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Characterizations of the Ranges
of Some Nonlinear Operators

and Applications to Boundary Value Problems.

H. BRÉZIS (*) - L. NIRENBERG (**) (***)

dedicated to Jean Leray

Introduction.

This paper is concerned with techniques for attacking nonlinear partial
differential equations, in particular, boundary value problems for semilinear
equations.

One of the basic tools for treating such problems is the Leray-Schauder
degree theory, in particular the Schauder fixed point theorem. This theory
works within the category of compact operators. When compactness is not
available, monotone operators have proved to be useful in treating certain
classes of equations. By now there is a rich literature on this subject and
its applications (see [Br6-2], [Bro-1] which also contain many further refer-
ences). Depending on the applications in mind various attempts have been
made to combine monotone operator theory with topological methods in case
there is also some compactness (see Browder [Bro-1], Leray, Lions [Le-Li]).
This paper may be regarded as a contribution in that direction though the
only topological tool we use is the Schauder fixed point theorem.

Our paper is in some sense the outgrowth of two others: [La-La] by
Landesman, Lazer and [Br-Ha] by Br6zis, Haraux. [La-La] is concerned
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with the Dirichlet problem for a function u(x) in a bounded domain Q
in Rn with smooth boundary aS2:

where L is a second order linear elliptic operator., Assuming g to be
bounded [La-La] presents sufficient conditions on g and f which are almost
necessary for the existence of a solution. The results have been extended

in various directions by quite a number of authors (see Williams [W],
Hess [He-1-2], Fucik, Kucera, Ne6as F-K-N], Nirenberg [N-1-2~, De

Figueiredo [DeF-1-2], Kazdan, Warner Dancer [Da-1-2]) where fur-
ther references may be found. They seek sufficient conditions for solvability
of nonlinear equations like (1) which are also close to being necessary.

In this paper we develop some general methods for attacking equations
in a Hilbert space (with scalar product (, ) and norm H) of the form

where A is usually a linear operator: D(A) c H - H, and B is a nonlinear
map of H into H. These are then applied to semilinear boundary value prob-
lems. The papers cited above also treat equations of the form (2) (some
in more general frameworks). We have tried to present results of sufficient
generality so as to include many of the cited extensions of [La-La]. Some
of the known results are however not contained here. In particular there
are stronger results in case (2) arises from a variational problem, see for
instance Ahmad, Lazer, Paul [A-L-P], Rabinowitz [Ra-3].

If .A represents an elliptic partial differential operator under suitable
boundary conditions then A-1, if it exists, is compact, and one may rewrite (2)
in the form u + AwBu = A-If. The more interesting case however is

that in which N= N(A) = ker A =1= 0. For A elliptic, N is finite dimen-

sional. In case A is self adjoint one also has

We will seldom require A to be self adjoint but we will always suppose that (3)
holds (see however Remark 1.2); then we have the orthogonal decomposi-
tion :

and A-’: is then compact.
In characterizing the range R(A + B) of A + B most of the abstract
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results take the form

or more generally,

where « conv » denotes the convex hull, T means the sets 8 and T

have the same interiors and the same closures. In this respect our results
are natural extensions of those of Br6zis, Haraux [Br-Ha] which are con-
cerned with relation (4) for A, B monotone. (It is not true in general
that (4) holds for all monotone operators even in finite dimensions. For

instance, in the plane, if A = - B = the operation of clockwise rotation
bY’Jt/2 then + B) = 0 so that (4) does not hold.) In [Br-Ha] are presented
various sufficient conditions for (4), together with applications to boundary
value problems. Here we do not assume that A is monotone but we require,
for instance as in Theorem 1.1, that A-i : .R(A) --~ is compact. In fact
(and this is important in the applications to hyperbolic problems) we usually
do not assume that N(A) = H2 is finite dimensional but we still require com-
pactness of .B(.A) -~~(~4).

Our method of proof of solvability of (2) for f e Int B(A) + conv jR(jB)
begins in a rather customary manner. With the aid of results for maximal
monotone operators, and the Schauder fixed point theorem, we solve V8 &#x3E; 0

where P2 is the orthogonal projection onto Then, ’with the aid of (es-
sentially) energy estimates we obtain bounds for l’Uel independent of 8-the
most difficult part being the estimate of IP2Uel. In obtaining the bounds
for all solutions ’Ue we adapt an argument of [Br-Ha] which makes use of the
principle of uniform boundedness. The corresponding bounds for are

therefore not obtained constructively; we have no knowledge of their size,
just of their existence. Our view is that the techniques and tricks in the
proofs are perhaps of more interest than any of the particular results-which
have been devised for certain applications and admit many variations.

The abstract results are presented in Chapters I-III, the applications
in IV, V; we now give a brief description of the results. In Chapter I we
treat nonlinear terms B which are monotone and, in our main result of the

chapter, Theorem I.10, we permit A to have a nonlinear, monotone com-
ponent A2..A is not required to be monotone; its degree of non-monotonicity



228

is measured in some sense by a positive number oo which, in case A is
linear, is defined as the largest positive constant a such that

monotonicity corresponds to oc == oo. The nonlinear terms we allow are not

only to be monotone but are required to satisfy restrictive growth condi-
tions as lul - oo (depending on a). For example, a simple case of the basic
condition (1.14) is: for some positive y  a,

where C(w) is independent of u. This is automatically satisfied if R(B) is
bounded ; it implies in turn that lbul = 0(jul) as Jul -~ oo. We say that a
nonlinear operator B is bounded if it is bounded on bounded sets.

In order to give the reader some initial idea of the main result (which
is somewhat technical) we begin, in § 1.1, with a special case, Theorem 1.1,
which, though simple, still has interesting applications. In 1.2 we present
one-for the nonlinear wave equation

for which we seek solutions periodic in time. The main result is presented
in 1.3 together with a first variant Theorem 1.14 and another in 1.5. In 1.4
we drop the compactness assumption on A-’, and replace it by a kind of
Lipschitz condition (1.28).

Chapter II introduces a device which is useful in determining whether a
given f E H belongs to the interior or closure of R(A) + conv par-
ticular when dim H2  00. This is the recession function of B:

which is defined for any B, not merely monotone. Various properties of JB
are described, in particular (Proposition 11.3): if B = 8y is the gradient of
a convex function V then
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Then, in 11.2 the recession function is used to investigate + conv B(B).
For example, (Cor. 11.7) if A is linear with N(A) = H2 finite dimensional,
and B is monotone and satisfies (6), even in a weaker form, then, for

given 

Our methods for treating (2) apply also to non-monotone B, as we show
in Chapter III assuming usually that A is linear and dim N(A)  oo prov-
ided we require a condition like (6). We establish the arrows « in (9)
and (10) in a number of cases, Theorems 111.1-2 and their corollaries. The
results in Chapter III do not rely on those of Chapter 1.

In Section 111.3 we consider a particular class of nonlinear operators B
of the form

Here H = L2(Q) where Q is a bounded domain in .Rn with smooth bound-
ary 8Q ; set 

’

If g has small linear growth as lul - oo we present sufficient conditions on f
to be in the closure or interior of .R(A -~- B). These are like the right-hand
sides of (9) and (10), except that is replaced by

(For convenience we usually omit the element of volume dx in the integrals.)
In case A is monotone, i.e. cx = + oo, we also permit 9 to have arbitrary
growth in u, in one direction, i. e. we require

c, d  0. Under some additional conditions we obtain (Th’m. III.6) a solu-
of

where A is the closure of A in .L1 X Zl.
In Appendix A we collect a number of useful facts about monotone oper-

ators and gradients of convex functions. In particular, Proposition A.4
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relates condition (6) with the growth of B as lul ~ ~oo, while Proposition A.5
deals with a modified kind of Lipschitz condition as used in section 1.4. In
Appendix B we describe without application, or proof, since it is somewhat
tedious, a still more general form of Theorem 1.10 which includes both mono-
tone and non-monotone nonlinearities.

Turning to the applications, Chapter IV presents several applications to
semilinear elliptic boundary value problems

in which u(x) may represent a vector ..., uN) (x). L is a linear elliptic
system. For simplicity we have confined ourselves only to the Dirichlet
problem, supposing u has zero Dirichlet data on It will be clear that

the results may be extended in various directions. To describe one result

(see Theorem IV.8), consider the system

where 99 is the convex function

and a, b, c, d are constants, d &#x3E; 0. Here ~,1 is the first eigenvalue of - d
and I is some other eigenvalue; let A be the eigenvalue of - d just preceding 2.

Then there is a solution of the system provided

or

In Chapter V we treat parabolic and hyperbolic equations confining
ourselves to simple model problems. For parabolic equations of the form

we treat the initial boundary value problems as well as others. Section V.2
takes up a semilinear hyperbolic equation (with dissipation) in n-dimensions
for which we find solutions which are periodic in time, with prescribed period.

Further bibliographical remarks, in addition to those in the text, are
made after Appendix B.
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CHAPTER I Monotone nonlinearities.

CHAPTER II The recession function.

CHAPTER III Nonmonotone operators B.
CHAPTER IV Elliptic equations.
CHAPTER V Parabolic and hyperbolic applications.
APPENDIX A Some properties of monotone operators and gradients of convex

functions.

APPENDIX B More general form of the main result.
BIBLIOGRAPHICAL REMARKS.

BIBLIOGRAPHY.

CHAPTER I

MONOTONE NONLINEARITIES

1.1. Simple versions of the main result and some corollaries.
1.2. Applications to nonlinear wave equations.
1.3. The main result.

1.4. A « noncompact » variant of the main result.
1.5. Another variant.

In 1.1 we describe without proof-simple versions of our main result
and we derive some corollaries. Their use is illustrated in 1.2 where we solve

nonlinear wave equations with periodic boundary conditions. Most of our

applications are presented in Chapters IV and V. In 1.4 we consider a variant
of the main result, in which the compactness assumption is replaced by a
Lipschitz condition. In contrast with most other proofs in the paper, the
proof does not rely on the Schauder fixed point theorem. Another variant

is given in 1.5.

1.1. Simple versions of the main result and some corollaries.’

Throughout the paper the following class of linear operators will play
an important role. Let .~ be - a real Hilbert space.

PROPERTY I. Let D(A) c H - g be a closed linear operator with dense
domain and closed range. Assume that

(or equivalently .
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~. is therefore a one-one map of D(A) r1 R(A) onto R(A). Assume further-
more that the inverse

Operators A satisfying all these conditions will be said to have Property I.
H has an orthogonal decomposition H = N(A). For u E H

we set or sometimes ’vv’ith U1 E R(A),
, /

Since there is’a positive constant ocQ such that 

we have

Throughout the paper we denote by a the largest positive constant such that

(We have a = + oo iff u) &#x3E; 0 d2~ E D(A).)
In case A = A* then a is the first positive eigenvalue of - A.
Assume B : H ~ H is a (nonlinear) operator satisfying

For some positive constant

where depends only on w.
This artificial looking hypothesis should be viewed as an assumption

about the behavior of B at infinity and not as a coerciveness assumption.
It implies

and, conversely, it can often be derived from the behavior of B at infinity.
This is true in particular for gradients of convex functions (see Appendix A,
Propositions A.1, A.4, A.5, A.6). Note also that any monotone operator with
bounded range satisfies (1.1) since (Bu - Bw, u) &#x3E; (Bu - Bw, w).

THEOREM I.1. Suppose A has Property I. Let B be a monotone demicon-

(i.e. B is continuous from strong H into weak H) operator satisfying (1.1).
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Then

(conv denotes convex hull).

I-l’. Suppose A has Property I and for some r &#x3E; 0, A + rI
is invertible. Let B be a monotone demicontinuous operator such that

Then A -f- B is onto.
We omit the proofs-Theorem I.1 and I.1’ are special cases of The-

orem I.10 and proceed with some consequences. [To derive Theorem 1.1’
from Theorem 1.10 take S = rI on H1 and note that (1.14) holds since

for any y &#x3E; 0. Finally (1.1’) implies that B is onto, since B-1 maps bounded
sets into bounded sets.] We study in 1.5 the case where

COROLLARY 1.2. Under the assumptions of Theorem 1.1, i f H2 c R(B)
(which is the case when lbul -~ oo as Jul --~ oo), then A + B is onto.

COROLLARY 1.3. Assume A has Property I. Suppose B is demicontinuous
and B = 8y is the Gateaux derivative of a convex continuous function 1jJ, that is

Assume

Then

Corollary 1.3 follows from Theorem 1.1 and Proposition A.4.
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COROLLARY 1.4. Assume A has Property I. Suppose B is demicontinuous
and B = convex. 

Assume furthermore that for some R &#x3E; 0 and 6 &#x3E; 0

Then there is a solution u E H of

In particular if lim then A + B is onto.

PROOF. Assumption (1.2) implies (1.1) (see Appendix A, Proposition A.I) .
Since is convex we see from (1.3) that

for &#x3E;

Hence

for all

Thus for any f E H with If C 6/R, the convex function 1jJ(v) - (f, v ) has a
minimum on N(A ) which is achieved at a point VO.

Consequently Bvo - f E N(A)L = .R(A) which means f E + 
Thus 0 E Int [.R(A) + R(B)] = Int + B)]. q.e.d.

A more general form of this is given in Corollary 1.15.

COROLLARY 1.5. Assume A has Property I. Suppose B is monotone demi-
continuous, B = onto and

I

Then 0 such that for 0 C ~ 181  Eo

Corollary 1.5 follows from Corollary 1.3.
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REMARK 1.1. In solving equations of the form

one usually performs a bifurcation analysis about a solution uo E N(A)
satisfying Buo E N(A)L. Under our conditions, all solutions of (1.4) satisfy

constant for I s I small. Through a suitable sequence 8. - 0, u ~ there-
fore converges weakly to some uo e N(A) satisfying Buo e This will

be clear from the estimates occurring in the proof of Theorem 1.10.
If we strengthen condition (1.1) we also obtain a uniqueness result.

COROLLARY 1.6. Assume A has Property I. Suppose B is onto, and satisfies

with y  a.

Then Vf E H there exists a solutions of

and the solution is unique mod N(A). If furthermore B is one-one the solution
is unique. ,

PROOF. Note first that (1.5) implies (1.1) with any y’ &#x3E; y. So existence
of a solution u follow’s from Corollary 1.2. If w is another solution of (1.6),
then by (1.5 ) we have

Since y  a, the desired result follows.

REMARK 1.2. The condition R(A) = N(A)L can often be achieved by a
change of scalar product: Let A : D(A) c H - H be a closed linear operator
with dense domain and closed range. Assume that H = Q N(A)-a
direct sum not necessarily orthogonal. Any u E H can be uniquely decom-
posed with and U2 E N(A). If we define on H

the new scalar product
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then and N(A) become orthogonal. The conclusion of Theorem I.1

holds provided B is a monotone operator relative to  , &#x3E; and satisfies (1.1)
with respect to (, ). In general the conclusion of Theorem 1.1 is false if we
assume only that H = @ N(A) (in place of R(A) = N(A)-L) and

that B satisfies the monotonicity assumption as well as (1.1) with respect
to the original scalar product (, ). Indeed in .g = set

’ 

where g is a continuous nondecreasing function on .R such that lgl  M. B is
monotone and in fact (with ’ljJ(x, y) = G(x + y), G’ = g). Here

while R(A + B ) is the graph of the func-

tion g((I + g)-i)i ’ thus R(A + B) is «much smaller » than + R(B).
REMARK 1.3. Suppose A satisfies Property I. Let ’ljJ be a noneonvex C’

function on H such that B = 8y has bounded range and 1jl(v) - + oo as
Ivl 2013~ oo, v E N(A). It is natural to raise the question whether 0 E .R(A -E- B).
The answer is positive when A* = A and (for simplicity) dim H  o0

(see [A-L-P]). The answer is negative in general. Here is an example.
In H - B3 set

where:

f (t) is a smooth function satisfying

and

h(t) is a smooth odd function satisfying
and h(t) = constant for t ~ 2. Clearly B is bounded on B3 and
as

CLAIM. The equation Au + Bu = 0 has no solution. Suppose

is a solution. The first two equations state

cos» 11

sin;
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These imply and hence

Thus

Inserting these values in the third equation we find

contradicting the fact that f ~ ~ 5 .
To conclude this section we describe a result (without proof) in which A-’

is not compact. It is a special case of Theorem 1.16 of Section 1.4.

THEOREM 1.7. Assume A satis f ies all the conditions of Property I except
the condition that A-’ is compacct. Assume B: H --&#x3E; H is demicontinuous,
B = 1p convex and satisfies

d u, w E H wit h y C a .

Then

REMARK 1.4. In Theorem 1.7, that B = 8y cannot be replaced by the
condition that B is merely monotone, even if we assume

Vu, w E H -with y  oc.

Indeed in H = R2 consider

Here B is monotone, one-one and onto. But A + B is singular for every e
while ( for some small.

1.2. Applications to nonlinear wave equations.

To illustrate the results of 1.1 we present a simple application to a non-
linear wave equation in one space variable. We seek solutions which are
periodic in time.
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Consider the equation

in S~ : O ~ ~ ~ ~, 0 ~ t c 2~ with the boundary conditions

for which we wish to find solutions periodic in t of period g is assumed

periodic of period 2~ in t. (We may replace (1.8) by periodicity conditions
in x, period a, and obtain similar results.)

We assume g is measurable in (x, t), continuous in u, furthermore either g
or - g is nondecreasing as a function of u and satisfies in our first applica-
tion a.e. (x, t), du

where 27 &#x3E; 0, h,, h2 E L2. Assume y  3 or y  1 according as g or - g is

nondecreasing.

THEOREM 1.8. Under these conditions the problem possesses at least one

solution in L2. Furthermore if g E C°° and -~- &#x3E; 0, then there is a OCt)

solution.

In general if g is smooth, solutions need not be smooth, nor unique. For
instance any function of the form

with p E Loo, sup p  k/2 is a solution in case g - 0 for I u c k. Under ad -

ditional hypotheses on g we can get a uniqueness result:

THEOREM 1.9. In Theorem 1.8 i f add the condition

with y  3 or y  1 respectively.
Then the solution of (1.7) is unique mod N(A ) . If, furthermore, g is strictly

monotone in u for every (x, t), then the solution is unique.



239

This contains Theorem II in DeSimon-Torelli [DeS-T] (see also Mawhin
[M-2]) as a very special case. Note that in Theorem 1.8 we obtain existence
without assuming any Lipschitz condition on g.

Theorems 1.8 and 1.9 hold in fact for any period T which is a rational
multiple of 7c (then the range of - a2laX2 is closed). This fact as well

as other existence results for equations of this form will be presented in another
paper devoted to periodic solutions for hyperbolic equations under various
growth conditions on the nonlinearities [Br-N].

We give a brief description of the proof without carrying out all details.

PROOF OF THEOREMS 1.8 AND 1.9. Let.

with the boundary and periodicity conditions, where we choose the + (resp. -)
sign if g is nondecreasing (resp. nonincreasing) in u. Using Fourier series,
in fact a sine series (in x) expansion for

so Au as in [Ra-1], one sees easily that

H2 = N(A) is spanned by functions of the form sin ~x cos jt, sin jx sin jt,
j &#x3E; 0, that HI = and that A satisfies condition I with a = 3 or a = 1

respectively. 
’

We apply Corollary 1.2. Using the left-hand inequality of (1.9) one
sees that IBul - oo as lul - oo. Assumption (1.1) follows from the right-
hand inequality in (1.9) and Proposition A.6. Therefore A + B is onto.

Theorem 1.9 follows from Corollary 1.6, since (1.10) implies (1.5).
To see that u E C°° in Theorem 1.8 under the additional conditions on g

we rely on known regularity results (see for example [Ra-1] § 3): namely
if u = ul + U1 E 1~ (A ), u2 E N(A) then

(i) If ui E Hk (i.e. has square integrable derivatives up to order k),
then ’U2 E 

(ii) If u2 E Hh then ux E Hk, k = 0, 1, 2, .... -

Repeated application of this yields the regularity result. Q.e.d.

REMARK 1.5. If (1.9) (or (1.10)) holds withy = 3 or 1 respectively, there
need not be a solution of (1.7); for example the equations

: sin z sin 2t and sin x

have no solutions satisfying the boundary and periodicity conditions.
We have used Theorem 1.1 in proving Theorems 1.8 and 1.9 and because

of that we had to restrict y to be small in (1.9). Let us suppose however
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that g satisfies (1.9) with 27 &#x3E; 0 and some y. For certain functions g (for
convenience, assume g is nondecreasing in u) we may still solve (1.7 )-with the
aid of Theorem I.1’.

Consider g of the form

with some positive constant r about which we suppose r =A k2 - j2 for all
integers j &#x3E; 0 and k.

Assume Vb &#x3E; 0 t) E L2 such that

THEOREM 1.8’. Tlnder these conditions on g, (1.7) possesses at least one solu-
tion in L2. Furthermore if g E C°° and &#x3E; 0 then there is a Coo solution.

PROOF. As before we take A = (a2/at2 - B = g and we apply
now Theorem I.l’. This proves the existence. That u is in Coo under the

additional conditions follows as in the proof of Theorem 1.8.

Before leaving equation (1.7) we take up one more case. Consider again g
(nondecreasing in u) of the form g = ru + g(x, t, u) with r &#x3E; 0 but sup-

pose now that r = k2 - j2 for some integers j &#x3E; 0 and k. In this case r is

an integer, and the set 27 of pairs of integers j &#x3E; 0, k, for which r = k2 - j2,
is finite. With .A = - a2/aX2 as before, let H2 = N(A), and let H.,
be the space spanned by the functions sin jx cos kt, sin jx sin kt for j, k
belonging to the set ~; g3 is finite dimensional.

Finally let Hl be the orthogonal complement in H = .L2 of g2 (B H~3.
Denote by Ai the restrictions of A to the respective invariant subspaces H?,
j = 1, 2, 3. Clearly A2 = 0, and ~3 = - rI.

Concerning g we now suppose ’ such that

and

Set
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TREGRE1BI 1.8". Let g satisfy the preceding conditions and suppose

then (1.7) solution in L2. Furthermore if g E 000 and 0 then it

PROOF. The proof makes use of a variant of Theorem Theorem 1.20

of section 1.5. It also uses Prop. 11.4 of Chapter II. Setting Bu = u)
we see that Theorem 1.20 = rP1, gives the desired result provided
(1.33), (1.34) and (1.36) hold. Clearly (1.33) holds in view of (1.9"). In our
case the operator N of that theorem is simply

Thus (1.9") implies (1.34). Finally for j8 = g we see that and

consequently (1.36) holds in virtue of Prop. 11.4 (which uses (1.9"’)). The

regularity of the solution under the additional hypotheses is proved as
before. Q.e.d. 

’

Theorem 1.8" is related to Theorem 111.4 in [Ra-31.

1.3. The main result. 

In this section we prove Theorem 1.1 in a much more general form; in
particular A may be nonlinear. H is a Hilbert space with an orthogonal
decomposition H = H, Q+ H2. For an element u E H, we denote its de-

composition by u = u, + ~2 = Pl u + or sometimes write

CONDITIONS:

(1.11) is a demicontinuous operator with and

A, is an operator: c Hl satisfying: A, = Ax + S is

one-to-one, onto; is assumed to be continuous from weak H,
to strong j5B and

for some constants a, ao &#x3E; 0 and C.

16 - Annali de77a Scuola Norm. Sup. di Pisa
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(1.12) .,A2 is a maximal monotone operator:

Set

(1.13) B : H - H is monotone demicontinuous and B(O) = 0.
We write

(1.14) For some positive y  a, and some for every

v, w e H and every 6 &#x3E; 0, there exist k(3) and C(v, w) such that
Yu e H

THEOREM 1.10. tlnder the conditions (1.11)-(1.14),

REMARK 1.6. In Appendix A we present some conditions under which (1.14)
holds with S = 0, r = 8 = 0. Since (Bu - Bw, u - v) ~ (Bu - Bw, w - v)
we observe then (with the help of Proposition A.2 in Appendix A) that (1.14)
holds for any S and any r, for any y &#x3E; 0, in case

for some p  2.

REMARK 1.7. In the situation of Theorem 1.1 we take J3B = 

The conclusion of Theorem 1.10 tells when the equation Au + Bu = f
is solvable or almost solvable. Our method of proof consists in treating an
approximate equation: for s &#x3E; 0 

’
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With the aid of the Schauder fixed point theorem we first show that (1.15)
has a solution for any /eBB Next, for certain f, we establish bounds for lusl,
IAI Us I etc. independent of s. Finally we carry out a limit process as 6 - 0
using a variant of Minty’s trick.

LF,MMA 1.11. For every f E Hand e &#x3E; 0 there solution e of (1.15).

PROOF. There are several steps.

Step 1. For fixed u1 E HI, there exists a unique solution U2 = of

...4.2 is maximal monotone and B2(UI + u,) is monotone demicontinuous in u2.
Their sum is therefore still maximal monotone (see for example [Br6-2)
Corollaire 2.7). Hence (1.16) has a unique solution for each fixed ul (see [Br6-2]
Proposition 2.2).

Step 2. We claim that VUI E H,

where u = and hence

where C is independent of ~1 but may depend on 8.
This is based on (1.14) *ith v = w = 0 and 3 = 1: with U2 = q(ui),

since .A2 is monotone. This yields (1.17), from which (1.18) follows easily.

Step 3. T is continuous from H, into H2 in the strong topologies. Indeed
let uin - ul; we have
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Subtracting and taking the scalar product with u2n - u, we find using the
monotonicity of A2

or, adding an obvious term to both sides,

Since B is monotone we find

The desired result follows with the aid of (1.18).

Step 4. Conclusion of the proof of the lemma. To solve (1.15) we have
to find a solution U1 of

or

o

i.e.

We shall prove that T has a fixed point.
We show first that ~’ is continuous in the strong topologies: If U1n 

then i by Step 3. Because B is demicontinuous

converges weakly to
.... ~ ...

The conclusion fol-

lows from the assumption on 
We note further from our assumptions that maps bounded sets into

precompact sets and hence ~’ is a compact operator (here we use (1.18)).
Finally we shall verify that

provided I~ is large enough.
From (1.19) it follows by the Schauder fixed point theorem (applied

to PRT where PR is the projection on the ball of radius R) that .~’ has a

fixed point with norm  R.

Suppose Tu, = lui with i.e.
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Taking the scalar product with we find using (1.11) and (1.17)

where u = ui + 
Therefore for any 7:’&#x3E; 7: + r,

for any (choosing small). Finally

LEMM-£ 1.12. Under the hypothesis of Theorem I.10, for

we hacve

PROOF. Write

By (1.14)

where C is independent of ~, but may depend on v, wI, ..., 3.

Replacing Bu~ by its expression determined from (1.15), and 
by Av, we fiind

and since this yields a bound for

and then for lUll. The lemma is proved.
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Hence by monotonicity of A2 and by (1.11)

Looking at the Hl component of (1.15) we have

and so

Inserting these inequalities in (1.20) and recalling that
we find Vb &#x3E; 0

This implies that 0 as c ~ 0, for otherwise, for some sequence en ~ 0

and so 2013" oo. But then if we take 6  c we find

contradiction.

LEMMA 1.13. Under the assumptions o f Theorem 1.10, if

then IBluel, are bounded independent of 8.

PROOF. As in [Br-Ha] we use the principle of uniform boundedness but
the argument is a bit trickier. For any h E H with some small number

we may write

v, Wi’ ti and N depend on h. C(h) will be used to denote various constants

depending on h but independent of E.
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We have

Taking scalar product with u,., - v we find, since g2 is monotone,

for any
From (1.14) we see that Y6 &#x3E; 0

Using (1.11) and (1.15) we see that for any fixed

by choosing a’ close to « and r’ close to r, -

We claim that

independent of c.

Suppose not; then for a sequence 8n -7’" 0,

By (1.22 ) ’ such that

For r &#x3E; 0 set co(r) = Ins so that lim ro(r)/r = 0. Since (h, u~~) ~
we see by the principle of uniform boundedness that

a contradiction.
Thus (1.23) is proved.
Choosing h = 0 in (1.22) we find

independent of e.
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For (1.15) we obtain the desired estimate for Lemma 1.13 is

proved. Note that the proof gives no information at all about the size of the
bound for just its existence.

We are now in a position to complete the

PROOF OF THEOREM 1.10.

(i) To prove R(A + B) = R(A) + conv R(B) we need only show that
if f E RR(A) + conv .R(B) then f E R(A + B). This follows immediately from
Lemma 1.12 for our solution u, of (1.15).

(ii) To prove that R(A + B) and + conv R(B) have the same
interior, it suffices to show that any f E Int + conv R(B)) belongs to
R(A -4- B). Consider our solution u,. of (1.15). We will study the passage
to the limit in (1.15) as 8 - 0. For a suitable sequence s,1 - 0 we may
assert in view of the bounds of Lemma 1.13 and the fact that is con-

tinuous from weak Hi to strong Hi that

Set

For any ~2 with we have, by monotonicity,

o

i.e.

Using the monotonicity of A2 we find

and going to the limit as 8n -~ 0,

(cx) Set ~, = u1; then we find

Since the map is maximal monotone, y it follows

that
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(b) If we now set $ = u2 in (1.25) we obtain

Now use the Minty trick: for w, E HI and t set ~l = U1 - twl .
After dividing by t we find

Letting t --~ 0 and using the fact that wi is arbirary in ~I~ we may conclude
that

This together with (1.26) shows that

Theorem 1.10 is proved.
One can present many variants of Theorem 1.10 by slight modifications

of the hypotheses. For example here is a result in which we weaken the con-
ditions on B but strengthen those on A.

THEOREM 1.14. Assume (1.11)-(1.13). Assume furthermore that A2 satisfies

In place of (1.14) for some positive
and V6 &#x3E; 0

where C(w) depends only on w, k(b) only on ð. Then

PROOF. We indicate the modifications needed in the proof of Theorem 1.10.
These occur only in the proofs of Lemmas 1.12 and 1.13.

In the proof of Lemma 1.12 we have now
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where C is independent of 8 but may depend on w1, ..., 6. Then we find

Hence we obtain

since I by (1.27). This is similar to (1.20) and we pro-
ceed as before.

Turning to Lemma 1.13 we have, to begin with,

Hence

By (1.27) and (1.11) we find

Hence, as before for any

This is like (1.21’ ) and the proof of Lemma 1.13 proceeds as before. We con-
sider Theorem 1.14 proved.

Using Theorem 1.10 we may prove a more general form of Cor. 1.4:

COROLLARY 1.15. Let A satisfy conditions (1.11), (1.12 ) with ~S = 0, and
let B be demicontinuou,s, B = 8y, y convex. Assume that for some positive

 a/4,
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Assume furthermore that f or some R &#x3E; 0, ð &#x3E; 0

Then there is a solution u E H of

In particular if

then A + B is onto.

PROOF. Proposition A.1 implies (1.14) with S = 0, ð = 0 for some

y  a. Then just follow the proof of Corollary 1.4.

1.4. A « noncompact * variant of the main result.

We consider AL as in Theorem 1.10, with slight modifications. As before
H = Hi 0 .g2 is an orthogonal decomposition.

CONDITIONS

(1.28) D(Al) c HI is one-one and onto, All is demicontinuous
and Vu, D(JLi) and some « &#x3E; 0:

THEOREM 1.16. Assume Al satisfies (1.28), Å2 satisfies (1.12 ) and set
, - B ~ ,

I .Assume is demicontinuous, B = con-

vex continuous, and

Then

Furthermore if then u1 = ~ci and Bu = Bu’.
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REMARK 1.8. Assumption (1.29) holds if

or if

(which is equivalent to by Prop. A.5 and the
remark following it).

COROLLARY 1.17. Under the assumptions of Theorem 1.16, A + B is onto
if B is onto, A + B is one-one if B is one-one.

PROOF. If B is onto then Int [R(A + B)] = Int [R(A) + conv R(B)] = H.
Suppose u and u’ are two solutions of 

°

We deduce from (1.29) (see Prop. A.5) that

and therefore, by (1.28),

Thus

and so Since A1 is one-one, ul = We also

have which yields Bu = Bu’ (see Proposition 2

in [Br6-BI). In case B is one-one it follows that u = u’.

COROLLARY I.18. Let A be as in Theorem 1.16. Assume B : H - H is

demicontinnous, B = ’lp convex and

with q &#x3E; 0 and y  a. Then A + B is one-one and onto.
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REMARK 1.9. If A is linear and satisfies all the conditions of property I
in Section 1.1 except that is compact, then it satisfies the condition of
Theorem 1.16 if we set A, = A2 = 0; we obtain Theorem 1.7.
In case A is also self adjoint and B is in C’ then Cor. 1.18 coincides with a
result of Mawhin [M-4].

In the proof of Theorem 1.16 we shall use

LEMMA 1.19. Under the assumptions of Theorem 1.16, for every 8 &#x3E; 0

and f E H, the equation

has a solution.

PROOF. Set so that AE is one-one onto and Vv, v’ E H

In addition is demicontinuous. Equation (1.30) can be written as

where

or

with

1J1 is a maximal monotone operator (since B is) and by Proposition A.5,
(1.29) implies 

-

(more precisely we have

iet 1~ satisfies

Therefore N is monotone; in fact N is maximal monotone since
is onto for is maximal monotone and

is monotone demicontinuous). Consequently N is one-one onto.
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PROOF OF THEOREM 1.16. Since B = 8y and satisfies (1.29) it follows
from Prop. A.5 that

Vu, v w E H, some 

Suppose first + conv R(B) and write

We deduce from (1.31) that

Let Us be the solution of

Setting u = u in (1.32), using the monotonicity of and (1.28), we find

or

Since y’ a we see that

It follows that 8U28 - 0, and f E _ proving that

Suppose now that some ball of radius r &#x3E; 0 about f lies in R(A) +
+ convR(B). For any h E H, Ihl  r, we split

We deduce from (1.32) that for our solution Us of (1.30’)
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or, as before,

o

i.e.

Hence

and by the principle of uniform boundedness

Finally, we have for s, E’ &#x3E; 0, by Prop. A.5,

Therefore

which implies that .Alule converges strongly as 6 -~ 0. Consequently
ule - ’UI. Suppose ~ U2 and set u = UI + ’U2. We have A1 ul
and we may now follow the argument for passing to the limit as 8n ~ 0 in
the proof of Theorem 1.10 and conclude that Au + Bu = f. We have proved
that Int + + B). In the proof of Cor. 1.17 we al-
ready established the last assertion of Theorem 1.16; the theorem is there-
fore proved.

1.5. Another variant.

In condition (1.11) of Theorem 1.10 we required Ai -E- ~S to be invertible.
With the aid of the recession function borrowed from the next chapter we
will treat a case in which this condition is modified. For simplicity we replace
condition (1.14) by a much more restrictive hypothesis.
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Consider a Hilbert space .H with an orthogonal decomposition

where Ha is finite dimensional. Let and

be operators satisfying conditions (1.11), and let

as in (1.12). Let be a continuous mapping of ~3 into Ha. Set

is monotone demicontinuous, B(o ) = 0, satisfying: for

some constants &#x3E; 0, Vb &#x3E; such that

Furthermore we suppose the operator

satisfies

We wish to solve

and we shall make use of the recession function (defined in (7) of the in-

, troduction) of the operator N.

THEOREM 1.20. Let A and B satisfy the preceding conditions. If

then (1.35) has a solution.
The proof is similar to that of Theorem 1.10 but much simpler in detail

because of the strong hypotheses (1.33), (1.34). First we prove the analogue
of Lemma 1.11.
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LEMMA 1.21. For every f E Hand s &#x3E; 0 there exists a solution 11, = u&#x26; of

PROOF. As in Steps 1-3 of the proof of Lemma I.11 (it is even simpler here)
one sees that for fixed Hs there exists a unique solution

of

Taking scalar product with ’U2 we find, since A2 is monotone,

and it follows from (1.33) that Vb &#x3E; 0, 3k,, independent of e such that

To solve (1.37) we wish to solve

or

The map T = Ti + Hi (B Hl O H3 is continuous in the strong topo-
logies and compact (here we use the fact that H3 is finite dimensional). By
(1.34) and (1.38) we see that T (ul + + usB ~ 0 as ul -~- u3 ~ - oo .
Using the Schauder fixed point theorem we infer that T has a fixed point.
The lemma is proved.

Next we obtain estimates for the solution Us as in Lemma 1.13.

LEMMA 1.22. I f (1.36) holds, then

are bounded independent of B.

17 - Annali della Scuola Norm. Sup. di Pisa
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PROOF. Equation (1.37) takes the form

Using (1.34) and (1.3 7 ) 1 we see that and hence c C for some

constants C independent of 8. Here we have also used the conditions (1.11).
It follows again from (1.37)1 that

Now suppose is not bounded. Then for some sequence of Els we would
have 3 and so from (1.38),

If we now take the scalar product of (1.37) with v.. we find, using the mono-
tonicity of A2 and (1.33)

Letting 8 -&#x3E; 0 through the sequence, we find, in view of the bounds for
, and the definition (7) of JN,

which contradicts (1.36). Therefore we must have  C and the lemma is

proved.

PROOF OF THEOREM 1.20. We have only to carry out a limit process
in - 0. This proceeds exactly as in part (ii) of the proof of The-
orem 1.10. For a suitable sequence 8n ~ 0 we find

and we obtain the analogue of
and

We then just follow the remainder of the proof of Theorem 1.10.
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CHAPTER II

THE RECESSION FUNCTION

11.1.. Definition, examples, elementary properties.
11.2. How to determine using the recession function.

In Chapter I we have studied geometrical properties of R(.A. + B). It

is not always easy in a specific problem to decide whether a given f belongs
to + R(B) (or to + conv R(B»). We introduce in Chapter II
a new tool: the recession function of a nonlinear operator. It provides a con-
venient way of checking whether f E .R(A) + conv .R (B ) or f e Int [R (A ) --
+ conv .R(B). Hence it leads to a simple analytic description of + B)
which is especially useful when dealing with the solvability of nonlinear par-
tial differential equations. The recession function also plays an important
role when B is not monotone; in that case we no longer have .R(A + B) rr

+ .R(B) ; nevertheless we can give su f f icient conditions for f to lie
in .R(A + B) (or Int + B)), expressed in terms of the recession func-
tion of B. 

II.I. Definition, examples, elementary properties.

Let H be a Hilbert space and let B be a nonlinear map from H into H.

For u E H we define the recession function

The term « recession function » has been used previously in convex analysis
(see [Ro]) to denote lim where y is a convex function. As we shall

t-~ + ~

see, (Proposition II.3), the two quantities coincide when B is the gradient of 

PROPOSITION II.1. JB is a lower semi continuous function from H into
1 and , and u E H.

PROOF. It is clear that JB is positively homogeneous of order 1. We show
now that for each the set
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is closed. Let u. E E be a sequence such that u. Since JB(un)  k, for
every n there egists tn &#x3E; n and ull such that

and

(resp. in case k = - Therefore

and thus 

REMARK 11.1. Clearly JB(u)  lim inf (B(tu), u). In particular JB(o) is
-~.+00

either 0 or - oo, since JB is positively homogeneous.

REMARK 11.2. When B is monotone lim (B(tu), u) exists (possibly -j- oo).
Indeed if t &#x3E; s, we have 

and thus the function t 1-+ (B(tu), u) is nondecreasing.

PROPOSITION 11.2. Assume B is monotone and 8ublinear i.e.

Then for each u E H

where

denotes the support function o f conv R(B).

In particular, JB is convex; in addition, if R(B) is bounded, then JB is con-
tinuous.

PROOF. From the monotonicity of B we have

Since B is sublinear, for each 6 &#x3E; 0 there is a C~ such that I
for afl w E H (we use here the fact that B is bounded on bounded sets, see

Appendix A, Proposition A.2). It follows that lim = 0 uniformly
t- + 

as v remains bounded. Passing to the lim inf in (2.1) as v - u and
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we find

Therefore

On the other hand we always have

and therefore

PROPOSITION 11.3. Assume B satisfies

where C(v) is independent of u.

(Assumption (2.3) holds for example when B = azp is a gradient of a
convex function with Then, for each u E H

In addition if B c convex continuous on H, then for each u E H

PROOF. From (2.3) we have

and consequently

Hence

On the other hand we always have
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Assume now that B c (the subdifferential of ’ljJ is a multivalued opera-
tor and we assume that .B is a section of 8y).

We have

Thus

(recall that the function is nondecreasing and so

lim exists). Consequently
1- + -

On the other hand

and therefore

REMARK 11.3. In general if B is monotone, but not sublinear or a gradient,
it may happen that lim Consider for example in

.H’ _ .R2, B a rotation by + ~/2. Then (B(tu), u) =- 0 while

An example. 
’

Let .g = E2(Q), D a measure space. Let g(x, u): Q x R - R be measur-
able in x and continuous in u. Assume for a.e. and all 

with

with

Set

(so that
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PROPOSITION 11.4. set for u E H. Then for each

ucH

REMARK 11.4. The right-hand side in (2.6) can be written as (dropping
the volume element dz, as we often do)

and thus belongs to i

PROOF. Let I be such that

Extracting a subsequence we can always assume that
a.e. and that Vn, for some fixed function We have

and so

where k is a fixed integrable function. We write

and note that

and

We conclude by Fatou’s lemma that
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11.2. How to determine R(A + B) using the recession function.

PROPOSITION 11.5. Let N be a closed subspace of H and let B be a non-
linear map in H. The following conditions are equivalent

REMARK 11.5. Using (2.2) we see that

implies (2.8). It is equivalent to (2.8) in case B is monotone sublinear (Pro-
position 11.2) or when B = 8y (Proposition 11.3). _

REMARK 11.6. When B is monotone demicontinuous then

(where denotes the orthogonal projection on 
This follows from Theorem 4 in [Br-Ha] since A = Pri is a gradient of

a convex function.

PROOF. (2.7) =&#x3E; (2.8).
Suppose by contradiction, that f 0 N1 + conv .R(B). By the Hahn-

Banach theorem there exist ~ E H and a E R such that

It follows, since N’- is a linear space that

In addition

-a contradiction.

(2.8) =&#x3E; (2.7).
It suffices to show that (2.7) holds for f E N.L + conv 1~(B). But, if
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vc-N we find

PROPOSITION 11.6. Let N be a finite dimensional subspace of H and let B
be a nonlinear map in H. The following are equivalent

PROOF.

Since is lower semicontinuous, it is bounded below by a
positive co on Thus

Therefore it suffices to prove that fEN 1. + conv R(B), or, equivalently,
that PN f E P~, conv (PN denotes the orthogonal projection on N). Sup-
pose by contradiction that P,,f 0 PN conv R(B). Applying the Hahn-Banach
theorem in N, we find 3~ E .N, ~ ~ 0 such that

(we are using here the assumption dim N  oo). Thus

-a contradiction.

(2.11) ~ (2.10).
Let since a ball is contained in

N1 + conv R(B), we have as in the proof of Proposition 11.5

Hence

REMARK 11.7. When dim N = oo, the assumption
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does not imply in general that

Indeed, the conclusion would lead to

But it may well happen that conv R(B) has an empty interior. For
example we may have N = H, conv R(B) is dense but conv has an

empty interior; in this case

Combining Propositions 11.5 and 11.6 with the results of Chapter I leads
to some interesting applications. We mention only one simple example:

COROLLARY 11.7. Let A : D(A) c H - H be ac linear operator satisfying
Property I of § I.I. Let B : H --&#x3E;- H be au monotone demicontinuous operator
satisfying

with y  Given f E H, the following conditions are equivalent

In addition i f dim N(A)  00, the following are equivalent

PROOF. (2.13) =&#x3E; (2.14).
It follows from Proposition 11.3 that
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Applying Proposition 11.5 with N = N(A) we see that

By Theorem I.1 we know that

(2.14) ~ (2.13).
This follows again from Propositions 11.3 and 11.5.
To prove that (2.13’) =&#x3E; (2.14’) we use Proposition 11.6 instead of 11.5.

EXAMPLE II.1. Let H = L2(Q) and let A : D(A) c H - H be a linear
operator satisfying Property I. Let g(x, u) : be measurable in x,
and continuous nondecreasing in u.

Set Bu = g(x, u). Assume for a.e. x and all u E R

Set g-,.(x) = lim g(x, u) (possibly + 00).

COROLLARY 11.8. Given f E L2, the following conditions are equivalent

In addition i f dim N(.L4.)  00, the following are equivalent

PROOF. We apply Corollary 11.7. We know (see Proposition A.6)
that (2.15) implies that (2.12) holds provided y is replaced by any y’&#x3E; y.
It follows from Proposition 11.3 that = lim (B(tv), v) and the mono-t- + 

tone convergence theorem implies that for every v E H

the integral makes sense in (- oo, + oo] since

and
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CHAPTER III

NONMONOTONE OPERATORS B

iii.l. Abstract theory for nonmonotone B.

111.3. Au + g(x, u) = f, A monotone, g strongly nonlinear.
111.4. Au + g(x, u) = f for systems.

In Section 11.2 we have seen that for some classes of monotone oper-
ators B the condition JB(v) &#x3E; (f, v) Vv E (resp. JB(v) &#x3E; (f, v)
Vv E N(A), v # 0) is equivalent to f E + B) (resp. f E Int [R(A + B)]).
In case B is not monotone, it is no longer true in general that -~- 
~ R(A) -f - JR(~). However we shall prove for a large class of nonmonotone
operators B that the condition JB(v) ~ (f, v) Vv E N(A), v =1= 0 (resp. JB(v) &#x3E;

&#x3E; (f, v ) Vv E N(A ), v ~ 0) is still a sufficient condition for f to lie in

.R(A -f- B) (resp. Int [R(A + B)]). In Section 111.2-4 this is applied to
H = L2 of a measure space and B of the form Bu = g(x, u) for u(x) E H.
In this chapter we do not use the results of Chapter I.

111.1. Abstract theory for nonmonotone B.

In a Hilbert space lq let A : D(A) c H - H be a linear operator satisfying
Property I withy in addition, dim N(A)  oo. In other words A is a linear

densely defined closed operator such that N(A) = (*) and

is compact .

[Clearly (3.1) implies that dim N(A)  00. It also implies that R(A) is

closed and A-’: R(A) - N(A)-L is compact. Indeed if fn E R(A) is such

that f. - f, let un E with Aun = f n . Then un is bounded; otherwise
vn = ’Un/lunl would satisfy vnk - v with v E N(A) n N(A)-l and Ivl = 1,
a contradiction. Hence Unk - u and Au = f, i.e., 7 f E R(A).]

(*) Throughout this chapter one should always keep Remark 1.2. in mind-in
case H has a direct sum decomposition N(A) which is not orthogonal.
See the example added in proofs.
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THEOREM III.L. Assume B is demicontinuous and satisfies

where 0,, depends only on y, and M is independent of y and v.
Let f E H be such that

then f E R(A -~- B).
In addition if

then f e Int [R(A + B)].

REMARK 111.1. One might ask whether in Theorem III.1 the condi-
tion (3.4) may be replaced by the weaker one:

This is not the case, as the following example with H = ~2 shows:

Here fJ is a C°° nondecreasing function: R - R with fl(r) = 0 for r  0,
= 2 for r &#x3E; 1. We have

and N(A) is spanned by This example satisfies all the conditions

of Theorem III.I-with (3.4’ ) in place of (3.4)-but it has no solution as
one easily sees.

Theorem III.1 is an immediate consequence of our next result in which H

has an orthogonal decomposition H = g1 O H2 with HI = R(A), H2 = N(A).
For an element u E g we write or sometimes
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THEOREM 111.2. Assume A has Property I with dim N(A)  00. Let

B : H - H be demicontinuoug and bounded (i.e. B maps bounded sets into
bounded sets). Assume for a given f E H, Vu E H

for some positive constants y  and C. Suppose

then dist(f, R(A -~- B)) Ity/L-t. Suppose

with co &#x3E; 0 and then f E Int [

PROOF. Given 8 &#x3E; 0 we shall prove that for every f E H the equation

has a solution and then let e --7 0.

Step 1. (3.8) has a solution.
Set As = EP2 + A, As is one-one onto Hand is continuous from

weak g into strong H. Equation (3.8) is equivalent to

We shall verify that

provided is large enough. The Schauder fixed point theorem will then

imply that T has a fixed point with norm  -B as in Step 4 in the proof of
Lemma 1.11. Suppose Tu = lu with ~, ~ 1, i.e.

Taking the scalar product of this ’with u and using (3.5) we find
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Finally we use the fact that

and = f - to conclude that

(where C may depend on E). Choosing R large enough we see that (3.9) is
proved.

Step 2. For u~ a solution of (3.8) we study now the behavior of ue as
E - 0. Taking the scalar product of (3.8) with ue we find using (3.5)

where we fix a’ in y  a’ C a ; hence

Using (3.8) again we have

Combining (3.11) and (3.12) we obtain

If for a sequence En 2013~ 0, remains bounded, it follows from (3.11) that
remains bounded as well as IUIEnl. We conclude (extracting

another subsequence) 2013~ and that u satisfies

In what follows we may therefore assume that

From (3.11) and the inequalities we deduce that

We may extract a sequence En 0 such that

with v E N(A) and lvl = 1.
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Dividing (3.13) by IU2el and passing to the limit we obtain

If (3.6) holds we conclude that

lim sup , 4 for every oc’ with ~

and so dist( f, R(A + B)) c,uy/a.
If (3.7) holds we have

i.e. -a contradiction.

This means that when (3.7) holds there must be some sequence En - 0
such that IU26,J  C and consequently + B ). Clearly (3.5 ) and (3.7 )
are stable under small perturbations of f so that in fact f E Int [R(A + 

Condition (1.14) in our main result Theorem 1.10 of Chapter I is in some
sense weaker than (3.5) in that we permitted an additional term - r[ui]2
on the right-hand side. In fact we may include such a term here; it is easy
to see that the proof of Theorem 111.2 yields the following sharper form:

THEOREM III.2’ . Let A, B be as in Theorem 111.2 except that in place
of (3.5) we assume

for some positive constants y  a, ~C and 0, and some
Then (3.6) implies

while (3.7) implies f E Int [R(A -f- B)] provided

Next we describe a corollary which is useful when dealing with an equa-
tion of the form
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where B is, for example, a gradient of a convex function, and Q is a per-
turbation « going to zero at infinity.)} It bears some relation to Theorem I.1

(here B need not be monotone, but dim N(A)  oo).

COROLLARY 111.3. Assume A has Property I with dim N(A )  00. Sup-
pose B, Q : H ---&#x3E; Hare demicontinuous, B is bounded and R(Q) is bounded.
Assume further Vu, w E H, Vb &#x3E; 0

Finally assume that Vu E H, lim (Q(tz), z) = 0. Then

and

In particular,

implies f E + B + Q), and

implies I

PROOF. Let + conv R(B), so that f can be written

ibwi, It follows from (3.14) that 

On the other hand Vu E H, 0 we have

Indeed, suppose the contrary, then there exists 6, &#x3E; 0 and a sequence u.
such that

18 - Annali della Scuola Norm. Sup. di Pisa



274

In particular

and thus lim

Extracting a subsequence we may assume that

Therefore a contradiction.

Combining (3.15) and (3.16) we find Vu E H,

with y  y’  a.
Clearly (3.17) implies Vb &#x3E; 0

o

i.e.

Therefore Theorem 111.2 applies and we may conclude that
In case f E Int [~(.A) + conv .R(B)], we find

Theorem 111.2 yields f e Int [R(A + B + Q)].
We conclude with a simple consequence of Theorem 111.2.

COROLLARY 111.4. Assume A has Property I with dim N(A)  oo. Let

B: H --* H be demicontinuous and bounded. Asgume Yu E H’

for some positive constants y and It. Suppose

Then there exists Âo &#x3E; 0 such that for every A with 0 C ~ I A (  ~1o the equation
Au -f- lBu = 0 has a solution.

PROOF. Clearly ~.B satisfies (3.5) with f = 0 and Ay in place of y, Ap in
place of ,u. Since JÂB = we see that (3.7) holds with Âco in place of co.
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Finally, we have provided 1 &#x3E; 0 is small enough. Re-

placing A by - A we may handle the case A  0.

111.2. Au - in Q.

We now restrict ourselves to a special H = L2(Q), S a a-fmite measure
space, and B of special form. Let .A.: D(A) c H - H be a linear operator
satisfying Property I with dim N(A)  00. Let g(x, u): 92 R be

measurable in x, and continuous in u. Set

Assume

and

We shall sometimes assume

or

COROLLARY III.5. Assume (3.18), (3.19) and that one of the assum p -
tions (3.20) or (3.21) holds. Let f E L2. If

then f
If

then f E Int [R(A + B)].

If g is independent of x, (3.22) clearly implies g_ ~ 9+ .
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REMARK 111.2. Since g+ (respectively g_) can take the value + oo (re-
spect. - oo), assumptions (3.22) and (3.23) have to be verified only for the
functions v E N(A), v :A 0, such that a.e. on [g+ _ + oo] and 
a.e. on [g- = - oo]. In case, say, g+ - + oo, assumption (3.22) on f
should read

(respectively for (3.23), v =A 0, v  0 a.e.)
In many instances the set {v c- N(A), v 0 0, a.e.} is empty; we can

conclude then that R(A + B) = H (since any satisfies (3.23)). This

is true for example when Au = - d ~c - lu, D (A) - H 2 r1 l~a and I # ~.~
denotes the first eigenvalue of - d with zero Dirichlet data).
Without carrying out the proof, we remark, in addition, that if (3.18),

(3.19) hold, and a stronger form of (3.23):

for some eo : 1 then f E Int

PROOF OF COROLLARY 111.5. It follows from (3.18) and (3.19) that

Vu E R, a.e. x E S~, for some y’ oc, c E 
Indeed we have

which yields (3.24).
When we assume (3.21) the conclusion follows directly from Theorem 111.1.

Turning now to the case where (3.20) holds, we shall prove that (3.5)
is satisfied for some y  a and all p &#x3E; 0, so that we can apply Theorem 111.2
to prove Cor. 111.5.
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We fix a function 0 E .L2 such that = 1, 8 &#x3E; 0 a.e. on Q and, more
precisely, 0(z) &#x3E; 0n &#x3E; 0 on Qn where Q = U Qn and meas oo.

n

Given It &#x3E; 0, any f satisfying (3.22) can be split as

with and

Indeed set

Note that since g+ &#x3E; - c and g-  c and thus max{g, - c} E K. We
wish to show that 

Suppose the contrary that P2f ft P2K. Applying Hahn-Banach in N(A)
we find $ E N(A. ), ~ ~ 0, such that

In particular

a contradiction.

We have

We now split

On Q%Qn we use (3.24) to find

Fixing n large enough (depending on so that
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yields

We now consider . Since

on we find by applying Egorov’s theorem to the sequence ==

= Inf g(x, u), that Vb &#x3E; 0, 3E w’ith meas E  ð, and there exists .R
u&#x3E;k

such that

Similarly we may assume

Hence

Consequently

By (3.19) a similar inequality holds for a.e. and so that
in fact we find for a.e. x E Vu E R,

Finally we write

We estimate the first integral using (3.27) and the second integral using (3.24)
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so that

Choosing 6 &#x3E; 0 so small that meas L~’ l 3 implies ~ we find

Thus we obtain

The desired result follows by combining (3.25), (3.26) and (3.28).

111.3. Au - A monotone, g strongly nonlinear.

Let H = L2(D) and suppose. has Property I with
dim N(A)  oo and . If g(x, u) satis-

fies (3.18) and

for some y  oo, then, as we know by Theorem 111.2,

When a = + oo, we may use a different technique to handle « strongly »
nonlinear equations-that is g(x, u) growing faster than linearly in u.

Assume now that meas. Q  oo and

(3.29) A: D(A) c H ~ H is a linear maximal monotone operator. Thus H
has an orthogonal decomposition we write
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(3.30) The set is relatively
compact in El (and therefore dim N(A)  00).

(3.31) There is a constant C such that

(3.32) g(x, u) : Q X R - R is measurable in x, continuous in u and d1~ &#x3E; 0

with I

THEOREM 111.6. Assume (3.29)-(3.33) hold. Let f E Lco be such that (3.23)
holds. Then there exists u E El with g(x, u) ELI, u - u) E L1, which is a solu-
tion of

where A denotes the closure of A in Ll X L1.

REMARK 111.3. If we strengthen (3.31) to

we may take f E L2 instead of L°’, and assume (3.33) with c E L2 (instead of
c E L°°). In addition the solution u lies in L2 and satisfies Ju + g(x, u) = f
where.Z denotes the closure of A in L2 x Ll (the proof is essentially the same
as the proof of Theorem 111.6). (3.31’) holds if is closed in L2 and

(Au, 2c - v) -&#x3E; - C(v) Vu, v E D(A), by Proposition A.7 (for example, A = A*
or A trimonotone).

PROOF oF THEOREM 111.6. Set gn(x, u) = u) where

n &#x3E; 0 integer

Clearly (3.33) implies
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There exists un E D(A) solution of

the existence follows from the Schauder fixed poimt theorem applied in L,
to the equation

,~ , k ,

Multiplying (3.35) by un yields

On the other hand, by (3.33) we have

Therefore

Splitting into we see using (3.32) that VR &#x3E; 0

Thus

and since we obtain VR &#x3E; 0

that is

Going back to (3.36) we find
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Combining (3.37) and (3.38) and using (3.31) leads to

CLAIM. L remains bounded as n - oo. If not let

and set’ It follows from (3.39) that , 0 next

in
11 .. y,. 11 JI

) ’with Finally setting we find

Passing to the limit as in the proof of Proposition 11.4 yields

. a contradiction.

Therefore II Ll remains bounded, as well as

and / It follows from (3.30) that
and thus

We shall deduce from Vitali’s convergence theorem that ; i
in El. We have only to verify that the integrals

uniformly absolutely continuous. By (3.32)

and so

provided meas. E  3 (first fix B large enough so that C/R  8/2 and then 6
so small that  sl2 for meas. E  6).

E

The conclusion follows directly.
Thus we find Au -~- g(x, u) = f. Q.E.D.

111.4. Au + = f for systems.

Corollary 111.5 admits a partial extension to systems. Set .g = (L2)N,
and let A :. be a linear

operator having Property I with dim N(A)  oo . Let i
be measurable in x and continuous in u. Set I In place
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of g~ we consider now the recession function JD of g, that is RN
is defined by

Assume for some f ixed C E L2 and for every y &#x3E; 0

If f E (~L2)N is such that

then

i f in addition

then

PROOF. We apply Theorem 111.1. Note that as in the proof of Pro-
position 11.4, (3.40) implies

(the integral J 
~, ~ dz makes sense in (- oo, + 00] since ,

Example III.L. Suppose G(x, u): S~ X RN - R is measurable in x, convex 01
in u. Set g(x, u) = DuG(x, u) : S2 RN. Assume VO&#x3E; 0

then (3.40) holds (see e.g. the proof of Proposition A.4 with w = 0). In this
case it is in fact sufficient to assume that (3.43) holds for some 0  a/2
(apply Corollary 11.7).

In case a = + oo we may also handle «strongly nonlinear ~) systems.
For example Theorem 111.6 can be generalized as follows (here we assume
meas. S~  oo).
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THEOREM III. 6’. Assume is a linear maximal
monotone operator satisfying (3.29)-(3.31). Assume g(x, u) : Q X RN - RN is
measurable in x, continuous in u and satisfies

(3.44) For some f ixed c E Lex) and for every R &#x3E; 0

Let J be such that (3.42) holds, then there exists u E (LIL)N such that
solution of the system

where A denotes the closure of A in 
We omit the proof. It is quite similar to the proof of Theorem 111.6.

REMARK 111.4. Suppose is measurable in x,
convex C’ in u. Set g(x, u) = DuG(x, u). Assume g(x, 0) E (L°°)N and VR&#x3E; 0

then it is easy to check that (3.44) holds (proceed as in the proof of Propo-
sition A.4).

REMARK 111.5. If we strengthen (3.31) as in Remark Ill.3, then we may
take f E L2 and c E L2 in Theorem 111.6’.

CHAPTER IV

ELLIPTIC EQUATIONS

IV-1. L monotone; resonance at the first eigenvalue.
IV.2. Resonance at the first eigenvalue for second order equations.
IV.3. Resonance at any eigenvalue for self adjoint L.
IV.4. Elliptic systems.

In this chapter we shall apply our abstract results (except in Theorem IV.4)
to semilinear elliptic equations of the form
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In IV.1-3 we treat several scalar equations; it is clear that many variants
and refinements of these models can be given. In the last section we treat
elliptic systems.

In the scalar case we take .L to be a strongly elliptic operator of order 2m
with coefficients in though it is clear from the proofs that little regularity
is required when dealing with generalized solutions. For simplicity we con-
fine ourselves to zero Dirichlet data, but many other boundary conditions
could be imposed. As usual we denote by go the H’~ closure of 0-(Q). We
may consider L as an unbounded linear operator where

D(L) - H2m n Clearly L is closed, R(L) is closed, N(L) is finite dimen-
sional.

In Section IV.1 we assume that L satisfies

Therefore L is maximal monotone (since ÂI + L is onto for large positive A,
by Garding’s inequality). Also we have = and thus L has

property I of I.1 with oc = + oo. Zero is therefore the first eigenvalue of L
when {01.

We treat nonlinearities of the form Bu = g (x, ~c (x)) where g : SZ X R - R
is measurable in x, continuous in u ; set

In IV.1 we consider two cases, g has at most linear growth in u, or g has
unlimited but one sided growth (for example ~~)&#x3E;0 for u &#x3E; 0, g  0 for

u  0, but no other growth condition is imposed on g). In the second case

we obtain only weak solutions and the results are related to those of Mc-

Kenna, Rauch [McK-R] and De Figueiredo, Gossez [DeF-G].
In IV.2 a different method based on sub and supersolutions yields the

existence of smooth solutions for second order equations. In IV.3 we treat
non-monotone self adjoint L, for example L = - 4 u - with 2, an
eigenvalue of - 4 other than the first one.

Finally in IV.4 we treat some special elliptic systems for pairs of scalars

for example with linear part of the form
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For the nonlinear term B = g(x, u) we take a gradient operator or a mono-
tone operator which is o(/ull). Four different types of examples are presented.

IY.1. L monotone; resonance at the first eigenvalue.

Assume

for some 0 &#x3E; 0 and b e L2,

with c E L 2, dELl, 

PROPOSITION IV.1. Assume (4.1)-(4.3). Let f E L2.
If

then f
If

then f E Int [.R(L -E- B)].
In addition i f b e LOO, f E C°°, g E C°° then the solution u o f Lu + Bu = f is Coo.

PROOF. In the proof of Cor. 111.5 we have seen that (3.18), (3.19),
i.e. (4.3), (4.2), imply (3.24); existence therefore follows from Theorem 111.2.
The proof of the regularity of the solution is a standard bootstrap argument.
Let u E H2m 0 H’ be a solution of Lu + Bu = f. If m &#x3E; n/4 it follows

that u is Holder continuous. Then all (x, u) derivatives of g are bounded.
Continuing in this way we find easily with the aid of the Schauder esti-
mates that u E C°°. If m  n/4, it follows from the Sobolev inequalities
that u E Ll for 1/p = 2 - 2m/n (if m = n/4, u E Vp  oo). From (4.2)
we deduce that g(x, u) E L". By the elliptic regularity theory we infer that
u E H2m,’D. Applying Sobolev once more we find that either u is Holder con-
tinuous or belongs to La with llq = 1/p - 2m/n = 2 - 4m/n. Continuing
this way we see that u is continuous and then as before u is necessarily in Coo.
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We now drop the growth restriction (4.2) and prove the existence of

generalized solutions.
Assume

PROPOSITION (4.1 ), (4.3), (4.6). Let If (4.5) holds,
then there exists a weak e of Lu -+- Bu = f with u ~ g(x, u) E Li

(so that g(x, u) 

PROOF. It relies on Theorem 111.6 (or more precisely Remark 111.3).
Here we have in fact

Indeed by Garding’s inequality

and (4.7) then follows provided we can show that

for some constant C. Assume (4.8) does not hold. Then there is a sequence
2~n E D(L) with

In virtue of Garding’s inequality above we see that

independent of n .

Consequently a subsequence, still denoted by un, converges strongly in L2
to some function and since ~ 0 we see that u E N(L), i.e.
u 1- R(L). But u E R(L) and = 1-contradiction; (4.8) is proved and
so is (4.7).

REMARK IV.I. Using (4.7) it is not difficult (via the same proof as in
Theorem 111.6) to verify that we need only assume t E Ll and c E LV (c oc-
curs in (4.3)) where p is such that Ho c (i.e. p = 1 for m &#x3E; n/2, p &#x3E; 1

arbitrary for m = n/2, and p = 2n/(n + 2m) for m  n/2).



288

COROLLARY IV.3. Assume now that g(x, u) is non decreasing in u,

g(x, 0) = 0, Vu c R and for some constant 0,
a.e. x E Q, (for example g may be odd in u). Then the

operators Au = Lu + Bu with

is maximal monotone in H. Here rLu is meant in the distribution sense; for
u E D(A) we see that g(x, u) ELI and hence .Lu E .L1.

PROOF. A is monotone, i.e. Vu, v E D(A)

By hypothesis, y the first term is non-negative and we have only to verify
that the integral is well defined-which is easy to do using the conditions
on g since u) . ~v~ u) .u, g(x, v) w, ~g(x, - To prove
that A is maximal, it suffices to show that given any f E L2 we can solve

We are reduced to Proposition IV.2 with I -f-- L in place of L. Since

N(I + L) = 101, (4.5) holds for any f E L2 Q.e.d.

REMARK IV.2. Assume g is C°°. If g has a « mild » polynomial growth,
it is a straightforward bootstrap argument (as in the proof of Proposition IV.1)
to show that f E C°° implies u E C°°. In the general case we don’t know any
regularity result, and in fact we believe that the solution need not be smooth
except when L is of second order-see the next section.

IV.2. Resonance at the first eigenvalue for second order equations.

In this section we consider L of second order and permit g to have un-
limited but one sided growth in u. Here we make use of sub and super-
solutions of the equation and consequently we can treat the most general
elliptic second order operator
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with coefficients in C’(i2); a2’ is positive definite. We consider Dirichlet
boundary conditions it = 0 on 8Q. The first eigenvalue ~,1 of M (i.e. with
smallest real part) is real and. as is well known, the eigenspace is spanned
by a function vl &#x3E; 0 in S~. Let &#x3E; 0 be the corresponding eigenfunction
for the adjoint operator M* - Â1. Writing M - ~,1 = L, we wish to solve

Since we may add a constant to Â1 we may assume ~(~c) &#x3E; 0 in S~; then ~,1 &#x3E; 0.

Assume

With i

THEOREM IV.4. Assume (4.10), (4.11). Let such that

then there exists a solution u E C r’1 Hl of (4.9). Furthermore if g E C’o and
f E C°°, there is a solution u E Coo.

Condition (4.12 ) is very close to conditions P:I: in Kazdan, Warner [K-W~ ;
consequently the theorem is almost contained in their Theorem 2.5.

PROOF. By considering g(x, u) - f (x) we may always assume that f = 0.
We will construct a supersolution K &#x3E; 0, will satisfy

in 0, on oil.

Let

Clearly hi is an increasing sequence and as a.e. in D

so that Fix k so large that Since

 g(x, kwi) we have hk E L".
Setting

19 - Annali della Scuola Norm. Sup. di Pisa



290

we find

ii) there exists a solution uo E C (since p &#x3E; v) of

For with to be chosen, we have

Now choose s = hk/ Âi and then p so large kJJl (this is always possible
since --~- s &#x3E; 0 on a neighborhood of aS2). Thus

Similarly we construct a subsolution u ~ 0.
The existence of a solution u of (4.9) is quite standard.

We sketch a proof: Set

Using the Schauder fixed point theorem we see that there exists a solution
u E H’ 0 r1 H2,v (so u is continuous) of

where

We claim that u(x) ~ Suppose u &#x3E; ~ somewhere. In the set j0 where
the function w = u - ~c is positive, w is a generalized solution of

By the generalized form of the maximum principle, see for instance The-
orem 2 in Littman [Li], it follows that w  0 in £5, I,e, u in f2. Similarly
~c ~ ~c, and therefore (4.13) leads to (4.9). In case g and f are in C°° one shows
in the usual way that u E 0.

REMARK IV.3. The proof of Theorem IV.4 does not rely on our abstract
results. If we restrict ourselves to a self adjoint case, say to M = - L1,
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we can give an alternative proof of the theorem. First we apply Proposi-
tion IV.2 to obtain the existence of a generalized solution of (4.9)
such that ug(x, u) ELI. Next, a bootstrap argument yields u E C. Indeed,
multiplying (4.9) by we obtain

(the integration is justified by a truncation of the function lula-2u).
Noting that

and using Sobolev’s inequality we find

where

Thus for r = q2*/2,

(provided q  p). Starting with q = 2 we end up with Finally we

multiply (4.9) by (u - k)+, 1~ ~ 0 and obtain

Since -E- lei E Lp and p &#x3E; v we may proceed as in Stampa~cchia [Sta],
Chap. 4, to conclude that ’U E Lco. The second method is more involved

than the first one, but it shows that every generalized solution is smooth pro-
vided all the data are smooth.

REMARK IV.4. As a direct consequence of Theorem IV.4 we obtain

the following. Assume (4.10) (4.11) and that f E p &#x3E; v. Let E a(rJ)
 ~,1 in Then there exists a soiution u E H’ 0 r1 of
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Indeed we write the equation as

where g = g + (~,1- p) u, so that now and (4.12) therefore

holds for g. 

IV.3. Resonance at any eigenvalue for self adj oint .L.

We assume now that + L or - L is a (scalar) self adjoint elliptic operator
of order 2m with zero Dirichlet boundary condition. Thus L can be viewed
as a self adjoint (unbounded) operator L : D(L) c N 2013~ H where H = 
and D(L) = n .Ho (S~), Clearly L is closed R(L) = N(L)1, N(L) is
finite dimensional and L-1: ~(.L) ~ R(L) is compact (in other words L has
Property I).

We denote by oc the largest positive constant such that (Lu, u) &#x3E;
&#x3E; - (I /oe) I LU 1 2, Vu E D(L) and we assume that a  + oo (the case a = + 00,
i.e. (Lu, u) &#x3E; 0, Vu E D(L), has been considered in previous sections).

Example (a). Lu = - du - Au, D(L) = H2 r1 if’ 0 for some A &#x3E; ~,1 (the
first eigenvalue then a = I - A where A is the nearest eigenvalue
of - d strictly less than Â.

Example (b). Lu = d~ + lu, D(L) = H2 r1 A real, then a = 1- ~,
where 5 is the nearest eigenvalue of - d strictly greater than A.

Let g(x, u): Q R be measurable in x and continuous in u. Set

Assume

Given f E L2 our purpose is to solve Lu + Bu = f. We prove « roughly» that
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implies f E R(L -~-- B) and

implies f e Int [R(L + B)].
Unfortunately we have not been able to establish a result of this generality.

What we prove is that the conclusions hold if we add one of the following
conditions:

THEOREM IV.5. Assume (4.14) and (4.15) and one of the condi-

tions (4.18) or (4.19). Then (4.16) implies f E R(L + B), and (4.17) implies
f e Int [R(L + B)]. In addition when f e C’ and g e C’, then u e C’.

PROOF. The existence part is a straightforward consequence of Corol-
lary 111.5. Regularity is proved as in Proposition IV.1.

COROLLARY IV.6. Assume (4.14) an d (4.1~ ) as well as one of the condi-
tions (4.18) or (4.19).

Assume in addition that there exists 2co E L2 such that g(x, uo(x)) E N(L)1
and

Then there exists u E D(L) solution of Lu + Bu = 0 ; furthermore if g E C°°,
then u E C°°.

PROOF. We apply Theorem IV.5. We have Vv E N(L), v =1= 0

REMARK Iv. ~. In case I satisfies a unique continuation property, meaning
that v = 0 is the only v E N(L) which vanishes on a set of positive measure,
then the result of Corollary IV.6 holds with (4.20) replaced by

a.e. on some set E c Q of positive measure.
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Example: Bu = g(x, u) aELoo, 0, g, continuous
nondecreasing in

Then L + B is onto .L2. Cor. IV.6 contains (essentially) Theorem 2 of Berger,
Schechter [B-S].

IV.4. Elliptic systems.

For elliptic systems of the form

under suitable boundary conditions, wvith A an elliptic operator acting on
u = (ul, I uN), it is clear that we may find suitable extensions of the results
of Sections and IV.3 for functions g satisfying (3.40), (3.41) and (3.42).
We may simply apply Cor. 111.5 as adapted for systems at the end of § 111.2,
as well as Theorem 111.6’ and the related remarks.

Rather than restate these results for systems we shall take up some
others confining ourselves to rather simple systems for a pair of scalar func-

I I

tions It will be clear that these, in turn, permit a great variety

of extension and modifications.

Example IV.l. Assume M or - M are scalar, strongly
elliptic, operators having Property I in L2(Q) with.
(They might even have different orders.)

I

Set so that A has Property I in H = (L2)2 with

and a = (where

where

and a, b, c, d are nonnegative constants, i.e.

Assume
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THEOREM IV.7. There exists a solution i I 0f

in each of the following cases:

and

and

and

and

Furthermore v, w E COO if

Example. Lv = so that a = Min(
see examples (a) and (b) in (we set p = - oo in case ~ J

the first eigenvalue of - d ) .

PROOF. We have for any e &#x3E; max(b, d). By Proposi-
tion A.1 we see that B = 8q satisfies (2.12) ’with y  a. We may there-

fore apply Corollary 11.7. Note that (see Proposition 11.3)

and thus for we find

The smoothness of u is proved as in Proposition I V.I.
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REMARK IV.6. Let

be measurable in x, continuous in v, w and such that

Assume

Then the equation Au + Bu + Qu = f has a solution provided one of the
conditions (4.22)-(4.25) holds. It suffices to apply Corollary 111.3.

Example IV.2.

We discuss now an example where B still has linear gro‘w’th but not
small with respect to one of the unknowns.

Land M are the same as in Example IV.I and we assume in addition
(Mw, w) &#x3E; 0 Vw e D(M) so that a = xj , (since aM. = + oo).

Assume B is the same as in Example IV.1, but in place of (4.21) we
assume only

(and no assumptions about d).

THEOREM IV.8. There exists a solution 

provided one of the conditions (4.22)-(4.25) holds.

PROOF. Set

so that H = (L2)2 has an orthogonal decomposition H = Hi EB H2.
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Clearly is one-one onto with compact inverse, while

is maximal monotone.

On the other hand we have V8 &#x3E; 0

and in particular

which implies (see Proposition A.I) that

for some y  ac.

Thus Theorem 1.10 applies and we find

Finally we conclude with the help of Propositions 11.5 and 11.6 that

REMARK IV.7. In Theorem IV.8 if need not be linear. For example
suppose if is a (nonlinear) maximal monotone operator in .L2 with

MO = 0. Assume d &#x3E; 0 and 0 c b then the equation Au + Bu = f
is solvable provided (4.22) or (4.24) holds.

PROOF. Theorem 1.10 still applies and we find

If b &#x3E; 0 we have and some 6 &#x3E; 0. Thus B is onto and so

is onto.

We consider now the case b = 0. By assumption
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and so

Let so that

with

On the other hand we have

for some ~ &#x3E; 0 .

Thus for any q E .L 2

Minimizing over we see that

and in fact f E Int [R(A) + R(B)] q.e.d.

Example IV.3.

We discuss now an elliptic system of the form Au + Bu = f where B
is still monotone-but is not a gradient operator.

Let gy(v, w) be a 02 function satisfying and

Set .1’

Assume where

c Z2 -~- L2 has Property I with dim N(L)  + 00, D(M) C L2 - L2 is
a linear maximal monotone operator with closed range, and dim N(M)  + 00.

THEOREM IV.9. Let f E H be such that

Then the equation Au + Bu = f is solvable.
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PROOF. We use the same orthogonal decomposition H = H~1 as

in the proof of Theorem IV.8. B is monotone since the quadratic form

associated with I is positive semidefinite.

On the other hand dE &#x3E; 0 we have

Thus in particular we find

and therefore Theorem 1.10 yields R(A + B) ~ R(A) + conv (see
Remark 1.6). Also = 1£(u) = lim (B(tu), ) by Proposition 11.2.

t- + 00

From Proposition 11.6 we conclude that

implies

Example IV.4.

Assume + L or - L is a strongly elliptic operator of order 2m, L: D(L) c
c L 2 ~ L 2 with D (L ) = H2’~ n Ho . Let g, h : R - R be continuous non-
decreasing functions.

THEOREM f : be such that

Then there exists ec solution E (L2)2 of the system

with vg(v) ELI, ELI, where Land L* denote the Ll x LIL closures of L
and L*.
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PROOF. We apply Theorem 111.6’ with

Clearly A is maximal monotone; indeed A* = - A so that Au, u) =
= A* u, u) = 0. Hence A is maximal monotone since A is closed and

A, A* are monotone (see [Br8-1]).
We rely on the following known facts

a) The sets

and

are relatively compact in .L1.

b) .L2 has orthogonal decompositions:

and

Then we have

Properties (3.30 )- (3.31 ) follow from ac ) and b).

.Example. Given Â E R, ~, r~ E Loo, there exist v E L6 and ~,u E L4 solu-

tions of the system

System (4.28) can also be solved by a different method. Indeed let Tr and W
be reflexive Banach spaces. Let be a linear densely
defined closed operator. Let A*: D(A*) c V -* W’ be its adjoint. Set
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where so that

It follows (see [Br6-11) that A is maximal

monotone. Thus if B is any monotone demicontinuous coercive operator
from V X W into V’ X W’, then A + B is onto.

In particular if we choose with

and 0 on so that v = - with
3 and v = 0 on 8£j), we see that (4.28) has a unique

solution in (uniqueness is obvious since B is strictly monotone).

Exacmpte IV. 5.
Assume + L or - .L is a strongly elliptic operator of order 2m,

1 with

Let g, h : R - R be continuous nondecreasing functions such that

THEOREM .IV.ll. Let f : = be such that (4.27) holds. Then there

exists u =
Bv
solution of the system

PROOF. Set with so

that A has Property I with dim N(À) 
We may apply Corollary II.7 (here (2.12) holds with any y &#x3E; 0). On the

other hand

CHAPTER V

PARABOLIC AND HYPERBOLIC APPLICATIONS

V-1. Parabolic equations.
V.2. Nonlinear telegraph equations.

In the preceding section we have always taken A to be an elliptic partial
differential operator. However, our results apply equally well to parabolic
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equations and to hyperbolic time periodic equations with dissipation. A few
simple illustrations are presented here.

If ~V.1 we consider

and treat first the initial boundary value problem. We then consider the
problem of finding solutions periodic in time, assuming Z is an eigenvalue

the first or some other eigenvalue. Finally we treat a parabolic
system with initial and terminal conditions.

V.2 is concerned with hyperbolic equations involving dissipation, such
as the nonlinear telegraph equation

We seek solutions which are periodic in time.

V.I. Parabolic equations.

Example V.I. Initial boundary value problem for a parabolic equation

Assume

is measurable in

continuous in u and

THEOREM V.1. There exists u E L2(0, T ; Hi) r1 L°°(0, T ; L2) with ug(x, t, u) E
E LI(Q) which is a generalized solution of (5.1).
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PROOF. We apply Theorem 111.6 (or rather Remark 111.3) in H = L2(Q)
with

Clearly A is maximal monotone, N(A) = ~0~, and

some I

On the other hand, the set

is relatively compact in (see [B-H-V]). Therefore (3.30) and (3.31)
hold. Remark 111.3 yields the existence of a generalized solution u E L2(Q).
The additional properties and u E .L°°(0, T ; L2) are easily
established by a direct argument.

REMARK V.I. Under slightly stronger assumptions we may construct
bounded sub- and super-solutions; a bootstrap argument yields then U E C°°
when all data are smooth. Assume

Then (5.1) has a solution u E LOO(Q). Indeed we construct a supersolution
~&#x3E;0. Let ~o be the solution of

Since Then = ~o + p (with P chosen
large enough so that ~&#x3E;0) satisfies

(by (5.5)).
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Example V.2. Periodic solutions in time ; resonance at ~,1.

Consider a simple model problem:

where ~.1 denotes the first eigenvalue of - L1 with zero Dirichlet boundary
condition.

THEOREM V.2. Assume (5.2), (5.3) and

Then there exists a generalized solution

u E L2(0, T ; Hl) n T ; L2) of (5.6) with t, u) E Ll-(Q).

PROOF. We apply again Theorem 111.6 (or rather Remark 111.3) in
H = L2(Q) with

so that

REMARK V.2. Here again, as in the proof of Theorem IV.4 we may
construct bounded sub- and super-solutions under the assumptions (5.4), (5.5)
and (5.7), and thus obtain the existence of a bounded solution u for (5.6).

Example V.3. Periodic solutions.; resonance at 2,.

Let L be a self adjoint strongly elliptic operator of order 2m, L: D(L) c
c L2 - L2 with D(L) = H 2m n and let a be the largest constant such
that

Consider the problem
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THEOREM V-3. Assume (4.14) and (4.15) and one of the conditions (4.18)
or (4.19) (where x is replaced by (x, t)). Ass2cmce

Then (5.8) has a solution. In addition if f E 000 and g E C°°, then u E C°°.

PROOF. Set H =

Clearly (since L is self adjoint).
Also, the set is compact in H, so that A has

Property I. In addition we have

(since and in fact oc cannot be increased

since the inequality is true in particular for u E D(L) independent of t (and
then it says In other words we have proved that A
and L have the «same a ». We may therefore proceed as in the proof of
Theorem IV.5. The proof of the regularity of the solution is a standard
bootstrap argument (as in the proof of Proposition except that we rely
now on the LV estimates for parabolic equations (see [L-S-U]).

Example V.5. A parabolic system.
Consider the system

on I

on

on

on

Systems similar to this occur in control theory (J. L. Lions, personal com-
munication).

THEOREM V.4. Given ~, ~ E .L°° (Q ) there exists v E L6(Q) and w E .L4 (Q )
generalized solutions of the system (5.9).

The proof is similar to the one in Example IV.4 and is left to the reader.
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V.2. Nonlinear telegraph equations.

We now apply our results to a linear hyperbolic operator A with dissi-
pation of the form

acting on time periodic (period 2~) functions t). Here L is a linear self

adjoint elliptic operator in space variables x with coefficient independent of t
on a compact manifold SZ, or on a bounded domain with suitable

homogeneous boundary conditions on u (say Dirichlet boundary conditions);
0 is a real constant. Furthermore u(x, t) might be vector valued.
Let

be the eigenvalues of L (zero may be an eigenvalue of multiplicity d) with
corresponding orthonormal (in L2(Q)) eigenfunctions ... w_1, ....

Since we may expand 2x-time periodic functions on S~ in the form

the action of A on such functions is easily determined. Take H = E2 (Q X
X (0, 2~)), 2a time periodic. Then

Clearly N = N(A) is finite dimensional, spanned by ~,v1(x), ... , ~,vd(x), and
R(A) = N(A)L. Furthermore for f 1 N(A),

we have

Since lail - oo as ljl - oo we see that A-’ is a compact operator; A satis-
fies all the conditions of Property I with a = the largest positive number
such that
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o

i.e.

We may then apply our results to nonlinear equations of the form

where g, f are periodic in t of period 2a. We assume N 0 {0}; the case
N = {0} was treated in a very extensive way by Prodi [P].

We describe some results for the scalar case; the extension of Cor. 111.5

at the end of § 111.2 may be applied to systems. In the following all condi-
tions on integration refer to Dx(0,2~). Suppose g measurable in x, con-

tinuous in u and 
I

some I

Assume also that for

we have, for some co &#x3E; 0,

THEOREM V.5. In each of the following cases (5.14) generalized solu-
tion :

(i) 9-9+ and (5.15) holds with -some y oc.

(ii) (5.15) holds for every y &#x3E; 0.

PROOF. Apply Corollary 111.5.

Example V.7. Consider L = - A - 5 on a square S2: 0~?r) ~ = 1, 2
in the plane, acting on real functions t) which vanish on aD. The eigen-
values of E are all positive and of the form r2 + s2 - 5, r, 8 e Z+ (positive
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integers). Then N consists of functions of the form a sin 2x1 sin x2 +
-- b sin x, sin 2x2. If a =  1 it is not difficult to verify that a = 2.

Consider the corresponding nonlinear telegraph equation on the square

Then, in each of the following examples, the equation (5.14’) has a solution:

f arbitrary in .L2 ,

f arbitrary in L2.

REGULARITY. It is natural to ask if the solutions in Theorem V.5 are

smooth-in case g, f, the coefficients of Land OQ, are in C°°. In low dimen-
sions we can show under some mild additional assumptions that they are,
and we sketch a proof-assuming zero Dirichlet boundary conditions on 8Q.
We shall suppose L of order two, but the discussion extends also to higher
order operators. We shall make use of the fact that for functions of the form

the H1 norm in S~ is equivalent to

First we investigate the regularizing properties of represented by (5.13).
For f = I exp [ikt] e L2 we see easily from (5.13) that u = A-’/
satisfies

But in fact we may assert that
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For the left hand side

and the result then follows easily from the inequality

= constant independent of A for A E R , y

whose proof we omit.
A similar argument yields the following: If m &#x3E; 0 an integer, y

then u = A-1 f belongs to Hm and in fact

In Theorem V.5 our solution E L2, and hence g(x, t, u) E L2; u has the
form .A-1 [ f (x, t) - g(x, t, u)] (mod N). Since the functions in N are 000, it

follows from the preceding that u E for each t.

CL_4IM. For n = 1 our solution.

PROOF. Since u E is continuous in x for each t, and also
bounded. It follows then that g(x, t, u(x, t)) E Hi. Applying the preceding
again we find u E H2 and so u(x, t) is continuous.

We may differentiate the equation with respect to t and find that u,
satisfies

Repeating the preceding argument we find u, is continuous in x for each t,
uniformly in t-in particular u, is bounded. It then follows that g + gu u e I~1
and so ut E H2. Differentiating the equation (5.14) with respect to x we

may solve for Uxzx in terms of other third (and lower order) derivatives of u,
and thus conclude that Ux E H2. Hence ut, uz are continuous. And so on-via

repeated differentiations of the equation, first with respect to t, then with

respect to x, and repeated application of this argument.

CLAIM. Under the additional hypotheses:
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our solution in Theorem v. ~ belongs to 000 in case n  3. The same conclusions
holds for n = 4 if in addition we require

PROOF. We know that u E H’. Under the new conditions on g we con-

clude that g(x, t, u(x, t)) E Hi and hence u E H2. As before u, satisfies (5.21)
and hence by (5.19), u,t, utxj E L2(S2) Vt. Then, for each t,

independent of t .

It follows from the standard estimates up to the boundary for elliptic oper-
ators, that

Thus

For n  3 we may infer that u(x, t) is uniformly Holder continuous in
the x variables-in particular Jul is bounded while for n = 4 we find that

u E L’D(Q) Vp  oo, Vt. Furthermore by the Sobolev inequalities we know
that for n  4 ut(x, t) E L4(Q) Vt.

Differentiating the equation (5.14) once more we find utt satisfies

Since ’Utt E L4 it follows that

and hence

As before we find Vt and so
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Again from elliptic theory we infer from the inequality I Vt (here
we’ve used (5.26-27)) that

For n  3 we conclude that ut and ux= are Holder continuous in x, in

particular they are bounded. And so on for n  3.
For n = 4 we infer that u is bounded and uniformly Holder continuous

in x; also ut, E Vp  00, Vt, and Utt E L4(Q), Vt. Differentiating
the equation again we find = 0 on 8Q and

Hence

From (5.25) it follows that

and hence by elliptic theory

Differentiating (5.21) with respect to x we find

and again by elliptic theory

Differentiating (5.14) twice with respect to x variables we find

and hence
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It follows that are continuous in x. And so on. We consider the

claim to be proved.
For n = 5 we can prove that the solution is in Coo under a slight further

strengthening of the conditions in the case n = 4, but the proof is more
complicated. For n &#x3E; 6 we do not know whether solutions are necessarily
regular.

APPENDIX A.

Some properties of monotone operators and gradients of convex functions.

We have collected in this appendix some technical properties of mono-
tone operators and gradients of convex functions.

Suppose H has an orthogonal decomposition H = H1 (D H2 . We write

PROPOSITION c convex continuoug on H. Set BI = P1B.
Assume for some 0  a/4

where O(u2) depends only on ’U2. Then for some y  0153 we have

PROOF. Supposing 0, set ~ = By the convexity of 
we have for 1 &#x3E; 0

Adding

Since

we find
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that is

Minimizing the right-hand side with respect to A &#x3E; 0 yields

and (A.1) follows easily. Q.e.d.

Throughout this Appendix we denote by P an orthogonal projection
operator in H.

PROPOSITION A.2. Assume B is ac monotone operator and set Bl = PB.
Then

PROOF. For v E H with Ivl  R we wish to show that IB1vl p. Assuming
Then the function for

Â E R is nondecreasing. Let 0  2, be such that
We have &#x3E;

PROPOSITION A.3. Assume B is a map from H into itself and set BI = PB.
Let a &#x3E; 0. T he following are equivalent :

PROOF. Since (A.2) =&#x3E; (A.3) trivially, we have only to show that

(A.3) =&#x3E; (A.2). For every 

o

i.e.
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Choosing . we find

On the other hand

by (A.3) and (A.4),

This yields (A.2) for an appropriate choice of s.

PROPOSITION A.4. Assume B c ay~ with tp convex continuous and set

Bi = PB. Assume for some a &#x3E; 0

Then for sorrze y  a we have

PROOF. We have, by Proposition A..2,

But 
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Therefore

and the result follows from Proposition A.I.

REMARK. We do not know whether the conclusion holds if (A.5) is re-

placed by lim sup

Proposition A.4 and its proof are closely related to Proposition 4 in [B-B].

PROPOSITION A.5 (*). Assume B = ô1jJ, 1jJ convex continuous B is demi-

continuous, and get BI = PB. Assume for some y &#x3E; 0

Then

and also for any y’&#x3E; y,

REMARK. Proposition A.5 implies in particular that for B = E C1

convex, the following are equivalent

The equivalence of the last two conditions is due to Baillon, Haddad [Ba-Ha],
see also Dunn [Du].

PROOF: Property (A.9) follows from (A.8) since B is trimonotone (see
Proposition A.3). Thus we have only to establish (A.8). We decompose the
proof in 4 steps.

(*) We thank J. B. BAILLON for some useful suggestions concerning this result.
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Step 1. Suppose M is a bounded linear operator which is self-adjoint,
positive semidefinite. Then

implies

PROOF. By Cauchy-Schwarz we have

Choosing v = Mu yields

Step 2. Assume (A.7 ) and furthermore dim H  oo, and ’Pis C2. Then (A.8)
holds.

PROOF. Choosing w = u - tv in (A.7), dividing by t2 and passing to
the limit as t -~ 0 we find

where M = B’ (u) is positive semidefinite and self-adjoint.
Thus by Step 1,

Finally
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Step 3. Assume (A.7) and furthermore: dim H  oo and 1p is Cl.
Then (A.8) holds.

PROOF. Let en be a sequence of mollifiers on H tending to the delta
function. Set yn = 1p, Bn = = en * B. Clearly

and thus Step 2 yields

As n - 00 the desired result follows.

Step 4. The general case.
Let ~Y denote the finite dimensional space spanned by u, w, Bu, Bw,

Pu, Pw, PBu, PBw. Note that P(X) c X and therefore P(XJ..) c XL. Set
= orthogonal projection on X. Clearly Pg commutes with P. Set

cp = so that is convex and

For x, y E X we find since P and Px commute

By Step 3 applied to 8q and P in X we derive Vz, y E X

o

i.e.

In particular

PROPOSITION A.6. Let Q be a measure space. Let a &#x3E; 0. Assume

g(x, u): Q XR - R is measurable and continuous nondecreasing in u.
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Suppose

with 9 C a and h E .L2.

see ( Then for some y  a

PROOF. Clearly it suffices to prove that for some y  (X

But

PROPOSITION A.7. Assume A : D(A) c H - H is a linear maximal mono-
tone operator with dense domain and closed range R(A).

Assume

(this holds for example if A is trimonotone).
Then there &#x3E; 0 such that

where U1 denotes the orthogonal projection o f u on R(A).

PROOF. one-one and onto 

is a bounded operator and so there exists C such that
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On the other hand (A.10) implies (see [Br-Ha] Proposition 1) that there
exists C such that

In particular for v E D(A) n R(A) we find

o

i.e.

This yields

APPENDIX B.

More general form of the main result.

In Theorem 1.10 the nonlinear terms A2, B were required to be mono-
tone. We now present a more general result in which we permit additional
terms which need not be monotone but which are required to satisfy con-
ditions somewhat like those in Chapter III. The results and proofs are then
a mixture of those of Chapter III and of Theorem 1.10. The conditions in
the results are technical and rather complicated, and they are presented
without applications, but with the thought that they may prove useful in
later work.

The setup is the following: H is a real Hilbert space with a given ortho-
gonal decomposition

onditions:

(i) ~S : is a demicontinuous operator with

and A1 is an operator: D(A,) c H, satisfying
is one-one and onto; is continuous from weak to strong and
Yu E D(A,):

for some constants oc, ao &#x3E; 0, and C.
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is a monotone operator mapping

into satisfying: for each ui e Hi the map
is maximal monotone; for each l~1 is

demicontinuous in ’Ul. Furthermore

For some constant

such that Vu e H

is a monotone demicontinuous operator with

B(0) = 0 satisfying

I 

For some

such that

with G(0) = 0 satisfies

such that

G, is continuous from strong H, x weak H, --&#x3E; weak H,;
G2 is continuous from strong H1 x weak ~-I2 -~ strong J?2.

Furthermore, G2 is compact, while G, satisfies :
For some such that

We always assume that and satisfy

(iv’) Same as (iv) except that (B.4) is assumed to hold only for z = v = 0.
With N = M -f- G + B, we are interested in solving
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B.1. Under hypotheses (i)-(iv)

THEOREM B.1’. Under hypotheses (i)-(iii) and (iv’),

Next we give some conditions on f so that (B.5) has a solution. Assume
that we have an orthogonal decomposition of H2:

Conditions on f :

(v) For every h E H’ 2 with ¡hi C r for some r &#x3E; 0,

(v ‘ ) For every h E H. Q g2 vith I h C r,

For v E H2 recall the recession function

(vi) For every v E H;, v =;6 0, 7

THEOREM B.2. Under conditions (i)-(vi),

THEOREM B.2’. Under conditions (i)-(iii), (iv’), (v’) and (vi),

We confine ourselves to a brief sketch of the proofs which are similar to
that of Theorem I.10.
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LEMMA B.3. For any s &#x3E; 0 and any f E H there is a solution of

The proof is a bit different from that of Lemma 1.11; the solution u is
obtained as a fixed point of a compact transformation T defined as follows :
For v = vl -E- v2 define ’U2 E H2 as the solution of

Then set

and finally define W2 E ~2 as the solution of

The mapping v -* w = Tv is well defined and one easily sees that a fixed
point of T is a solution of (B.6). Next one verifies that T is compact and
continuous and finally that for .R sufficiently large

Then T has a fixed point in ivi  R. The proofs of these facts are similar
but more involved than the corresponding proofs for Theorem 1.10.

Next by an argument similar to the proof of Lemma 1.12 one proves

LEMMA B.4. Under the hypotheses (i)-(iv), if
+ conv .R(B) then for any solution Ue of (B.6), BU2e - 0 as s - 0. If we
assume (i)-(iv’) we obtain the same conclusion provided f 
+ conv R(B).

Then one has the analogue of Lemma 1.13 with similar proof:

LEMMA B.5. Under conditions (i)-(vi) (or conditions (i), (ii), (iii), (iv’), (v’)
and (vi)) any solution u,. of (B.6) sactisfies lu,l, 

inde p endent of 8.

Finally, to prove Theorems B.1 (and B.1’), the statement about. the
closures of the ranges follows immediately from Lemma B.4. The state-

ment about the interiors is precisely the assertion of Theorem B.2 (and B.2’)
in the case H" = 0, in which case condition (vi) is empty.

By a passage to the limit argument as 8 ~ 0, similar to the proof of The-
orem 1.10, one proves Theorems B.2, B.2’.
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result goes back to LANDESMAN-LAZER [La-La] (for a simple proof, see HESS [He-2]).
Related results and generalizations have been given by many authors : L. NIREN-
BERG [N-1-2], DANCER [Da-1-2], BERGER-SCHECHTER [B-S], SCHECHTER [Sche], WIL-
LIAMS [W]. FUCIK [‘-2] (with an extensive bibliography), and AMBROSETTI, MAN-
CINI [A-M].

Chapter V. Resonance problems for nonlinear telegraph and parabolic equations
have also been studied by MAwHtN [M-2-4].

Added in proofs. - We describe a simple example showing how the results of
Chap. III apply in case H = 0 is a direct sum which is not orthogonal.

Let and let .~ : D(A) cH-H be a densely defined closed operator
with closed, (for simplicity), and 
is compact and H = R(A) (D N(A) (but not orthogonal). Assume N(A) is spanned
by vo with f vo = 1 and N(A *) is spanned by wo with 1. Assume 
a.e. in Sl.

Let g(x, u) : be measurable in x, continuous in u and satisfies:

with

exists for a.e. x.



324

If

then the equation Au + g(x, ~) == 0 has a solution. Indeed and N(A) become
orthogonal for the new scalar product

where

We may therefore apply Theorem III.1. Note that
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