,  s - x,  p(s) - p(s - 2 x ) )  dx 

{E(x,  s + h + x, p ( s  + h + 2 x )  - p ( s  + h))  
- I: 

-E(x,  s + X ,  p(s + h +2x) -p ( s  + h))} dx 

- /:{F(x, s + x, p(s + h + 2 x )  - p(s + h))  - E(x, s + x, p(s + 2 x )  - p(s))} dx 
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Clearly, lKl l I  C lhl, lK31S C IhJ since fi is Co7'. On the other hand, 

p ( s +  h + 2 x ) - p ( s + 2 x ) S p ( s +  h ) - p ( s ) + M  Ihl 
j. 

and since E is increasing in u we see that 

E ( x ,  s + x, p ( s  + h + 2 x )  - p ( s  + h ) )  5 E ( x ,  s + x ,  p ( s  + 2 x )  - p ( s )  + M I h I) 
I P ( x ,  s + x ,  p ( s  + 2 x )  - p ( s ) )  + c I h 1 . 

Thus K4 I C Jhl and consequently K ,  d C Ihl. For real z define 

where N = sup ess IpI. 

intervals, and 4(0) = 0. Since 
Clearly, 4 is strictly increasing in z,  Lipschitz continuous on bounded 

+ ( f i ( s ) - f i ( s  - 2 ~ ) )  S E(x, s - X ,  p ( s  + h ) - p ( s  + h - 2 ~ ) )  
- E ( x ,  s - x ,  p ( s ) -  p ( s  - 2 x ) )  , 

we obtain by integration 

As in the preceding section, let 

z = (x E [O, T] I f i ( s ) - f i ( s  - 2 x )  z$4). 
Since 

2 -M meas 2 + (4M- M J ~ ( ) ( T -  meas 2) , 

we see that measC2rr(l-2lh1)/(3-2Ihl). 
Since f i ( s ) - f i ( s - 2 ~ ) 2 - M I h I ,  we also have 
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and so 
+ ( $ M ) S C l h l .  

It follows that supess, Ip(r+ h)-p(r)l-+ 0 as h+O-which implies that p 
coincides a.e. with a continuous function (use for example mollifiers). As a 
consequence F(x,  r, u )  is continuous and by the properties of A-' it follows 
that u1 E C1. 

(b) Assuming (v) we prove now that U E  Cm(G). As in (a), we set 
P(x, r, r ) =  F(x,  r, r +  ul(x ,  r ) )  so that now E is C 1  in (x ,  r, r).  Let Mh = 
SUP, Ip(r+ h)-p(t)l  and set 

@(x, s) = E ( x ,  s - x, p ( s )  - p ( s  - 2x) )  - E(x, s + x, p ( s  + 2 x )  - p ( s ) )  , 

*(x,  s) = P(x,  s - x,  p ( s )  - p ( s  - 2x))  + P(x,  s + x, p ( s  + 2 x )  - p ( s ) )  . 

Since u is a solution of (l.l), we have 

I,".(x, s )  d x = O  for all s .  

Let h>O and $h<x<.rr; consider 

where &h+O as h+O uniformly in x and s ( o ( h )  is also uniform). After 
some rearrangement we find 
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where 

G ( x ,  s ) = F t ( x ,  s - x , ~ ( s ) - ~ ( s - ~ x ) ) - P ~ ( x ,  S + X , P ( S + ~ X ) - P ( S ) )  

+ F ; ( x ,  s - x ,  p ( s ) - p ( s - 2 x ) ) + F x ( x ,  s + x ,  p ( s + 2 x ) - p ( s ) ) .  

Integrating in x on [ ih,  TI, and recalling (3.1), we obtain for all s 

where 

H ( s ) =  [Fr(x, s - x , p ( s ) - p ( s - 2 x ) ) + F r ( x ,  s - x l p ( s + 2 x ) - p ( s ) ) ] d x  1: 
(so that HL 0) .  

Finally, we write 

q ( x ,  s )  dx = i h q ( 0 ,  s )  + o ( h )  , 

* ( x ,  s )  d x  = $ h q ( ~ ,  s )  + o ( h )  , 

with 

"(0, ~ ) = 2 F ( 0 ,  s,O), "(T, s ) = ~ F ( T ,  S - T , ~ )  

Thus we have 

B(s)H(s)  = -hF(O, S, 0)+  ~ F ( T ,  s - T, 0) 
(3.2) 

- i h  G ( X ,  S) d x  + O ( h ) +  M h & h .  1: 
We now distinguish two cases: 

Case (i). H ( s )  vanishes for some S and in particular F , ( x , S - x , p ( S ) -  
p ( S -  2 x )  + ul(x, S- x ) )  is identically zero for x E [0,  T I .  From hypothesis (v) it 
follows that, for some C" function u ( x ,  t ) ,  

p ( S ) - p ( S - 2 x ) + u , ( x , S - x ) = u ( x , S - x ) .  

In this case the function u2 is as smooth as u l .  In particular u2 E C'. But then 
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F(x, t, U)E C' and by the properties of A-' it follows that u1 E C 2 .  Then 
U,E C2,  and so on. Thus u E C". 

Case (ii). H ( s ) l  co>O for all s. 
In this case we derive from (3.2) that M,, 5 Ch and so p E Co7'. Therefore 

p is differentiable a.e. and we have for a.e. s 

(3.3) p ( s ) H ( s )  = -F(O, S, 0) + F(T, s - 7 ~ ,  0) 

so that in fact p is C1. Therefore U ~ E  C', and u1 E C2. It follows that fi is C 2  
and G, H are C' .  Hence p is C' and p is C2,  and so on. Thus u E C". 

4. Solutions with Other Periods 

We now extend Theorems 1 and 2 in order to obtain solutions with period 

27T T = -  
A '  

a 
b '  

A =- 

a, b being coprime. We shall assume as before that F satisfies hypotheses (i), 
(ii), (iii) but we shall require a different bound on the constant y in (iii). 

First, some remarks about the operator A =d:-d: acting on functions 
satisfying (1.2) and with period 2rrbla in time. We need extensions of the 
results cited on pages 3 and 4. Only brief sketches of their proofs will be 
given. 

1. N = ker A consists of functions of the form 

u* = p ( t  + x) - p ( t  - x) 

with p ( t )  having period 277 and period 2abla. Thus p(r) has period 2n/a and 
we may suppose that 

J p ( t )  d t = O .  
0 

Then the range of A in L2 is R ( A ) ,  

R ( A )  = N' 
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This is most easily seen with the aid of Fourier series. If AM = f and 

- 
u = C C u,k sin jxeiAkr , uj,-k = uj,k 7 

j>O k 

j > O  k 

then 
f ,k=(j2-h2k2)Ujk.  

Thus N is spanned by functions of the form sin Xkx cos Akt, sin hkx sin hkt, 
with k and Ak positive integers; also R ( A )  = N*. In particular we see that if 
f € R ( A ) ,  then the solution u , e N L  of A u l = f  is 

A-‘f  = u1 C zsin jxeiAkr.  
i,O j 2 - A  k 

We see furthermore that, for a fixed constant C, 

Let a be the largest number such that 

a ( A u ,  u ) + ( A u , A u ) Z O  for all U E D ( A ) ,  
that is 

Also let a’ be the largest number such that 

-a ’ (Au ,  u )  + ( A u ,  A u )  L 0 for all u E D(A) , 
i.e., 

(4.2’) a’= min ( j Z - A Z k Z ) .  
J>O 

k<j fA 

In case a = 1, i.e., A = l /b ,  it is easy to verify that 

2 b - 1  a’ = - 2 b + l  a=- 
bZ ’ bZ * 

With a, a‘ so defined, our extensions of Theorems 1 and 2 are: 



FORCED VIBRATIONS FOR A NONLINEAR WAVE EQUATION 15 

THEOREM 1'. Assume A = a/b and that F satisfies conditions (i), (ii), (iii) 
with y < a  or y<a' according to whether we have + or - in (1.1). Then there 
exists a generalized solution of (1. l ) ,  (1.2), 

u = u , + u 2 ,  . u l € N L ,  u ~ E N ,  

with u1 E Co,', u2€  L". 

THEOREM 2'. Theorem 2 holds also if A = a/b and F is periodic of period 
2r /A  in t. 

2. We shall make use of a simple formula for the orthogonal projection 
P2 of L2 onto N. I f  v (x ,  t ) E  L2(fl) (period T in t of course), then P2v = 
p ( t + x ) - p ( t - x )  with, for OSsS2.rr /a ,  

In such terms we also give a different representation of u,=A-'f for 
fENL which is the analogue of formula (2.5) in Lovicavorfi [16]. One may 
verify directly that the following is a particular solution of A u  = f: 

7 r - X  

7r 
(4.4) u(x,  t )  = -- f ( 5 , ~ )  dTdt+ r ( t  + x ) -  r(t + 27r- x )  + c- , 

where 

and 

In particular the solution u, E N* of Au, = f is then given by 

u , = u - P 2 u  

with Pz described in (4.3). 

(1.3'), (1.3") of A-' cited earlier continue to hold. 
Using these explicit formulas one verifies easily that the properties (1.3), 

3. Theorem 1.8 of [l] applies once again (with our respective conditions 
y < a  or y < a ' )  to ensure the existence of a Cm solution of (1.5): 

feu,&+(a:-a:)u,fF(x,t, U & ) = O )  u,(O, t)=u,(7r, t ) = O .  
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Again, we wish to obtain estimates for u, independent of E and then let 
~ 4 0 .  The relation (writing u, as u )  

&u2 + P2F(x, t, u )  = 0 

now takes the form-the analogue of (1.6)-for u , = p ( t + x ) - p ( t - x ) :  

(4.5) - r 
a 

x , s + x + ~ T - - , ~ ( s + ~ x ) - ~ ( s ) + u ,  

The following is a direct extension of a result in DeSimon-Torelli [4] and 
has the same proof: 

LEMMA 4.1. For E >0, and for U,E C(G) (and T-periodic in time) the 
equation 

G[p, uiI=O 

has a unique continuous solution p ( s ) .  If u1 E Ck, then p E Ck, k = 0, 1, . * . 

This is proved in the following manner: For u1 fixed, one shows that the 
map p 4 G[p, u,] is one-one, surjective, on the space of continuous functions 
q ( t )  with period 2 r l a  and zero average. This is done by proving that the 
image of G is open (using the implicit function theorem) and closed (using 
estimates for the solution of G[p, u,]= q of the type we obtained earlier; 
these are easy to derive in case E > 0). Regularity is then readily established. 

With the aid of the properties of A-' discribed above, and (4.5), the 
proofs of Theorems l', 2' just follow those of Theorems 1, 2 .  The expression 
(4.5) is a bit more complicated than (1.6) but it is treated in the same way. 

We shall consider Theorems l', 2' as proved. 

5. Existence of Nontrivial Solutions 

Suppose 

(5.1) F(x, t, u)=O . 

Then u=O is a solution of (l.l), (1.2) and Theorem 1' does not ensure the 
existence of any other solution. It is sometimes possible, under additional 
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conditions, to prove that there are more. In this section we shall illustrate this 
by treating some simple model problems. Here we follow some ideas from 
Cronin [3] and Tavantzis [30]; these use degree theory and invoke an analysis 
of the solutions near u = O .  We shall assume for convenience that F satisfies 
all the conditions of Theorems 1' and 2' including (iv) and (v). In addition we 
suppose that 

(vi) F,(x, t, 0) = p , a positive constant,. 

Assume first 

(5.2) p # j '- X 2  k 2  for all integers j > 0, k . 

For p lying in certain intervals we obtain nontrivial solutions for (1.1) with 
the minus sign, 

(5.3) u,, - u,, - F(x, t, U) = 0 . 

We shall explain later why the argument yields nothing in the case of the + 
sign and we shall present a different result with the plus sign. 

We obtained a solution of (5.3) as a limit, through a sequence of E + 0, of 
solutions of 

(5.4) - E U ~ + A U - F ( X ,  t, u , + u 2 ) = 0 .  

Our aim now is to show that (5.4) has a solution u, which is bounded away 
from zero as E +  0. Going to the limit as before we shall then obtain a 
nontrivial solution. Rewrite (5.4) in the form 

We shall first study this in the space of continuous functions u,~N'-f lC,  
u 2 €  N n  C (always satisfying the boundary and periodicity conditions). The 
nonlinear operators in (5.3, (5.6) are then smooth operators, and we may 
use the implicit function theorem to analyze the solutions near the origin. 

LEMMA 5.1. Assuming (5.2), there are positive numbers r, e0 such that for 
E < E~ the only continuous solution u = u1 + u2 of ( 5 . 9 ,  (5.6) with 

max lull + max lu21 5 r , 
is u=O. 
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Proof: By the implicit function theorem we have only to verify that the 
linearized operator at  u1 + u2 = 0 ,  E = 0: 

is bijective. Since A-' is compact, this is the case provided P-' is not an 
eigenvalue of A-'-which is assured by condition (5.2). 

Next we wish to obtain nontrivial continuous solutions of ( 5 3 ,  (5.6). By 
Theorem 2' the solutions are then automatically in Cm(fi). We shall rewrite 
these equations. Using Lemma 4.1 for given u1 E Nlf l  C there is a unique 
solution u2e N n C ,  u2(ul) of (5.6). Inserting this into (5.5) we obtain the 
equation 

with K continuous and compact. 
Since we have an a priori bound 

(5.8) max lull 5 C independent of E 

(obtained in the proof of Theorems 1' and 2'), we see that the Leray- 
Schauder degree 

v = deg ( I -  K, llull/S C+ 1 , O )  

is defined. A look at the derivation of (5.8) shows that the same estimate also 
holds if F is replaced by TF, 0 5 T S 1. Thus the degree v is also the degree 
for I - &  and it follows (taking T =  0) that v = 1. 

We know that u = 0 is an isolated solution of (5.7). If the Leray-Schauder 
index of I -K  at u = O  is different from one, we may infer that 55.7) and 
hence (5.4), and consequently (5.3), have nontrivial solutions. We may 
summarize this in 

LEMMA 5.2. Assume F(x, t, 0)  = 0 and that F satisfies hypotheses (i)-(vi) 
and (5.2).  In N' n C assume that the Leray-Schauder index at the origin of the 
linear operator 

~ 1 -  PA-' u1 

is different from one. Then, equation (5.3)  possesses a nontrivial solution u 
which belongs to Cm(fi). 
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The Leray-Schauder index of I - PA-' is given by 

(5.9) ind = (- l)p , 
where 

(5.10) P =  c n, .  
P>' 

Here we sum over all eigenvalues p > 1 of PA-', n, being the multiplicity of 
P. 

To see what Lemma 5.2 says let us compute the index for various values 
of P. The eigenvalues of A-' are of the form 

(j2-A2k2)-'  , j > 0 , k integers . 

Thus if p > 1  is an eigenvalue of PA-', we have 

Furthermore if k#O, the contribution to the multiplicity of p corresponding 
to j ,  k is even since we obtain a contribution from - k  as well as from k. 
Hence 

(-1)"*=-1 if p = P / j 2  for some integer j ,  

and (-1)"*= 1 otherwise. Thus we find 

-1 if the number of positive squares < P is o d d ,  
1 otherwise. 

ind = 

Consequently we have 

THEOREM 3. Assume F(x, t, 0 )  = 0 and that F satisfies hypotheses (i)-(vi) 
and (5.2).  If the number of squares less than P is odd, then (5.3)  possesses a 
nontrivial C" solution satisfying the boundary conditions and having period 
2 ~ b l a  in time. 

Remark. For the equation with the + sign, urr- u, + F ( x ,  t, u ) =  0, the 
preceding analysis gives no results since the index of I + PA-' at the origin is 
always 1. 

We should also remark that in case F is independent of t our nontrivial 
solution may also be independent of t. We have no way of excluding this, 
somewhat trivial, solution. 
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What happens if condition (5.2) is not satisfied? It may still be possible to 
prove the existence of nontrivial solutions. Let us suppose that the set 2 of 
pairs of integers ( j > O ,  k )  such that 

is nonempty. Naturally it is finite. We wish to show under further conditions 
on F that u1 = 0 is an isolated solution of (5.7) and that a nontrivial solution 
of (5.3) exists. Suppose that the Taylor series of F with respect to u at u = 0 
takes the form 

(5.11) F(x, r, U) = pu + U ( X ,  t ) d  +. . . 

Denote the (finite-dimensional) null space of A - p I  by N , .  We may then 
decompose any u1 E NL n C into two components: 

with Pi, P; the corresponding orthogonal projections in L2. In the following 
I lo  denotes maximum norm. 

Suppose u1 is a solution of (5.7) having small norm lullo. By the implicit 
function theorem the solution u2(u1) near 0 depends smoothly on u1 and if 
we compute the Frechet derivative at the origin we find 

Thus lu2(ul)lo= O(lullg) uniformly in E for E small. 
We rewrite (5.7) in the form 

K, compact; we see furthermore from (5.7') that 

Hence from (5.7") we find that 

(5.12) P';u(x, r)u;'= O(lu;l;+'). 
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Let us now assume 

(vii) For every v E N,,  U Z  0, 

P;[a(x ,  r ) ~ ‘ ]  # 0 .  

Under this assumption we see from (5.12) that the analogue of Lemma 
5.1 holds, i.e., there are positive numbers p, so such that for E < E~ the only 
solution of (5.7) with max lull 5 p is u, = 0. Furthermore, if we deform [ ] in 
(5.7’) via T[ 3, 0 5  TS 1, and deform u2 via 7u2 we find that the Leray- 
Schauder index at the origin of I - K ,  is equal to the degree at the origin of 
the finite-dimensional mapping 

(5.13) u; -+ -P;[a(x,  r)uy] for lu;lo = some small 8 > 0 . 

Call this degree d o .  
We have to compare do with the degree d at the origin of the map I - K ,  

in a large ball. Since (5.7’) and (5.7”) are equivalent to (5.4), for which we 
have a priori bounds for the solution, we infer that this degree of I - K ,  is 
defined in some large ball. Furthermore the degree is the same for each map 
I - -K , (T) ,  0 5 7 5 1 ,  given by 

For if u1 = u; + u; is a solution of u, - K , ( T ) [ u , ]  = 0, then it is a solution of 

( A  - p ) u i - P ; ~ F +  Pu; = 0 ,  

( A - P ) ~ ’ ; + P ‘ ; ( P U - T F ) = O .  

Thus u = u1 + uz(ul) is a solution of 

A u ,  - TP,F(x, r, U, + u2) = 0 , 

&u2 + T P ~ F ( x ,  r, u, + u2) = 0 , 

i.e., of (5.7), in which F has been replaced by rF. Our a priori bounds hold 
for this, independent of T, and our assertion then follows. 

Since 
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we conclude that 

d = degree of the linear map in H ;  : I +  p(A - PI)-' 

= (-l)P, 

where we sum over all eigenvalues p > 1 of 

and np is the multiplicity of p .  Thus p has the form 

1 < p =  
P - ( j 2 - A 2 k 2 )  

with 
0 < j 2 -  A' k 2  < p . 

In case k > 0, k and - k  contribute an even number to p, So we need only 
consider k = 0. Thus (-1)". = 1 except: 

(-1)"*= -1 if p = p/(p - j ' )  

for some positive integer j < P .  Hence we find 

-1 if the number of positive squares < p is odd ,  (5.14) d = {  

We now have 

1 otherwise. 

THEOREM 4. Assume F(x, 0,O) = 0 and that F satisfies hypotheses (i)-(vi), 
with C nonernpty, and also (5.11) and (vii). If the degree do of the 
finite-dimensional map (5.13) is different from d given by (5.14), then (5.3)  
possesses a nontrivial C" solution satisfying the boundary and periodicity 
conditions. 

EXAMPLE. Suppose p = 1. Then Z consists of one element (1,0), and the 
space N, consists of functions of the form c sin x. In this case, condition (vii) 
simply takes the form 

(vii') a ,  = loT /:a(x, t )  sin'+' x dx dt # 0 , 
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and we see that th-e degree do of the map (5.13) is the same as that of the 
mapping 

c -+ -a,c'. 

Thus 
0 if r is even, 
1 

-1 
if r is odd and a,<O, 
if r is odd and ao>O. 

Hence in this case we see that we have a nontrivial solution in each of the 
following cases, assuming a, # 0: 

(i) r is even, 
(ii) r is odd and ao>O. 

We turn now to the equation with the plus sign: 

(5.15) u,, - u,, + F(x, t, U )  = 0 

and assume that F satisfies (i)-(vi) with C' nonempty. Here C' is the set of 
pairs of integers j > O ,  k such that p +  j Z - A Z k 2 = 0 .  Assume also that F 
satisfies (5.11) and (vii). In analogy with the preceding, we consider 

u; +(A + PI)-V"F(X, t, u1 + u2(u1)) - PUI , 
P'l'[u-p-'F(x, t, u ~ + u ~ ( u ~ ) ) ] .  u1- K,[u,l= 

As before, the local index of I- K, equals do,  the degree of (5.13). A similar 
calculation to that for d shows that the degree at the origin of I - K 2  in a 
large ball is one. Thus we obtain 

THEOREM 5. Assume F(x, t, 0) = O  and that F satisfies (i)-(vi) with 2' 
nonempty, and (5.11) and (vii). If the degree do of (5.13) is different from one, 
then (5.15) has a nontrivial C" solution satisfying the periodicity and boundary 
conditions. 

EXAMPLE. 

Condition (vii) takes the form: if c:+ cg > 0, then c;' + c:' > 0, where 

Suppose A = 1, i.e., T =  27r, and p = 3. Then the null space of 
A + P I  consists of functions of the form w = c1 sin x sin 2t + c2 sin x cos 2t. 

a(x, t )wrs inxs in2tdxdt ,  
0 

T 2m 

c; = -lo 1, a(x, t) wr sin x cos 2t dx dt  . 
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Then d,=degree at  the origin of the map 

(cl ,  c2), with c:+c;= ~ , H ( c ; ,  c:). 

In particular if r is even and a = q(x, t )  sin 2t or a = q(x,  t )  cos 2t, where q 
never vanishes, we find do= 0 and thus (5.15) has a nontrivial solution. 

Paul Rabinowitz has pointed out to us that one may also obtain the 
existence of small nontrivial solutions with the aid of known bifurcation 
theorems for equations coming from variational problems. Consider for 
example the equation (5.15), 

u,, - u,, + F(x ,  t, U )  = 0 , 

with F satisfying (i)-(vi) and p # A’ k’ - j’ for all integers j > 0, k, but /3 close 
to some po = AZk;- j ;  for some integers j o  > 0, k,. In this case, for u = u1 + u2 
near zero we may rewrite (5.15) in the form 

where u2 is the unique solution near zero (obtained for instance with the aid 
of the implicit function theorem) of PzF(x, r, U, + u2(u1)) = 0. This in turn may 
be rewritten as 

with A = p. We wish to find nontrivial solutions of this in case h = p. Let us 
first permit A to vary in an interval near Po.  

Problem (5.16) may be expressed as a variational problem: u1 is a 
stationary point in H1nNL of the functional 

[;(u:,- u:,) + P ,  G(x, r, ul)+$Au:] dx dr. Jo Jo 
where 

G ( x ,  r, W )  = jOwF(x, r, s - u2(s)) ds -$w2 . 

According to the theorem in Rabinowitz [25], if for A = Po,  U, = 0 is an 
isolated solution of (5.16-this will be the case, say, if F satisfies (5.11) and 
(vii)-then, for some small 6 > 0, for every A, on the interval 1- : Po- S < h < 
Po or on the interval I+ : Po<A < P o + S ,  (5.16) has a nontrivial solution near 
zero. So if p is in the appropriate interval we obtain a nontrivial solution of 
(5.15). 
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In general, for nonlinearities F of the kind considered in this paper with 
F(x,  t, 0) = 0, and having at most small linear growth as IuI -+ m, one should 
not always expect to have nontrivial solutions. For instance in the situation of 
Theorem 1 consider the problem 

u,, - u,, + F(x,  t, u )  = 0 in R , 

u(0, t )  = u ( n ,  t )  = 0 ,  u is 2 n  periodic in t , 

with F(x,  t, O ) =  0, F strictly increasing in u and F, 5 y < 3. In this case we 
have uniqueness, by Theorem 1.9 in [l], and so u=O is the only solution. 

6. Nonlinear Vibrations with Small Forcing 

Consider a nonlinear wave equation of the form 

(6.1) 
u,, - u,, * g ( u )  = f(x, t )  on R = (0, 7r) x (0,2n) , 

~I 

u(0, t )  = u(n ,  t )  = 0, and u is 257 periodic in t .  

We assume that g(O)=O and that the forcing term f is small, so that small 
vibrations are “expected.” It is therefore logical to impose conditions on g 
only near u=O. This is the purpose of our next result. 

Assume g : [ - L + L]+ R is a continuous function satisfying: 

(6.2) g is nondecreasing in u , 

(6.3 I g ( u ) l ~  ylul for u E [ -L,  + L ]  , 

where y < 3  or y < l  according to whether we have + or - in (6.1), 

THEOREM 6. Assume (6.2)-(6.4). Then, there is a S > 0 (depending only on 
g) such that, for each f ~ L = ( f l )  with I/fIIL-<S, there exists a generalized 
solution of (6.1) with IIuIIL-S L. If f i s  smooth and i f  g is  strictly increasing and 
smooth, then every such solution u is smooth. If g is strictly increasing and 
8 ‘ 5  y in [ -L ,  + L ]  , with y < 3  or y <  1 (respectiuely), then the solution of (6.1) 
is unique. 

Remarks. 1. Most of the papers dealing with small perturbations are 
concerned with equations of the form u,, - u,, + E(g (u )  -f) = 0, but in 
Theorem 6 the nonlinear term g(u)  is not required to be small-except for 
the natural restriction (6.3). This is only required of the forcing term f. 
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2. Theorem 6 implies the existence, uniqueness, and smoothness, of small 
solutions for the equations 

u,, - u,, f u3 = f 

or 

u,, - u,, +sin u = f 

provided the term f is small. 
In view of the uniqueness result (in the class of solutions satisfying 

IIuIIL- 5 L) we remark that nontrivial solutions of u,, - u, + u3 = 0-which exist 
by [26]-must satisfy l[u[lL-Z 1. 

Proof: (a) Existence. 

Extend g outside [-L, +L] by 

y ( u - L ) + g ( L )  for u S L ,  
y ( u  + L) + g(-L) for u 5 -L  , 

so that Ig(u)lS y lu ]  for all u E R. 
Theorem 1 implies the existence of a solution u of 

with boundary and periodicity conditions as in (6.1). 
We shall verify now that if llfllL-< 6, for 6 small enough, then IlullL-5 L. 

We consider only the + case in (6.5) (the - case is similar). Let uo(x, t )  be 
such that g(u,) = f. Multiplying (6.5) by u leads as in the proof of Theorem 1 
to (integration is over a): 

But, as is easily verified, 

and so 
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Thus 

27 

As in the proof of Theorem 1 we conclude that 

Set 
r 2" 

I = p (  s) - p( s - 2x) + U , ( X ,  s - x) , 

I1 = p ( s  +2x)-p(s)+ U I ( X ,  s +x)  

so that (6.5) leads to 

27T 
1 

27T (6.6) 0 =- j," [g(I)-f(x, s -x)]  d x  [g(II)-f(x, s + x)] dx . 

Set M =  llpllL- and fix a point s where IpI takes its maximum (for a rigorous 
proof, since p need not be continuous, one should introduce EU, in (6.5) and 
then pass to the limit as ~ 4 0 ) .  Assume p ( s )  > 0. 

We have I1 5 p and by (6.6) we find 

~ 1 "  I, g(I)S4YP+llflL- * 

Denote by [fl, s] the largest interval on which g vanishes so that by (6.4) we 
have -4L < 8 5 6<$L. Fix k with 26/L < k < 1 and set 

Z={X E [0, T] 1 P ( s ) - ~ ( s  - 2 ~ )  B k M )  

Since 

I +ic 2-MmeasZ+(l-k)M(.rr-measZ),  
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we see that meas C 2 ((1 - k ) / ( 2  - k))7r. Using the fact that I2 - p  we find that 

1 
27r 

2- g ( k M -  p )  meas C -4yp.  

We conclude from (6.7) that 

and so kM-p5G+-t((llfllL-), where o ( r ) + O  as r+O. Hence 

Consequently IIullL-d L provided I l f I I L -  is small enough. 

(b) Smoothness and uniqueness. Smoothness follows from Theorem 2. For 
the uniqueness we proceed as in [l] (Corollary 1.6). Assume u and ii are two 
solutions of (6.1). We have 

A( u - 6 )  * ( u - ii) + ( g ( u )  - g(ii))(u - ii) = 0 I I 
and so 

Hence g ( u )  = g(6 )  and therefore u = ii. 
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