
SOME OF MY FAVORITE OPEN PROBLEMS

Häim Brezis

To the memory of Antonio Ambrosetti, a dearly

missed friend, and master of Nonlinear Analysis

Abstract. This is a selection of the main open problems I raised throughout my

career and that have resisted so far. This is not an exhaustive list, but striking
questions fairly easy to state; some were raised 40 years ago, others quite recently.

1. An elliptic equation involving the critical exponent in 3D.

Let Ω be the unit ball in R3. Consider the equation

(1.1)

{ −∆u = u5 + λu in Ω,

u = 0 on ∂Ω,

where the unknown u : Ω→ R is a smooth function and λ ∈ R is a parameter.
A natural question is whether (1.1) admits a non-trivial solution, u 6≡ 0. Note

that the exponent 5 corresponds to the critical Sobolev exponent (N + 2)/(N − 2)
when N = 3, which produces notorious difficulties. The answer, which depends on
λ, is known for a large class of λ’s ; however, for one interval of λ’s the answer has
remained undecided over the past forty years. Let λ1 = π2 be the first eigenvalue
of −∆ on Ω with zero Dirichlet conditions.

Open Problem 1.1 (implicit in ([BrNi1]). Assume that

(1.2) 0 < λ ≤ λ1/4.

Does there exist a solution u 6≡ 0 of (1.1)?

Several comments are in order:
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a) The answer is not known even if (1.2) is replaced by a sub-interval, e.g. 0 <
λ < δ with δ small.

b) When λ ≤ 0 the only solution of (1.1) is u ≡ 0; this is a celebrated result of
Pohozaev (1965).

c) When

(1.3) λ1/4 < λ < λ1

there exists a radial solution u > 0 in Ω of (1.1). This is a central result from
Brezis-Nirenberg [BrNi1, Theorem 1.2] (see also [Br1] and [Dr]).

d) When

(1.4) 0 < λ ≤ λ1/4,

any radial solution u of (1.1) must be u ≡ 0 (see [BrNi1, proof of Lemma 1.4]). In
particular (via Gidas-Ni-Nirenberg) there exists no solution u > 0 in Ω of (1.1).
Therefore if (1.4) holds and a solution u 6≡ 0 of (1.1) exists, it must be non-radial
and sign-changing.

e) When

(1.5) λ ≥ λ1

there exist sign-changing solutions of (1.1) - but no solution u > 0 of (1.1), (see
[Co]). In the bifurcation diagram, branches of solutions emanate from the eigen-
values associated with non-radial sign-changing eigenfunctions. It would be inter-
esting to decide whether such branches “reach” the interval (0, λ1/4); they might
instead admit e.g. vertical asymptotes at values of λ ≥ λ1/4.

2. Questions of uniqueness and radial symmetry arising from the Ginzburg-
Landau system.

Let Ω be the unit disc in R2. Consider the system

(2.1)

{ −∆u = 1
ε2u(1− |u|2) in Ω,

u(x) = x on ∂Ω,

where ε > 0 is a given parameter and the unknown u maps Ω into R2.
It is easy to check that (2.1) admits a solution u of the form

(2.2) u(x) =
x

|x|
fε(|x|)
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where fε : [0, 1]→ R satisfies the ODE

(2.3)

{
−f ′′ − 1

rf
′
+ 1

r2 f = 1
ε2 f(1− f2) in (0, 1),

f(0) = 0 and f(1) = 1.

In fact (2.3) admits a unique solution (see [BBH, Appendix II]). We will denote
by Uε(x) the solution of (2.1) given by (2.2)-(2.3), and we call it the radially
symmetric (or just the radial) solution of (2.1). A long-standing open problem is
whether Uε(x) is also the unique solution of (2.1):

Open Problem 2.1 ([BBH, Problem 10 in Chapter XI]). Is the radial
solution Uε the only solution of (2.1)?

A positive answer would, in particular, imply that solutions of some specific
nonlinear systems of PDEs inherit the radial symmetry of the data - a property
reminiscent of the celebrated Gidas-Ni-Nirenberg result relative to positive solu-
tions of some scalar PDEs.

Note that (2.1) has a variational structure: the solutions of (2.1) are the critical
points of the Ginzburg-Landau energy.

Eε(u) :=
1

2

∫
Ω

|∇u|2 +
1

4ε2

∫
Ω

(|u|2 − 1)2,

subject to the boundary condition u ∈ H1
g (Ω;R2), where g(x) = x on ∂Ω.

The answer to Open Problem 2.1 is known to be positive in two “opposite”
cases:
a) When ε is sufficiently large; more precisely ε ≥ 1/

√
λ1 where λ1 is the first

eigenvalue of −∆ under zero Dirichlet condition. Indeed it is easy to check that
Eε is strictly convex when ε ≥ 1/

√
λ1 and its unique minimizer is also its unique

critical point.
b) When ε is sufficiently small: ε < ε0 for some appropriate ε0. This result is due
to Pacard-Rivière [PR]. Their proof is highly non-trivial and fills a significant part
of the monograph [PR]; it would be interesting to find a simpler proof.

The intermediate range ε0 ≤ ε < 1/
√
λ1 is totally open. An easier question still

unresolved is:

Open Problem 2.2. Is Uε a minimizer of Eε on H1
g (Ω;R2) for any ε > 0?

Note that a positive answer to Open Problem 2.1 implies a positive answer to
Open Problem 2.2, since any minimizer of Eε on H1

g (Ω;R2) is a solution of (2.1),
and by uniqueness it would coincide with Uε.

The next result provides substantial evidence that the answer to Open Problem
2.2 is positive.
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Theorem 2.1 (Mironescu [Mi1], see also Lieb-Loss [LL]). For every ε >
0, Uε is a local minimizer of Eε; moreover D2Eε(Uε) is positive definite.

Following Brezis [Br3, Open Problem 6] one may ask similar questions when Ω
is the unit ball in RN , N ≥ 3 and u : Ω→ R2; the counterpart of (2.3) is

(2.4)

{
−f ′′ − (N−1)

r f
′
+ N−1

r2 f = 1
ε2 f(1− f2) in (0, 1),

f(0) = 0 and f(1) = 1.

Ignat-Nguyen [IN] established the analogue of Theorem 2.1 in any dimension N ≥
3, while Ignat-Nguyen-Slastikov-Zarnescu [INSZ] proved that in dimension N ≥ 7,
Uε is a global minimizer of Eε on H1

g (Ω);RN ) for any ε > 0; in fact Uε is the
unique global minimizer of Eε.

One can also raise identical questions for the p−GL energy

Eε,p(u) :=
1

p

∫
Ω

|∇u|p +
1

4ε2

∫
Ω

(|u|2 − 1)2,

where p > 1, Ω is the unit disc in R2 and u ∈W 1,p
g (Ω;R2), with g(x) = x on ∂Ω.

A somewhat related direction concerns the “asymptotic radial symmetry” as
ε→ 0; more specifically:

Open Problem 2.3 ([BM, Open Problem 30]). Assume p > 2 and let uε be
any minimizer (resp. critical point) of Eε,p on W 1,p

g (Ω,R2). Does uε(x) → x/|x|
in Ω \ {0} as ε→ 0?

Note that the answer to the same problem when p = 2 is positive (see [BBH]
for minimizers and [PR] for critical points). When p < 2 the answer is positive
for minimizers (this is an immediate consequence of Theorem 13.6 in [BM]) and
is open for general critical points.

Entire solutions of the Ginzburg-Landau equation are also of interest. Consider
the system

(2.5) −∆u = u(1− |u|2) on R2,

and the condition at infinity

(2.6) lim
|x|→∞

|u(x)| = 1,

where u is a smooth function from R2 into R2 ' C. Here the parameter ε is
irrelevant since it can be scaled out .
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Property (2.6) allows to define the degree of u at infinity

(2.7) deg(u,∞) := deg

(
u(Rx)

|u(Rx)|
;x ∈ S1

)
for R sufficiently large.

Given any q ∈ Z, q 6= 0, there exists a distinguished solution u of (2.5)-(2.6)
given in polar coordinates by

(2.8) u(r, θ) = eiqθgq(r),

where gq : [0,∞)→ [0, 1) satisfies the ODE

(2.9)

{
−g′′ − 1

r g
′
+ q2

r2 g = g(1− g2) on (0,∞),

g(0) = 0 and lim
r→∞

g(r) = 1.

In fact, (2.9) admits a unique solution denoted gq (see [BBH, Appendix III]). When
q ∈ Z, q 6= 0 we set Vq(r, θ) := eiqθgq(r). We also set V0 ≡ 1. Note that

deg(Vq,∞) = q ∀q ∈ Z.

A long-standing open problem is whether the functions Vq, q ∈ Z, are the only
solutions of (2.5)-(2.6). More precisely

Open Problem 2.4 ([BBH, Problem 14], [BMR], [Br3]). Let u be any
solution of (2.5) - (2.6). Does u coincide with Vq modulo rotation and translation,
where q = deg(u,∞)? I.e., is u(x) = αVq(x − x0) for some α ∈ C, |α| = 1, and
x0 ∈ R2?

Two partial results are known so far

Theorem 2.2 ([BMR]). Assume that u is a solution of (2.5)-(2.6) such that

(2.10) deg(u,∞) = 0,

and which satisfies in addition

(2.11)

∫
R2

(|u|2 − 1)2 <∞.

Then u = V0 modulo rotation and translation, i.e., u is a constant of modulus 1.
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Theorem 2.3 ([Mi2]). Assume that u is a solution of (2.5)-(2.6) such that

(2.12) deg(u,∞) = ±1,

and which satisfies in addition (2.11).
Then u = V±1 modulo rotation and translation.

Addressing Open Problem 2.4 when |deg(u,∞)| ≥ 2, Ovchinnikov and Si-
gal [OS] have devised a strategy to construct non-radial solutions of (2.5)-(2.6),
thereby providing a negative answer to Open Problem 2.4. However their pro-
posed construction has been criticized (see Esposito [Es] and Kurzke [Ku]), and
the problem remains open.

In another direction we point out that it is not known whether the conclusions
of Theorem 2.2 and Theorem 2.3 remain true if one removes assumption (2.11).
More generally

Open Problem 2.5 ([BMR, Problem 2], [Br3, Open Problem 2]). Assume
that u satisfies (2.5) and (2.6). Does (2.11) hold?

Finally, we mention that property (2.11) appears quite naturally in connection
with solutions of (2.5). In particular the functions Vq, q ∈ Z, satisfy (2.11); more
precisely (see e.g. [Sh1]), for any q ∈ Z,

|Vq(x)| = 1− q2

2|x|2
+ o

(
1

|x|2

)
as |x| → ∞.

Also, one can show (see [BMR] and [Sh1]) that any solution of (2.5) satisfying
(2.11) enjoys the following properties:
a)

lim
|x|→∞

|u(x)| = 1, so that q = deg(u,∞) is well-defined,

b)

|u(x)| = 1− q2

2|x|2
+ o

(
1

|x|2

)
as |x| → ∞,

c) ∫
R2

(|u|2 − 1)2 = 2πq2,

d)
lim
|x|→∞

|u(x)− αVq(x)| = 0 for some α ∈ C, |α| = 1.
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3. Harmonic maps from the disc to S2.

Let Ω be the unit disc in R2. A harmonic map to S2 is a smooth map u : Ω→ R3

satisfying

(3.1) −∆ui = ui|∇u|2, i = 1, 2, 3, in Ω,

(3.2) |u(x)| = 1 in Ω.

Given a smooth map g : ∂Ω→ S2 we add the boundary condition

(3.3) u = g on ∂Ω.

One could also define a concept of weak harmonic map, i.e., a map u ∈ H1
g (Ω;S2)

satisfying (3.1) in the sense of distributions. A celebrated result of F. Hélein (1990)
asserts that weak harmonic maps are smooth.

The solutions of (3.1)-(3.3) correspond to critical points of the energy

(3.4) E(u) =

∫
Ω

|∇u|2 on E = H1
g (Ω;S2).

It is easy to produce a solution of (3.1)-(3.3) by minimizing E on E . Denote by
u such a minimizer (it need not be unique). A natural question is whether there
are other solutions. In fact one might expect that (3.1)-(3.3) admits infinitely
many solutions. The reason is that E has infinitely many connected components
classified by a topological degree. More precisely, given u ∈ E , let v : S2 → S2 be
defined by

v(x, y, z) :=

{
u(x, y) if (x, y, z) ∈ S2 and z ≥ 0,

u(x, y) if (x, y, z) ∈ S2 and z ≤ 0.

Note that v ∈ H1(S2;S2) since u = u on ∂Ω. Hence deg v is well-defined (see
[BrNi2]) and in fact

deg v =
1

4π

∫
Ω

u · ux ∧ uy −
1

4π

∫
Ω

u · ux ∧ uy,

by Kronecker’s formula. One may thus decompose E into its connected components

(3.5) E = ∪
k∈Z
Ek, where Ek = {u ∈ E ; deg v = k}.

It is tempting to minimize E in each class Ek. However Inf
Ek
E need not be achieved

(except when k = 0 since u ∈ E0); the reason being that the degree is not con-
tinuous under weak convergence in H1. Thus, if (un) is a minimizing sequence
in Ek and un ⇀ u∞ weakly in H1, the limit u∞ might “jump” to another class
E`, ` 6= k, and will not be a minimizer of E in Ek . This scenario can really occur.
For example, if g ≡ C is a constant, a result of Lemaire [Le] asserts that u ≡ C
is the only solution of (3.1)-(3.3). As a consequence Inf

Ek
E is achieved only when

k = 0.
Here is a general result in the positive direction.
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Theorem 3.1 ([BrCo], [Jo]). Assume g 6≡ C, then Inf
Ek
E is achieved at least

in one of the classes E+1 or E−1. As a consequence problem (3.1)-(3.3) admits at
least two solutions (including u).

Little is known concerning the existence of additional solutions, even when g
has a simple form (see however works by Jie Qing, A. Soyeur, Morgan Pierre, L.
Oswald and G. Paulik). Consider the boundary condition

(3.6) g(x, y) =
(
Rx,Ry,

√
1−R2

)
for (x, y) ∈ ∂Ω,

with 0 < R < 1. In this case one can write down two explicit solutions of (3.1)-
(3.3):

(3.7) u(x, y) =
2λ

λ2 + r2
(x, y, λ) + (0, 0,−1) for (x, y) ∈ Ω,

and

(3.8) ū(x, y) =
2µ

µ2 + r2
(x, y,−µ) + (0, 0, 1) for (x, y) ∈ Ω,

where r2 = x2 + y2, λ = 1
R +

√
1
R2 − 1 and µ = 1

R −
√

1
R2 − 1.

It is not difficult to check that u is a minimizer of E in E and that ū is a
minimizer of E in E−1.

More precisely u is the unique minimizer of E in E0 and ū is the unique minimizer
of E in E−1. Moreover Inf

Ek
E is not achieved when k 6= 0 and k 6= −1. This does

not exclude the possible existence of other solutions of (3.1)-(3.3):

Open Problem 3.1 ([BrCo]). Assume g is given by (3.6). Are there other
solutions of (3.1)-(3.3) besides u and ū?

Either way, the answer to Open Problem 3.1 would be illuminating. A neg-
ative answer might possibly shed some light on the important question whether
solutions of specific nonlinear systems inherit the symmetry of the data –assuming
the first step in the proof establishes that any solution is radially symmetric. A
positive answer (more than 2 solutions) might involve the development of new
techniques for finding non-minimizing critical points in variational problems with
lack of compactness.



SOME OF MY FAVORITE OPEN PROBLEMS 9

4. Continuous harmonic maps from B3 to S2.

Let Ω = B3 be the unit ball in R3. A (weak) harmonic map to S2 is a map
u ∈ H1(Ω;R3) satisfying

(4.1) −∆ui = ui|∇u|2 i = 1, 2, 3, in Ω,

(4.2) |u(x)| = 1 in Ω.

Given a smooth map g : ∂Ω ' S2 → S2 we add the boundary condition

(4.3) u = g on ∂Ω.

Solutions of (4.1)-(4.3) correspond to critical points of the energy

(4.4) E(u) =

∫
Ω

|∇u|2 on H1
g (Ω;S2).

Note that H1
g (Ω; S2) is always non-empty since u(x) = g(x/|x|) ∈ H1

g (Ω; S2).
It is therefore easy to produce solutions of (4.1)-(4.3) e.g. by considering mini-

mizers of the problem

(4.5) Min
{
E(u);u ∈ H1

g (Ω; S2)
}
.

In contrast with the 2D case (see Section 3) weak harmonic maps need not be
smooth - and not even continuous. The optimal regularity result for minimizers
is known from the works of Schoen-Uhlenbeck [SU] and Brezis-Coron-Lieb [BCL]:
any minimizer u of (4.5) is smooth in Ω̄ except at a finite number of points (ai)
in Ω and near each ai, u behaves like ±(x− ai)/|x− ai| modulo a rotation.

When deg g 6= 0,
{
u ∈ C(Ω̄;S2);u = g on ∂Ω

}
= ∅, and thus singularities are

unavoidable. Since we will be concerned with the existence of continuous harmonic
maps satisfying (4.3) we assume throughout this section that

(4.6) deg g = 0.

Here is a long-standing open problem originally posed by R. Schoen in the
mid-1980’s:

Open Problem 4.1 ([HaLi], [Ha], [Br5, Open Problem 3]). Assume that
(4.6) holds. Does there exist a continuous harmonic map satisfying (4.1)-(4.3)?

Even in the absence of a topological obstruction (i.e., when (4.6) holds), mini-
mizers in (4.5) can still have singularities, and therefore will not provide a solution
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to Open Problem 4.1. This is a consequence of a remarkable gap phenomenon dis-
covered by Hardt-Lin [HaLi] (see also [Br2]): There exist smooth maps g : ∂Ω→ S2

satisfying (4.6) and such that

(4.7) Min
{
E(u);u ∈ H1

g (Ω; S2)
}
< Inf

{
E(u);u ∈ H1

g (Ω;S2) ∩ C(Ω̄)
}
.

In order to solve Open Problem 4.1 it is tempting to tackle

Open Problem 4.2 ([HaLi], [Ha]). Is the

(4.8) Inf
{
E(u);u ∈ H1

g (Ω;S2) ∩ C(Ω̄)
}

achieved?

Clearly, a positive answer to Open Problem 4.2 would provide a solution to
Open Problem 4.1. But in principle it might happen that the answer to Open
Problem 4.2 is negative while the answer to Problem 4.1 is positive. (Can this
scenario occcur?)

A natural strategy to solve Open Problem 4.2 has been developed in Bethuel-
Brezis-Coron [BBC] via the concept of relaxed energy defined as follows.

Fix u ∈ H1
g (Ω; S2). In general there exist no sequence (un) in H1

g (Ω; S2) ∩
C(Ω̄) such that un → u strongly in H1. (This is e.g. a consequence of the gap
phenomenon (4.7)). However there always exists a sequence (un) in H1

g (Ω;S2) ∩
C(Ω̄) such that un ⇀ u weakly in H1 (see [Be]). Set
(4.9)

R(u) := Inf
{

lim inf
n→∞

E(un);un ∈ H1
g (Ω; S2) ∩ C(Ω̄) and un ⇀ u weakly in H1

}
,

where the first Inf is taken over all sequences (un) as above. (R stands for relaxed).
The functional R is well-defined on H1

g (Ω; S2) and it is weakly lower semi-
continuous. Therefore

(4.10) Min
{
R(u);u ∈ H1

g (Ω;S2)
}

is achieved.

We claim that if the Inf in (4.8) is achieved, say by some u ∈ H1
g (Ω;S2) ∩ C(Ω̄),

then u is also a minimizer in (4.10).
Indeed, we clearly have

(4.11) E(v) ≤ R(v) ∀v ∈ H1
g (Ω;S2)

and

(4.12) R(v) ≤ E(v) ∀v ∈ H1
g (Ω; S2) ∩ C(Ω̄)
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(just take un ≡ v in (4.9)).
Therefore

(4.13) R(v) = E(v) ∀v ∈ H1
g (Ω;S2) ∩ C(Ω̄).

We also have

(4.14) Inf
v∈H1

g

R(v) = Inf
v∈H1

g∩C
E(v).

Indeed, it is clear that

(4.15) Inf
v∈H1

g

R(v) ≤ Inf
v∈H1

g∩C
R(v) = Inf

v∈H1
g∩C

E(v) by (4.13).

On the other hand, given any w ∈ H1
g (Ω; S2), there exists (by definition of R) a

sequence (wn) in H1
g (Ω;S2) ∩ C(Ω̄) such that wn ⇀ w weakly in H1 and

(4.16) E(wn)→ R(w).

Thus

(4.17) Inf
v∈H1

g∩C
E(v) ≤ E(wn) ∀n.

Passing to the limit in (4.17) using (4.16) gives

Inf
v∈H1

g∩C
E(v) ≤ R(w) ∀w ∈ H1

g (Ω; S2),

so that

(4.18) Inf
v∈H1

g∩C
E(v) ≤ Inf

v∈H1
g

R(v).

Combining (4.15) and (4.18) yields (4.14).

We may now return to the above claim concerning (4.8). Assume that Inf
v∈H1

g∩C
E(v)

is achieved, say by some u ∈ H1
g ∩ C, then by (4.13) and (4.14)

R(u) = E(u) = Inf
v∈H1

g∩C
E(v) = Inf

v∈H1
g

R(v)

and hence u is a minimizer for the problem (4.10).

Therefore prospective solutions of Open Problem 4.2 are to be found among
the minimizers of (4.10). This leads us to
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Open Problem 4.3 ([BBC]). Are the minimizers of (4.10) continuous on Ω̄? (Is
it true for at least one of the minimizers?)

If the answer to Open Problem 4.3 is positive and u ∈ H1
g (Ω; S2)∩C(Ω̄) is such

a minimizer then u satisfies, by (4.13),

E(u) = R(u) = Inf
v∈H1

g

R(v) = Inf
v∈H1

g∩C
E(v),

and therefore we have solved Open Problem 4.2 since u is a minimizer for Open
Problem 4.2.

In tackling Open Problem 4.3 we have at our disposal explicit representation
formulas for R. We first need some notations. Given u ∈ H1(Ω;S2), consider the
D-field (introduced in [BCL])

D(u) =

(
det

(
u,

∂u

∂x2
,
∂u

∂x3

)
,det

(
∂u

∂x1
, u,

∂u

∂x3

)
,det

(
∂u

∂x1
,
∂u

∂x2
, u

))
,

so that D(u) ∈ L1(Ω;R3), and one can define the distribution

(4.19) Ju :=
1

3
divD(u) ∈ D′(Ω;R).

J stands for Jacobian because Ju coincides with the usual Jacobian when u ∈
C2(Ω;R3). Since u takes its values in S2, it follows that Ju = 0 in the region
where u is smooth. As we are going to see below (in (4.23)), Ju carries important
information about the location of the topological singularities of u.

Theorem 4.1 ([BBC]). For every u ∈ H1
g (Ω;S2)

(4.20) R(u) =

∫
Ω

|∇u|2 + S(u),

where
(4.21)

S(u) := 2 Sup

{∫
Ω

D(u) · ∇ζ −
∫
∂Ω

(Jac g) ζ; ζ ∈W 1,∞(Ω;R), ||∇ζ||L∞ ≤ 1

}
,

and Jac g denotes the Jacobian determinant of g : ∂Ω ' S2 → S2.

As a consequence of (4.20) and (4.21) we see that R is continuous for the strong
topology of H1 (it is even locally Lipschitz). Thus it is helpful to know the value
of R on a dense subset of H1

g (Ω;S2) for the strong topology, in particular on the
class

C =
{
u ∈ H1

g (Ω;S2);u is continuous on Ω̄ except on a finite set (ai), 1 ≤ i ≤ k in Ω
}
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which is dense in H1
g (Ω; S2) (by a classical result of Bethuel).

When u ∈ C we have (see [BCL]) the important formula

(4.22) Ju =
4π

3

k∑
i=1

deg(u, ai)δai

where deg(u, ai) is the degree of u restricted to a small ball centered at ai. Re-
labelling the points (ai) as Pi and Ni, 1 ≤ i ≤ `, including multiplicities, we may
write

(4.23) Ju =
4π

3

l∑
i=1

(δPi
− δNi

).

(Here we use the fact that
∑
i deg(u, ai) = deg g = 0). Inserting (4.23) in (4.21)

yields (after integration by parts)

(4.24) S(u) = 8π Sup

{∑̀
i=1

[ζ(Pi)− ζ(Ni)]; ζ ∈W 1,∞ and ||∇ζ||L∞ ≤ 1

}
,

which implies (see [BCL]) that

(4.25) S(u) = 8π Min
σ

∑̀
i=1

∣∣Pi −Nσ(i)

∣∣,
where the Min

σ
is taken over all permutations σ of the integers {1, . . . , `}. This

formula is closely connected to Optimal Transport as explained in [Br9], [BM].
Combining (4.20) and (4.25) we derive a remarkable explicit formula for R when

u ∈ C:

(4.26) R(u) =

∫
Ω

|∇u|2 + 8π Min
σ

∑̀
i=1

∣∣Pi −Nσ(i)

∣∣.
In fact, there is a similar formula, just slightly more complicated for a general

u ∈ H1
g (Ω;S2). Namely one can show (see [BM]) that for every u ∈ H1

g (Ω;S2)

there exist sequences (Pi) and (Ni) such that
∑∞
i=1 |Pi −Ni| <∞, and

Ju =
4π

3

∞∑
i=1

(δPi − δNi).
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Moreover

S(u) = 8π Inf

{ ∞∑
i=1

∣∣P̃i − Ñi∣∣;∑(δP̃i
− δÑi

) =
∑

(δPi
− δNi

)

}
.

The relaxed energy consists therefore of the usual energy
∫

Ω
|∇u|2 plus an ad-

ditional term involving the “interaction of singularities” - a quantity which may
possibly be of physical interest.

Some partial regularity results concerning the minimizers of the relaxed energy
have been obtained by Giaquinta-Modica-Soucek, Hardt-Lin-Poon and others, but
the answer to Open Problem 4.3 remains elusive. An easier question still unre-
solved is:
Open Problem 4.4. Let u be a minimizer of (4.10). Is it true that S(u) = 0, i.e.,
Ju = 0 ? or equivalently that there exists a sequence (un) in H1

g (Ω; S2) ∩ C(Ω̄)

such that un converges to u strongly in H1 ?

5. Degree, VMO,W 1/p,p, and Fourier.

Recall that
(5.1)

BMO(S1) :=

{
f ∈ L1(S1;C); |f |BMO := sup

I

1

|I|2

∫
I

∫
I

|f(x)− f(y)|dxdy <∞
}
,

where sup
I

is taken over all arcs of circle in S1,

(5.2) VMO(S1) :=

{
f ∈ BMO(S1); lim

|I|→0

1

|I|2

∫
I

∫
I

|f(x)− f(y)|dxdy = 0

}
.

Obviously L∞ ⊂ BMO and C ⊂ VMO; moreover VMO is the closure of C in
BMO.

For any 1 < p <∞
(5.3)

W 1/p,p(S1) :=

{
f ∈ L1(S1;C); |f |p

W 1/p,p :=

∫
S1

∫
S1

|f(x)− f(y)|p

|x− y|2
dxdy <∞

}
.

As usual, H1/2 = W 1/2,2. It follows easily from Hölder that

(5.4) W 1/p,p(S1) ⊂ VMO(S1) ∀p ∈ (1,∞).

Clearly the classes W 1/p,p(S1;S1) increase with p on (1,∞); indeed if p > q

|f(x)− f(y)|p ≤ 2p−q|f(x)− f(y)|q.

Brezis-Nirenberg [BrNi2] have established that degree theory persists in VMO(S1;S1);
in particular the new degree coincides with the classical degree on C(S1;S1), and
if fn, f ∈ VMO satisfy fn → f in BMO, then deg fn → deg f .

The starting point in this section is the following estimate for the degree.
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Theorem 5.1 ([BBM2, Corollary 0.5]). For every 1 < p < ∞ there exists a
constant Cp (depending only on p) such that

(5.5) |deg f | ≤ Cp|f |pW 1/p,p ∀f ∈W 1/p,p(S1;S1).

Note that estimate (5.5) “deteriorates” as p↘ 1 since |f |W 1/p,p →∞ as p↘ 1
unless f is a constant (see [Br4] and the beginning of Section 9 below). Therefore
it is tempting to monitor the behavior of the constant Cp as p↘ 1. A reasonable
conjecture is:

Open Problem 5.1 ([Br7, Remark 7]). Does there exist a (universal) constant
c such that, for every 1 < p ≤ 2,

(5.6) |deg f | ≤ c(p− 1)

∫
S1

∫
S1

|f(x)− f(y)|p

|x− y|2
∀f ∈W 1/p,p(S1;S1)?

There is strong evidence in support of (5.6) as p ↘ 1. Indeed, we have (as a
consequence of [BrNg1, Proposition 1]), when f is smooth,

(5.7) lim
p↘1

(p− 1)

∫
S1

∫
S1

|f(x)− f(y)|p

|x− y|2
'
∫
S1
|ḟ |,

while

(5.8) |deg f | ≤ 1

2π

∫
S1
|ḟ | by the Cauchy formula.

A far-reaching extension of (5.5) is the following striking estimate for the degree.

Theorem 5.2. There exists a constant C such that for every f ∈ C(S1;S1)

(5.9) |deg f | ≤ C
∫
S1

∫
S1

[|f(x)−f(y)|≥
√

3]

dxdy

|x− y|2
.

A weaker version of (5.9) where
√

3 is replaced by a small constant δ0 > 0 was
originally announced in [BBM2] and proved in [BBM3, Theorem 4]. Subsequently

Bourgain-Brezis-Nguyen [BBNg] pushed the estimate up to δ0 =
√

2. Finally

Nguyen [Ng1] established that (5.9) holds and that
√

3 is optimal (see also [BM,
Section 12.5]); the current proof is quite involved and it is natural to raise:
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Open Problem 5.2 ([BM, Open Problem 18]). Is there a simpler, more
geometric proof of Theorem 5.2? What is the best constant C in (5.9)? Is it
achieved?

Given f ∈ C(S1;S1) and δ > 0, set

(5.10) Iδ(f) :=

∫
S1

∫
S1

[|f(x)−f(y)|≥δ]

dxdy

|x− y|2
.

As a consequence of (5.9) we know that ∀f ,

(5.11) |deg f | ≤ CIδ(f) ∀δ ≤
√

3.

Note that this estimate deteriorates as δ ↘ 0 since Iδ(f) ↗ ∞ as δ ↘ 0 (unless
f is a constant). Therefore it is natural to try to improve (5.11) by replacing C
with a constant Cδ which tends to 0 as δ ↘ 0. A reasonable conjecture is:

Open Problem 5.3 ([Br7, Open Problem 3]). Does there exist a (universal)
constant c such that

(5.12) |deg f | ≤ cδIδ(f) ∀f ∈ C(S1;S1) ∀δ ≤
√

3?

There is strong evidence in support of (5.12) as δ → 0. Indeed, when f is

smooth, we have, lim
δ→0

δIδ(f) '
∫
S1 |ḟ | (see [Br8, Theorem 3.1], and [BrNg2, Propo-

sition 1]), while |deg f | ≤ 1
2π

∫
S1 |ḟ | by the Cauchy formula.

An SN -version of (5.12) was established by Nguyen [Ng2] for any N ≥ 2, but,
surprisingly, the case N = 1 remains elusive!

Nonlocal energies have become popular in recent years and it is of interest to
study the “least amount of W 1/p,p-energy” necessary to produce a map f : S1 → S1

of prescribed degree d (see [Br7, Remark 5]). More precisely, given 1 < p < ∞
and d ∈ Z set

(5.13) mp,d := Inf
{
|f |p

W 1/p,p ; f ∈W 1/p,p(S1;S1),deg f = d
}
.

From Theorem 5.1 above and [BM, Theorem 12.9] we know that for every
1 < p <∞, there exist two positive constants cp and c̄p such that

(5.14) cp|d| ≤ mp,d ≤ c̄p|d| ∀d ∈ Z.

This suggests the following:
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Open Problem 5.4 ([BM, Open Problems 22 and 23]). Let 1 < p <∞. Is
true that

(5.15) mp,d = |d|mp,1 ∀d ∈ Z?

Is the inf in (5.13) achieved?

The answer to both questions is positive for p = 2 (see [BM, Theorems 12.9
and 12.10]). Assuming that (5.15) does not hold, is there an explicit formula for

(5.16) lim
d→+∞

mp,d

d
= inf
d>0

mp,d

d
?

Recall that the Fourier coefficients of a function f ∈ L2(S1;C) are given, for
every n ∈ Z, by

(5.17) an = an(f) :=
1

2π

∫ 2π

0

f(eiθ)e−inθdθ =
1

2π

∫
S1
f(z)z̄nd`,

so that,

(5.18) f(eiθ) = Σ
n∈Z

ane
inθ in L2(0, 2π).

An elementary computation (see [Br7, Lemma 5] or [BM, Lemma 12.5]) yields,
for every f ∈ H1/2(S1),

(5.19) |f |2H1/2(S1) =

∫
S1

∫
S1

|f(x)− f(y)|2

|x− y|2
dxdy = 4π2 Σ

n∈Z
|n||an|2.

The following striking formula connecting the degree of a map f ∈ H1/2(S1;S1)
and its Fourier coefficients was brought to light in Brezis [Br7, Theorem 4] (see
also [BM, Theorem 12.6]):

Theorem 5.3. For every f ∈ H1/2(S1;S1) we have

(5.20) deg f = Σ
n∈Z

n|an(f)|2.

Equality (5.20) implies in particular that if f, g ∈ H1/2(S1;S1) satisfy |an(f)| =
|an(g)| ∀n ∈ Z, then deg f = deg g. This formula has become the starting point
of a challenging direction of research labeled “Can one hear the degree?” in [Br7].
More precisely:

(5.21)

{
Given two maps f, g ∈ VMO(S1;S1) such that |an(f)| = |an(g)|
for all n ∈ Z, can one conclude that deg f = deg g?

The answer to question (5.21) turns out to be negative in general:
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Theorem 5.4 ([BoKo]). There exist two functions f, g ∈ C(S1;S1) such that
|an(f)| = |an(g)| ∀n ∈ Z, and deg f 6= deg g.

The construction of Bourgain-Kozma in [BoKo] is quite elaborate and it would
be desirable to find a simpler one.

On the other hand the answer is positive in some classes bigger thanH1/2(S1;S1):

Theorem 5.5 ([Br7, Corollary 2], [BM, Corollary 12.3], [Ka]). Assume
that f, g ∈ W 1/3,3(S1;S1) satisfy |an(f)| = |an(g)| ∀n ∈ Z, then deg f = deg g.
In particular the conclusion holds if f, g ∈ C0,α(S1;S1) with α > 1/3.

Note that the assertion in Theorem 5.5 is far from obvious since W 1/3,3(S1;S1) is
strictly bigger than H1/2(S1;S1) and thus the series Σ

n∈Z
|n||an(f)|2 can be divergent

for a general f ∈ W 1/3,3(S1;S1). Note also that there is a wide “gap” between
the positive result in Theorem 5.5 and the counterexample by Bourgain-Kozma in
Theorem 5.4. It is not known whether W 1/3,3 is the sharp borderline:

Open Problem 5.5. What happens to Theorem 5.5 when f, g ∈ W 1/p,p(S1;S1)
with p > 3 (resp. f, g ∈ C0,α(S1 : S1) with α ≤ 1/3)? The problem is open even
under the stronger assumption that f ∈ W 1/p,p with 2 < p ≤ 3 and g ∈ W 1/q,q

with q > 3 (resp. f ∈ C0,α with α > 1/3 and g ∈ C0,β with β ≤ 1/3).

Theorem 5.5 is an immediate consequence of the following summation formula:

Theorem 5.6 ([Br7, Theorem 6], [BM, Theorem 12.7], [Ka]). For every
f ∈W 1/3,3(S1;S1) we have

(5.22) deg f = lim
ε↘0

Σ
n∈Z
n 6=0

n|an(f)|2 sinnε

nε
.

In particular (5.22) holds if f ∈ C0,α(S1;S1) with α > 1/3.

It is not known whether different summation formulas might produce improve-
ments of Theorem 5.5, e.g. assuming f belongs to a larger class W 1/p,p with
p > 1/3, or C0,α with α ≤ 1/3. In fact, it is an open problem whether one can
capture the degree of any map f ∈ VMO(S1;S1) via a summation process involv-
ing only |an(f)|, n ∈ Z. More precisely, by a summation process we mean a family
(σn,ε), n ∈ Z, 0 < ε < 1, satisfying:

(5.23) ∀ε ∈ (0, 1), sup
n∈Z
|n||σn,ε| <∞,

(5.24) ∀n ∈ Z, lim
ε↘0

σn,ε = 1.
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Note that if (5.23)-(5.24) hold, then Σ
n∈Z

n|an(f)|2σn,ε is well-defined ∀ε ∈ (0, 1)

and the question of interest is whether

(5.25) lim
ε↘0

Σ
n∈Z

n|an(f)|2σn,ε = deg f?

Open Problem 5.6. Given any p > 3 (resp. α ≤ 1/3) does there exist a
summation process (σn,ε), depending only on p (resp. α) such that (5.25) holds

for every f ∈W 1/p,p (resp. f ∈ C0,α)?

In the same vein one can raise:

Open Problem 5.7. Given any f ∈ C(S1;S1) (resp. f ∈ VMO(S1;S1)) does
there exist a summation process (σn,ε) (depending on f) such that (5.25) holds?

We call attention to the following assertion:

Corollary 5.1. Given any summation process (σn,ε) there exists some f ∈ C(S1;S1)
(depending on σn,ε) such that Σ

n∈Z
n|an(f)|2σn,ε does not converge to deg f .

Corollary 5.1 is an immediate consequence (by contradiction) of Theorem 5.4.
For special summation processes explicit f ’s satisfying the conclusion of Corollary
5.1 have been constructed by Korevaar [Ko] and Kahane [Ka]; these are:

a)

σn,ε :=

{
1 if |n| ≤ [1/ε] (the integer part of 1/ε),

0 if |n| > [1/ε],

b)

σn,ε := (1− ε)|n|,

c)

σn,ε :=
sinnε

nε
if n 6= 0 and σ0,ε = 1.

A stronger version of Corollary 5.1 is open:

Open Problem 5.8. Does there exist some f ∈ C(S1;S1) (resp. f ∈ VMO(S1;S1))
such that for any summation process (σn,ε), Σ

n∈Z
n|an(f)|2σn,ε does not converge to

deg f?

Note that a negative answer to Open Problem 5.8 amounts to a positive answer
to Open Problem 5.7

An interesting direction of research concerns the distance between the homotopy
classes of W 1/p,p(S1;S1), 1 < p <∞ which are given by
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Ed = {f ∈W 1/p,p(S1;S1); deg f = d}, d ∈ Z.

There are two natural notions of distance:

distW 1/p,p (Ed1 , Ed2) = Inf
f∈Ed1

Inf
g∈Ed2

|f − g|W 1/p,p

and

DistW 1/p,p (Ed1 , Ed2) = Sup
f∈Ed1

Inf
g∈Ed2

|f − g|W 1/p,p .

It turns out (see [BrNi2], [BMS]) that

distW 1/p,p(Ed1 , Ed2) = 0, ∀d1, d2 ∈ Z.

On the other hand DistW 1/p,p(Ed1 , Ed2) has an interesting interpretation:

Given f ∈ Ed1 , Inf
g∈Ed2

|f −g|W 1/p,p represents the least amount of energy required

to pass from the given f ∈ Ed1 to a configuration in Ed2 , and DistW 1/p,p(Ed1 , Ed2)
is the “highest price” one may have to pay as f runs in Ed1 . A remarkable result
of Shafrir asserts that this quantity depends only on |d1 − d2|.

Theorem 5.7 ([Sh, Confluentes]). We have

(5.26) Distp
W 1/p,p (Ed1 , Ed2) = mp,|d1−d2|, ∀p ∈ (1,∞), ∀d1, d2 ∈ Z,

where mp,d is defined in (5.13).

In particular (when p = 2), (5.26) becomes

(5.27) Dist2H1/2 (Ed1 , Ed2) = 4π2|d1 − d2|.

A similar conclusion when S1 is replaced by SN , with N ≥ 2 or just N = 2, is
widely open. Consider e.g. H1(S2;S2) and its homotopy classes

Ed =
{
f ∈ H1(S2;S2); deg f = d

}
, d ∈ Z.

The quantity of interest is

DistH1 (Ed1 , Ed2) = Sup
f∈Ed1

Inf
g∈Ed2

||∇(f − g)||L2 .

Open Problem 5.9 ([BMS]). Is true that

(5.28) Dist2
H1 (Ed1 , Ed2) = 8π|d1 − d2| ∀d1, d2 ∈ Z?
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The inequality ≤ is known, (see [BMS] and the references therein) but the
reverse inequality (≥) has been established only when d2 > d1 ≥ 0 (see [BMS,
Proposition 7.3]) . Even a much easier problem is open:

Is it true that DistH1(Ed1 , Ed2) = DistH1(Ed2 , Ed1) ∀d1, d2 ∈ Z?

In a totally different (but somewhat related) direction one may ask whether a
version of the Brouwer fixed point theorem holds for VMO maps:

Open Problem 5.10. Let B be the closed unit ball in RN and let f be a VMO
map from B into itself. Is it true that for every ε > 0, the set

{x ∈ B; |f(x)− x| < ε}

has positive measure?

6. Unbounded extremal solutions.
Consider the nonlinear elliptic equation

(6.1)


−∆u = λf(u) in Ω ⊂ RN ,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , λ > 0 is a constant, and f :
[0,+∞)→ (0,+∞) is a smooth function satisfying

(6.2) f(0) > 0, f is increasing and convex,

and

(6.3) lim
t→∞

f(t)

t
= +∞.

Some basic general results concerning problem (6.1) are summarized in the
following (see [BrVa], [Br6] and the references therein):

Theorem 6.1. There exists a constant λ∗ ∈ (0,+∞) such that

a) For every λ ∈ (0, λ∗) problem (6.1) admits a minimal smooth solution denoted
u(λ); moreover u(λ) increases with λ (for every x ∈ Ω).

b) For λ > λ∗ there is no solution of (6.1).

c) u∗ = lim
λ↑λ∗

u(λ) is a weak solution of (6.1) in the sense that u∗ ∈ L1(Ω), f(u∗)δ ∈

L1(Ω), where δ(x) = dist (x, ∂Ω) and
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(6.4) −
∫

Ω

u∗∆ζ = λ∗
∫

Ω

f(u∗)ζ ∀ζ ∈ C2(Ω̄), ζ = 0 on ∂Ω.

The function u∗ is called the extremal solution of (6.1). A notable result of
Martel asserts that u∗ is the unique weak solution of (6.4) when λ = λ∗.

It was originally established by Nedev [Ne] that u∗ ∈ L∞(Ω) when N ≤ 3.
The question whether the same conclusion holds when 4 ≤ N ≤ 9 for every f
satisfying (6.2) - (6.3) was a long-standing open problem raised in Brezis [Br6]. It
was recently solved in a splendid piece of work by Cabré-Figalli-Ros-Oton-Serra:

Theorem 6.2 ([CFRS]). Assume (6.2)-(6.3) and

(6.5) N ≤ 9,

then u∗ ∈ L∞(Ω).

Assumption N ≤ 9 is optimal since a celebrated result by Joseph-Lundgren
(1973) provides an explicit solution of (6.4) when N ≥ 10,Ω = B1 is the unit ball
in RN , and f(u) = eu. Namely λ∗ = 2(N − 2) and u∗(x) = log(1/|x|2), so that
u∗ /∈ L∞(Ω).

This completes the case N ≤ 9. On the other hand many interesting questions
remain open when N ≥ 10. Here are some of them:

Open Problem 6.1 ([BrVa], [Br6]). Assume Ω is a bounded smooth convex
set in RN , N ≥ 10. Let f(u) = eu. Is u∗ unbounded? If the answer is negative
for some domains Ω, can one find other functions f satisfying (6.2)-(6.3) (possibly
depending on Ω) such that u∗ /∈ L∞(Ω)?

Open Problem 6.2 ([BrVa], [Br6]). Assume u∗ /∈ L∞(Ω). What can be said
about the blow-up set of u∗? Does it consist of a single point when Ω is convex?

7. Estimates à la Bourgain-Brezis.
The starting point in the following (non-trivial) estimate for the phase of S1-

valued maps. For simplicity we work on TN , N ≥ 2.

Theorem 7.1 ([BoBr, Corollary 1]). Let ϕ : TN → R be a smooth function,
and set u := eiϕ. Then

(7.1) ‖ϕ−
∫
ϕ‖LN/(N−1) ≤ C(|u|H1/2 + (u|2H1/2).

A basic ingredient in the proof of (7.1) is the following:
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Theorem 7.2 ([BoBr, Theorem 2]). Given any f ∈ LN (TN ) such that
∫
f = 0,

there exists Y ∈W 1,N ∩ L∞(TN ,RN ) satisfying

(7.2) divY = f on TN ,

and

(7.3) ‖Y ‖W 1,N + ‖Y ‖L∞ ≤ CN‖f‖LN .

It is easy to check that W 1,N ⊂ H1/2 and therefore Y ∈ H1/2 ∩ L∞ with the
corresponding estimate

(7.4) ‖Y ‖H1/2 + ‖Y ‖L∞ ≤ CN‖f‖LN .

The assertion of Theorem 7.2 is equivalent via duality to the estmate:

(7.5) ‖ψ −
∫
ψ‖LN/(N−1) ≤ CN‖∇ψ‖W−1,N/(N−1)+L1 ∀ψ,

while the weaker assertion (7.4) corresponds to the weaker estimate

(7.6) ‖ψ −
∫
ψ‖LN/(N−1) ≤ CN‖∇ψ‖H−1/2+L1 .

Theorem 7.1 can be deduced easily from estimate (7.4) . Indeed, we have

(7.7) ∇ϕ = −iu∇u.

Multiplying (7.7) by Y and applying (7.4) yields∣∣∣∣ ∫ ϕf

∣∣∣∣ =

∣∣∣∣ ∫ ϕ div Y

∣∣∣∣ =

∣∣∣∣ ∫ ∇ϕ · Y ∣∣∣∣ =

∣∣∣∣ ∫ u∇u · Y
∣∣∣∣

≤ C|u|H1/2 |uY |H1/2 ≤ C|u|H1/2(|u|H1/2‖Y ‖L∞ + |Y |H1/2)

≤ C|u|H1/2(1 + |u|H1/2)‖f‖LN ,

which implies (7.1).

It turns out that there is a substantial improvement of Theorem 7.1:
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Theorem 7.3 ([BoBr, Theorem 4], [BBM4, Theorem 3], [BM, Theorem
9.7]). With the same notations as in Theorem 7.1, we have

(7.8) ‖ϕ−
∫
ϕ‖H1/2+W 1,1 ≤ CN (|u|H1/2 + |u|2H1/2).

[Note that H1/2 ⊂ LN/(N−1) and W 1,1 ⊂ LN/(N−1)].

If we try to establish (7.8) by the same method as above we would need to
invoke a stronger version of (7.6), namely

(7.9) ‖ψ −
∫
ψ‖H1/2+W 1,1 ≤ C‖∇ψ‖H−1/2+L1 ∀ψ.

However such an estimate is still undecided:
Open Problem 7.1 ([BoBr]). Does (7.9) hold?

8. Regularity of minimizers for functionals involving the total varia-
tion.

Let Ω be a smooth bounded domain in RN , N ≥ 2. Assume (for simplicity)
that f is a smooth function on Ω̄ and consider the functional

Φ(u) :=

∫
Ω

|∇u|+ 1

2

∫
Ω

|u− f |2

defined for u ∈ BV (Ω) ∩ L2(Ω). This functional has been extensively used e.g. in
Image Processing following the classical work of Rudin-Osher-Fatemi.

Standard Functional Analysis yields the existence and uniqueness of a minimizer
denoted U ∈ BV (Ω) ∩ L2(Ω) for the problem

(8.1) Min
u∈BV ∩L2

Φ(u).

So far the best regularity result is

Theorem 8.1 ([CCN], [Por]). The minimizer U satisfies ∇U ∈ L∞(Ω), but in
general ∇U is not continuous.

This still leaves room for improvement:

Open Problem 8.1 ([Br10, Open Problem 1]). Does ∇U belong to BV (Ω)?

When N = 1 the answer to Open Problem 8.1 is positive (see [Br10, Theorem
1]). The proof is based on a transformation relating the solution of (8.1) to the
derivative of the solution of an obstacle problem. One may then apply a result of
[BK] (valid in all dimensions N). Unfortunately this transformation seems to be
restricted to N = 1.
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9. Characterizations of constant functions and beyond.

Let Ω be a smooth bounded connected domain in RN , N ≥ 1. It is known (see
[Br4], [BM, Corollary 6.4]) that any measurable function u : Ω→ R satisfying

(9.1)

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|p+N
dxdy <∞,

for some 1 ≤ p <∞, must be a constant (i.e., there exists a constant c such that
u(x) = c a.e.). As was pointed out in [Br4] this fact is an immediate consequence
of the BBM formula [BBM1]; alternative direct elementary proofs are presented
in [BM].

A significant extension of this result goes as follows. Given λ > 0, p ≥ 1, and a
measurable function u : Ω→ R, set

(9.2) Φλ,p(u) := meas

{
(x, y) ∈ Ω× Ω;

|u(x)− u(y)|p

|x− y|p+N
≥ λ

}
.

Theorem 9.1. Assume that a measurable function u satisfies

(9.3) lim
λ→∞

λΦλ,p(u) = 0 for some p ≥ 1,

then u must be a constant.

Theorem 9.1 is due to Brezis-Van Schaftingen-Yung [BVY] when p > 1, (with
Ω = RN but the proof is unchanged when Ω is a ball), and to Poliakovsky [Pol,
Corollary 1.1] when p = 1. Actually, Poliakovsky derives the result from a deeper
assertion (see below); as a consequence the proof of Theorem 9.1 when p = 1 is
quite intricate and it would be desirable to find a more direct and elementary
proof, possibly in the spirit of [BVY].

Here is a natural question related to Theorem 9.1:

Open Problem 9.1 ([BVY, Open Problem 1]). Assume that u satisfies

(9.4) lim inf
λ→∞

λΦλ,p(u) = 0 for some p ≥ 1.

Can one conclude that u is a constant?

A far-reaching version of this question is the following:
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Open Problem 9.2 ([BSVY, Section 7.2]). Given any 1 < p <∞, is there a
constant C = C(p,N,Ω) such that, for all measurable functions u,

(9.5) ‖∇u‖pLp ≤ C lim inf
λ→∞

λΦλ,p(u)?

in the sense that ‖∇u‖Lp =∞ if u /∈W 1,p(Ω).
Similarly for p = 1, is there a constant C = C(N,Ω) such that, for all measur-

able functions u,

(9.6) ‖∇u‖M ≤ C lim inf
λ→∞

λΦλ,1(u)?

where ‖∇u‖M denotes the total mass of ∇u if u ∈ BV (Ω), and ‖∇u‖M = ∞ if
u /∈ BV (Ω).

Poliakovsky [Pol] gave a positive answer to Open Problem 9.2 under the stronger
assumption that lim inf is replaced by lim sup in (9.5) and (9.6).

Along the same lines one may even try to go one step further:

Open Problem 9.3 ([BSVY, Section 7.3]). Does the family of functionals
λΦλ,p converge as λ → ∞, in the sense of Γ-convergence, to the functional Ψ
defined, when p > 1, by

Ψ(u) :=

{
cp‖∇u‖pLp if u ∈W 1,p(Ω),

+∞ if u /∈W 1,p(Ω),

and when p = 1 by

Ψ(u) :=

{
c1‖∇u‖M if u ∈ BV (Ω),

+∞ if u /∈ BV (Ω),

for some positive constants cp and c1 ?

The three problems above are already interesting when N = 1!

10. A sharp relative isoperimetric inequality for the cube.

Let Q be the unit cube in RN , N ≥ 2. Given a measurable set S ⊂ Q, denote by
1S the characteristic function of S, by |S| = ‖1S‖L1 the volume of S, and by P (S)
the relative perimeter of S, i.e., taking into account only the part of the boundary
of S inside Q; in other words P (S) is the total mass of the measure ∇1S (possibly
infinite if S is not rectifiable). Consider the function fN (t) defined for 0 ≤ t ≤ 1
by

(10.1) fN (t) := inf{P (S);S is a measurable subset of Q such that |S| = t}.

Clearly fN (t) = fN (1− t) ∀t ∈ [0, 1]; just replace S by Q \ S in (10.1).

An explicit formula for fN (t) is known when N = 2:
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Theorem 10.1 ([BreBru]). We have

(10.2) f2(t) =

{
(πt)1/2 if 0 ≤ t ≤ 1

π

1 if 1
π ≤ t ≤

1
2

.

Open Problem 10.1 ([BreBru]). Is there a formula similar to (10.2) for fN (t)
when N ≥ 3? In particular, is it true that fN (t) ≡ 1 near t = 1/2?
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[BMS] H. Brezis, P. Mironescu and I. Shafrir, Distances between homotopy classes of
W s,p(SN ;SN ), ESAIM:COCV 22 (2016), 1204–1235.

[BrNg1] H. Brezis and H.-M. Nguyen, Two subtle convex nonlocal approximations of the
BV-norm, Nonlinear Anal, 137 (2016), 222-245.

[BrNg2] , Nonlocal functionals related to the total variation and connections with
Image Processing, Annals of PDE 4 (2018); no. 1, Paper No. 9, 77.

[BrNi1] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations

involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-

477.

[BrNi2] , Degree theory and BMO, Part I : compact manifolds without boundaries,

Selecta Math 1 (1995), 197-263.

[BSVY] H. Brezis, A. Seeger, J. Van Schaftingen and P.-L. Yung, Families of functionals
representing Sobolev norms, submitted.



SOME OF MY FAVORITE OPEN PROBLEMS 29

[BVY] H. Brezis, J. Van Schaftingen and P.-L. Yung, Going to Lorentz when fractional
Sobolev, Gagliardo and Nirenberg estimates fail, Calc. Var. PDE 60:129 (2021),

12.

[BrVa] H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic prob-

lems, Revista Mat. Univ. Complutense Madrid 10 (1997), 443-469.
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30 HAÏM BREZIS

[Mi2] , Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à
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