MAXIMAL MONOTONE OPERATORS IN NONREFLEXIVE BANACH SPACES AND NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE¹

BY HAIM BREZIS AND FELIX E. BROWDER

Communicated by Alberto Calderón, March 19, 1974

Let Y be a Banach space, Y* its conjugate space, X a weak*-dense closed subspace of Y* with the induced norm. We denote the pairing between x in X and y in Y by (y, x). If T is a mapping from X into 2^{Y} , T is said to be monotone if for each pair of elements [x, y] and [u, w] of G(T), the graph of T, we have $(y-w, x-u) \ge 0$. T is said to be maximal monotone from X to 2^{Y} if T is monotone and maximal among monotone mappings in the sense of inclusion of graphs.

The theory of maximal monotone mappings has been intensively developed in the case in which Y is reflexive and $X = Y^*$. In this note, we present an extension of this theory to the case in which X and Y are not reflexive, and show that this extended theory can be used to give a new and more conceptual proof of a general existence theorem for solutions of nonlinear integral equations of Hammerstein type established by the writers in [2] by more concrete arguments.

An essential tool in our discussion is supplied by the following definitions:

DEFINITION 1. Let T be a mapping from X into 2^{Y} . Then T is said to be X-coercive if for each real number k, the set $\{x | x \in X, \text{ there exists } w \text{ in } T(x) \text{ such that } (w, x) \leq k ||x|| \}$ is contained in a convex weak* compact subset A_k of X.

THEOREM 1. Let T be a monotone mapping from X to 2^{Y} . Suppose that 0 lies in D(T), the effective domain of T, and that T is X-coercive. Then the range R(T) of T is all of Y.

We use the following extension of the concept of pseudo-monotonicity [1]:

Copyright © American Mathematical Society 1975

AMS (MOS) subject classifications (1970). Primary 47H05, 47G05; Secondary 47H15.

¹ Research supported by NSF grant GP-28148.

DEFINITION 2. Let f be a mapping of X into Y. Then f is said to be pseudo-monotone from X to Y if the following three conditions are satisfied: (a) f is continuous from each finite-dimensional subspace of X to the weak

topology on Y induced by the functionals from X.

(b) f maps each weak* compact subset of X into a subset of Y which is compact with respect to the weak topology induced by X on Y.

(c) Let $\{u_{\gamma}\}$ be a filter base on X contained in a weak* compact subset of X and converging in the weak*-topology to an element u of X, and suppose that $\limsup(f(u_{\gamma}), u_{\gamma}-u) \leq 0$. Then $f(u_{\gamma})$ converges to f(u) in the weak topology on Y induced by X and $\lim(f(u_{\gamma})u_{\gamma})=(f(u), u)$.

THEOREM 2. Let T be a maximal monotone mapping from X to 2^Y which is X-coercive. Let f be a pseudo-monotone mapping from X to Y in the sense of Definition 2, such that for some constant c, $(f(u), u) \ge -c ||u||$. Suppose that $0 \in D(T)$. Then the range of (T+f) is all of Y.

LEMMA 1. Let f be a monotone mapping from X to Y which satisfies conditions (a), (b) of Definition 2. Then f is pseudo-monotone from X to Y.

COROLLARY TO THEOREM 2. Let T be a maximal monotone mapping from X to 2^Y such that T is X-coercive, $0 \in D(T)$. Let f be a monotone mapping from X to Y satisfying conditions (a) and (b) of Definition 2. Suppose that for some constant c and all x in X, $(f(x), x) \ge -c ||x||$. Then the range of the mapping (T+f) is all of Y.

In the case of reflexive Banach spaces, the proof of the corresponding existence theorems rests upon the following monotone extension theorem of Debrunner and Flor [4] (cf. [3] for the corresponding multivalued generalization and a conceptual development of the proof).

PROPOSITION 1. Let F be a finite subset of $X \times Y$ with F monotone, i.e., $[u_j, w_j]$, $[u_k, w_k]$ in F implies that $(u_j - u_k, w_j - w_k) \ge 0$. Let C be the convex closure of the first components $\{u_1, \dots, u_n\}$ of F, and suppose that f is a continuous mapping from C to Y endowed with the weak topology induced by X. Then there exists an element x of C such that

 $(w_i - f(x), u_i - x) \ge 0, \quad (j = 1, \dots, n).$

To prove our new existence theorems in the nonreflexive case, we use a modification of the Debrunner-Flor result given in Proposition 2 below, which is suggested by the results of Minty [5].

PROPOSITION 2. Let F be a finite monotone subset of $X \times Y$, and let C_0 be the convex closure of $\{0, u_1, u_2, \dots, u_n\}$. Suppose that f is a continuous mapping from C_0 to Y endowed with the weak topology induced by X. Then there exists a point x of C_0 of the form $x = \sum_{i=1}^n \xi_i u_i$, with $0 \le \xi_i$, $\sum_{i=1}^n \xi_i \le 1$,

such that

$$(w_j + f(x), u_j - x) \ge 0,$$
 $(1 \le j \le n),$
 $\sum_{j=1}^n \xi_j(w_j, u_j) + (f(x), x) \le 0.$

PROOF OF PROPOSITION 2. For the case in which $f \equiv 0$, the result was obtained by Minty in [5] by a direct argument. We obtain the more general result for nonzero f by showing that Proposition 2 can be derived directly from Proposition 1. We note first that since the result really depends only upon the finite-dimensional space spanned by $\{u_1, \dots, u_n\}$ and linear functionals upon this space, we may assume that $X = Y = H_0$, a finitedimensional Hilbert space. We may assume that H_0 is contained in a larger Hilbert space H, and that H_1 is an *n*-dimensional Hilbert space in H which is orthogonal to H and with orthonormal basis $\{h_1, \dots, h_n\}$. Let $v_j =$ $u_j + h_j$ for each j, and let C_1 be the convex closure of $\{0, v_1, \dots, v_n\}$. We form a new monotone set F_1 in $H \times H$ whose elements consist of $[v_j, w_j], 1 \le j \le n$, together with the single additional element $[0, w_0]$, where $w_0 = \sum_{j=1}^n (w_j, u_j)h_j$. Let ζ be the mapping of C_1 into C_0 given by $\zeta(\sum_j \xi_j v_j) = \sum_j \xi_j u_j$, and let g be the mapping of C_1 into H given by g(x) = $-f(\zeta(x))$.

We apply Proposition 1 to the monotone set F_1 and the mapping g. Then there exists an element y in C_1 of the form $y = \sum_{j=1}^{n} \xi_j v_j$ with $0 \le \xi_j$, $\sum_{j=1}^{n} \xi_j \le 1$, such that for $1 \le j \le n$,

$$(w_j - g(y), v_j - y) \ge 0, \quad (w_0 - g(y), 0 - y) \ge 0.$$

Since for each j, $w_j - g(y)$ lies in H_0 , the first n inequalities imply that if $x = \zeta(y) = \sum_{j=1}^{n} \xi_j u_j$, then $(w_j + f(x), v_j - x) \ge 0$. For the last inequality, we see that (g(y), y) = -(f(x), x), while

$$(w_0, y) = \sum_{j=1}^n (w_j, u_j) \xi_j(h_j, h_j) = \sum_{j=1}^n \xi_j(w_j, u_j).$$

Hence, this inequality becomes

$$\sum_{j=1}^{n} \xi_{j}(w_{j}, u_{j}) + (f(x), x) \leq 0. \quad \text{Q.E.D.}$$

Theorem 1 is a special case of Theorem 2.

LEMMA 2. Let X be a closed subspace of Y^* , A a subset of X. Suppose that for each $\varepsilon > 0$, there exists a weak* compact subset A_{ε} of X such that A is contained in the ε -neighborhood of A_{ε} in X. Then A is relatively weak* compact in X.

84

and

PROOF. Since each A_{ε} must be bounded, A is bounded in X and hence relatively weak* compact in Y^* . Hence it suffices to show that the weak* closure A_1 of A in Y^* is contained in X. Since A is contained in $A_{\varepsilon}+B_{\varepsilon}$, where B_{ε} is the closed unit ball in Y^* , and since both A_{ε} and B_{ε} are weak* compact, it follows that A_1 must be contained in the weak* compact set $A_{\varepsilon}+B_{\varepsilon}$. Hence A_1 is contained in the ε -neighborhood of X for each $\varepsilon > 0$, i.e. $A_1 \subset \bigcap_{\varepsilon > 0} N_{\varepsilon}(X) = X$ since X is a closed subspace of Y^* . Q.E.D.

PROOF OF THEOREM 2. Since $0 \in D(T)$, we may add a constant to the values of T and assume that [0, 0] lies in the graph of T by absorbing the constant into the mapping f without perturbing the pseudo-monotonicity of f. Similarly, if we wish to prove that an element w_0 of Y lies in the range of (T+f), it suffices to prove that 0 lies in $R(T+f_0)$, where $f_0(x) = f(x) - w_0$. Thus, it suffices to show that $0 \in R(T+f)$.

Let F be a finite subset of G(T), the graph of T. We apply Proposition 2 to $F = \{[u_1, w_1], \dots, [u_n, w_n]\}$ to obtain a point $x_F = \sum_{j=1}^n \xi_j u_j$ with $\xi_j \ge 0$ for each j, and $\sum_{j=1}^n \xi_j \le 1$ satisfying the two systems of inequalities:

(1)
$$(w_j + f(x_F), u_j - x_F) \ge 0$$
 $(j = 1, \dots, n),$

(2)
$$\sum_{j=1}^{n} \xi_{j}(w_{j}, u_{j}) + (f(x_{F}), x_{F}) \leq 0.$$

Corresponding to any k > 0, we may group the set of first components of the subset F into two classes, so that for $1 \le j \le r$, u_j lies in the set $\{x \mid x \in X, there exists w in <math>T(x)$ such that $(w, x) \le k ||x||$, and for j > r, u_j lies outside this set. We set

$$u_{k,F} = \sum_{j=1}^{r} \xi_j u_j, \qquad v_{k,F} = \sum_{j=r+1}^{n} \xi_j u_j.$$

Since the elements of the first set of u_j all lie by hypothesis in the weak* compact convex subset A_k of X and $0 \in A_k$, it follows that $u_{k,F}$ lies in A_k . Since T is monotone, and by construction $0 \in T(0)$, it follows that for all j, $(w_j, u_j) \ge 0$. Moreover, for all x, $(f(x), x) \ge -c ||x||$ by hypothesis. For $r+1 \le j \le n$, $(w_j, u_j) \ge k ||u_j||$. Hence

$$k \|v_{k,F}\| \leq k \sum_{j=r+1}^{n} \xi_{j} \|u_{j}\| \leq \sum_{j=r+1}^{n} \xi_{j}(w_{j}, u_{j}) \leq c \|x_{F}\|.$$

If we apply the last inequality for a given value k_0 of k, $k_0 > c$, we find that

$$(k_0 - c) \|v_{k_0,F}\| \leq c \|u_{k_0,F}\|,$$

while $u_{k_0,F}$ lies in the bounded subset A_{k_0} of X. Hence, $||v_{k_0,F}|| \leq c_0$ independently of F, so that $||x_F|| \leq c_1$ independently of F. If we employ the

1975]

same inequality for a general large k, we see that $||v_{k,F}|| \leq cc_1 k^{-1}$ so that

$$\operatorname{dist}(x_F, A_k) \leq \|v_{k,F}\| \leq cc_1 k^{-1} \to 0 \qquad (k \to \infty).$$

It follows from Lemma 2 that the set A consisting of all solutions x_F of the inequalities (1) and (2) above for finite subsets F of G(T) is contained in a weak* compact subset of X. By property (b) of Definition 2 for pseudomonotonicity of f, it follows that the set B consisting of all elements of the form $f(x_F)$ is contained in a subset of Y which is compact in the X-weak topology of Y. Hence if we consider the filter base consisting of $\{[x_F, f(x_F)];$ F containing F_1 for finite subsets F_1 of G(T), the corresponding filter has an adherent point $[x_0, y_0]$ in $X \times Y$ in the product of the weak* topology on X and the X-weak topology on Y. For any element [x, y] in F_1 and $[x_F, f(x_F)]$ in the corresponding element of the filter base, we have $(y+f(x_F), x-x_F) \ge 0$, i.e.,

$$(f(x_F)x_F) \leq (f(x_F), x) + (y, x - x_F).$$

Hence, taking limits on the filter,

$$\limsup(f(x_F), x_F - x_0) \leq \lim(f(x_F), x - x_0) + (y, x - x_F)$$
$$\leq (y_0, x - x_0) + (y, x - x_0) = (y_0 + y_1 x - x_0).$$

If the infimum of the bound on the right side for all elements [x, y] of G(T) is nonpositive, it follows from condition (c) of Definition 2 for the pseudomonotonicity of f that $f(x_0)=y_0$ and $\limsup(f(x_F), x_F-x_0)=0$. It then follows that $(y_0+y, x-x_0)\geq 0$ for all [x, y] in G(T), and since T is maximal monotone, $-y_0 \in T(x_0)$, i.e. $0 \in (T+f)(x_0)$. On the other hand, if $(y+y_0, x-x_0)\geq\beta>0$ for all [x, y] in G(T), it follows that $-y_0 \in T(x_0)$, and hence $(-y_0+y_0, x_0-x_0)=0\geq\beta>0$, which is a contradiction. Thus we have shown that 0 lies in (T+f)(X), from which it follows as we have noted earlier that Y=(T+f)(X). Q.E.D.

Theorem 2 may be applied to abstract Hammerstein equations through the following:

THEOREM 3. Let f_0 be a monotone mapping of Y into X which is continuous from finite-dimensional subspaces of Y to the weak* topology of X, f a pseudo-monotone mapping of X into Y, with $(f(x), x) \ge -c ||x||$ for a suitable constant c and all x in X. Suppose that f_0 maps bounded subsets of Y into bounded subsets of X, $f_0(y_0)=0$ for some y_0 in Y, and f_0 satisfies conditions:

(1) f_0 is tricyclically monotone, i.e. for any three points y, u, and v of Y, we have

 $(f_0(y), y - u) + (f_0(u), u - v) + (f_0(v), v - y) \ge 0.$

(2) For any constant k, the set $\{f_0(y); (f_0(y), y) \leq k, \|f_0(y)\| \leq k\}$ is contained in a weak* compact convex subset of X.

86

Then the range of the mapping $(I+ff_0)$ of Y into Y is the whole of the Banach space Y. In addition, if f is monotone, then $(I+ff_0)$ is one-to-one and has a continuous inverse.

PROOF OF THEOREM 3. For reasons of brevity, we shall only give the reduction of the existence assertion of Theorem 3 to the results of Theorem 2. Let y_1 be a given element of Y. If we seek to solve the equation $y + f(f_0(y)) = y_1$, we introduce $u = f_0(y)$ as a new variable, and $y_1 \in (f_0^{-1} + f)(u)$, and it follows easily that if this latter equation has a solution u, then so does the original equation. Since f is pseudo-monotone from X to Y and satisfies the inequality $(f(u), u) \ge -c ||u||$, while f_0^{-1} is the inverse of a maximal monotone mapping from Y to X, and hence is itself maximal monotone from X to 2^Y , and $0 \in D(f_0^{-1})$, the applicability of Theorem 2 is reduced to showing that the mapping f_0^{-1} satisfies the basic hypothesis of X-coercivity.

We consider three points y, u, and y_0 in Y with $f_0(y_0)=0$, and obtain the inequality

$$(f_0(y), y - u) + (f_0(u), u - y_0) \ge 0.$$

Hence

$$(f_0(y), u) \leq (f_0(y), y) + (f_0(u), u - y_0)$$

Taking the supremum of $(f_0(y), u)$ over all u in the ball of radius R about 0 in Y and noting that f_0 is bounded on bounded sets, we see that

$$R ||f_0(y)|| \leq (f_0(y), y) + c(R) \qquad (R > 0).$$

Thus if [u, y] lies in $G(f_0^{-1})$, i.e., $u=f_0(y)$,

$$R ||u|| \leq (u, y) + c(R).$$

Hence if $(u, y) \leq k ||u||$, it follows that

$$R ||u|| - c(R) \leq k ||u|| \qquad (R > k),$$

from which it follows that $||u|| \leq s(k)$. Moreover, *u* lies in the set $\{f_0(y); ||f_0(y)|| \leq s(k), (f_0(y), y) \leq ks(k)\}$, which by condition (2) is contained in a weak* compact subset of *X*. Hence f_0^{-1} is *X*-coercive and the existence result follows from Theorem 2. Q.E.D.

To use Theorem 3 to obtain an existence theorem for the Hammerstein integral equation

$$u(t) + \int_{\Omega} k(t, s)h(s, u(s)) \, ds = v(t) \qquad (t \in \Omega)$$

as in [2], we choose X to be $L^1(\Omega)$, $Y = L^{\infty}(\Omega)$. The mapping f is the monotone linear operator $(ku)(t) = \int_{\Omega} k(t, s)u(s) ds$, while f_0 is the Niemitskyii operator $(f_0(v))(t) = h(t, v(t))$. The condition (1) that f_0 is tricyclically

1975]

monotone follows from the fact that f_0 is a potential operator, while condition (2) follows immediately from the criterion of Dunford and Pettis for a subset of $L^1(\Omega)$ to be relatively weakly compact.

BIBLIOGRAPHY

1. H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 1, 115-175. MR 42 #5113.

2. H. Brezis and F. E. Browder, Some new results on Hammerstein equations, Bull. Amer. Math. Soc. 80 (1974), 567-572.

3. F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283–301. MR 37 #4679.

4. H. Debrunner and P. Flor, Ein Erweiterungssatz für monotone Mengen, Arch. Math. 15 (1964), 445-447. MR 30 #428.

5. G. J. Minty, A finite-dimensional tool theorem in monotone operator theory, Advances in Math. 12 (1974), 1-7.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637