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1. Introduction and statement of the main results

Assume that ¢ : [0,400) — [0,+00) is defined at every point of [0,+00), ¢ is continuous on [0, +0c0)
except at a finite number of points in (0, 4+00) where it admits a limit from the left and from the right, and
©(0) = 0. Let 2 C R? (d > 1) denote a domain which is either bounded and smooth, or 2 = R%. Given a
measurable function u on {2, and a parameter 0 > 0, we define the following non-local functionals, for p > 1,

—u(y)|)
(u, £2) / / |p+d dedy and As(u, 2) := P A(u/o, 2). (1.1)
To simplify the notation, we will often delete 2 and write As(u) instead of As(u, §2).
As in [3], we consider the following four assumptions on :

©(t) < atP™™ in [0, 1] for some positive constant a, (1.2)
©(t) <bin Ry for some positive constant b, (1.3)
 is non-decreasing, (1.4)
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and

fyd@/ ()t~ P dt = 1, where 4, := / |o - e|? do for some e € S471, (1.5)
0 Sd-1

In this paper, we study the pointwise and the I'-convergence of As as § — 0 for p > 1. This is a
continuation of our previous work [3] where the case p = 1 was investigated in great details. Concerning
the pointwise convergence of As, our main result is

Theorem 1. Letd > 1 and p > 1. Assume (1.2), (1.3), and (1.5) (the monotonicity assumption (1.4) is
not required here). We have

(i) There exists a positive constant Cp o such that

As(u, 2) < C,,,Q/ \VulP dz Yu e WP (2),Y6 > 0; (1.6)
2

moreover,

lim As(u, 2) = / |VulP de Yue WP(02). (1.7)
d—0 9]
(ii) Assume in addition that ¢ satisfies (1.4). Let u € LP(§2) be such that
lim inf A5(u, 2) < 400, (1.8)
6—0
then u € WHP(02).

Remark 1. Theorem 1 provides a characterization of the Sobolev space WP (£2) for p > 1:
Wl’p(n) = {u € Lp(.Q);ligniélf As(u) < +oo}.
—

This fact is originally due to Bourgain and Nguyen [1,4] when ¢ = @1 := cl(1,+o0) for an appropriate
constant c.

There are some similarities but also striking differences between the cases p > 1 and p = 1.

(a) First note a similarity. Let p = 1 and ¢ satisfy (1.2)—(1.4), and assume that u € L*(2) verifies

lim inf As(u, 2) < 400,
6—0

then u € BV (£2) (see [1,3]).
(b) Next is a major difference. Let p = 1. There exists u € W11(£2) such that, for all ¢ satisfying
(1.2)—(1.4), one has
lim As(u, 2) = +o00
0—0

[3, Pathology 1]. In particular, (1.6) and (1.7) do not hold for p = 1. An example in the same spirit was
originally constructed by Ponce and is presented in [4]. Other pathologies occurring in the case p = 1 can
be found in [3, Section 2.2].

As we will see later, the proof of (1.6) involves the theory of maximal functions. The use of this theory
was suggested independently by Nguyen [4] and Ponce and van Schaftingen (unpublished communication to
the authors). The proof of (1.6) uses the same strategy as in [4].

We point out that assertion (i7) fails without the monotonicity condition (1.4) on ¢. Here is an example
e.g. with 2 = R. Let ¢ = cl (1 2y for an appropriate, positive constant c. Let u = 1(g,1). One can easily check
that As(u) = 0 for § € (0,1/2) and it is clear that u ¢ W1P(R) for p > 1.
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Concerning the I'-convergence of Ag, our main result is

Theorem 2. Letd > 1 andp > 1. Assume (1.2)~(1.5). Then
As(+, 2) T'-converges in LP(§2) to Ao(-, = H/ |V - P da,

as § — 0, for some constant k which depends only on p and @, and verifies

0<r<l. (1.9)

Theorem 2 was known earlier when ¢ = ¢; [5,6].
The paper is organized as follows. Theorem 1 is proved in Section 2 and the proof of Theorem 2 is given
in Section 3. Throughout the paper, we denote

ps(t) == Pp(t/d) for p> 1,6 > 0,¢t > 0.
2. Proof of Theorem 1

In view of the fact that liminf;_, . ©(t) > 0, assertion (1.8) is a direct consequence of [1, Theorem 1];
note that [1, Theorem 1] is stated for 2 = R? but the proof can be easily adapted to the case where 2 is
bounded. It could also be deduced from Theorem 2.

We now establish assertions (1.6) and (1.7). The proof consists of two steps.

Step 1: Proof of (1.6) and (1.7) when 2 = R? and v € W'P(R?). Replacing y by x + z and using polar
coordinates in the z variable, we find

o (|u(z e ps(lu(z 4 ho) — u(x)|)
. 2.1
/]Rd /]Rd y‘p+d /]Rd da?/ dh i oL do (2.1)

[ /+°° n es(lul@ +ho) —u(@)))
Rd 0 gd—1 hp+1

+00 6pg0<|u(x+ha —u(x |/5>
:/ dx/ dh (2.2)
R 0 sd—1

hp+1

We have

Rescaling the variable h gives

+00 (51’<p \u x+ ho) —u(x |/6)
[ / an |
Rd qd—1 hp+1
+o0 \u (x + 0ho) —u(z |/5)
d dh 2.
/Rd x/ /Sd 1 hp+l (2:3)

Combining (2.1), (2.2), and (2.3) yields

os(Ju(z . +o0 " (|u(x+5ha —u( |/5> ot
/Rd /]Rd d+p dy = /Rd a:/ qd—1 hptl do. (2.4)

|z —
Note that
gir% ule + 5h§) — u(@)l = |(Vu(z),0)|h for a.e. (z, h, o) € R? x [0, +00) x ST71. (2.5)
e

Here and in what follows, (.,.) denotes the usual scalar product in R?. Since ¢ is continuous at 0 and on
(0, +00) except at a finite number of points, it follows that

. 1

}1 th+1cp(|u(:r+5ho —u(z |/5) hp+1g0(|<Vu(x),J>|h)
for a.e. (x, h, o) € R? x (0, 4+00) x S, (2.6)
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Rescaling once more the variable h gives

/OOO dh/Sd_l #@(KVU(‘%),@VL) do = |Vu(:c)|p/ooo ()t~ @D gt /Sd_1 (o, &) do;

here we have also used the obvious fact that, for every V € R?, and for any fixed e € S%1,

[ W=y [ o) do
gd—1 gd—1

Thus, by the normalization condition (1.5), we obtain

— p
/Rd daz/ dh/Sd 1 hp+1g0 (Vu(), 0>|h)da—/Rd\Vu\ dz.

5(t) = atPt for t € [0,1),
v = b for ¢ € [1,400).

Set

Then
© is non-decreasing and ¢ < ©.

Note that, for a.e. (x, h, o) € R% x (0, +00) x S471,

u(x o) —ulr "
(a2 300) =00 < L 1" (Gt 40, )]s < WM (T ),

where

M (Vu,o)(x) := sup — /|Vuz+sa) o) ds.

t>0 1
Combining (2.4) and (2.10), we derive from (2.9) that

P(h|M(Vu,0)(z)|)
/Sd 1/Rd/ s dhdz do
+o0
= / Gty P+Y at / / |M(Vu,o)(z)| d do.
0 gd—1 JRrd

We claim that, for o € S471,

/ \M(Vu, o) (@) de < C, / V()P da.
R4 R4

(2.7)

(2.9)

(2.10)

(2.11)

(2.12)

For notational ease, we will only consider the case o = e;. By the theory of maximal functions (see e.g. [7]),

one has, for g € LP(R),
£+t b
sup £ [g(s)] ds
3

t>0 —t

J

Using this inequality with g(z1) = 9,, u(z1,2') for 2’ € R¥~1, we obtain

de<c, / 9(E)1 de.

/ |M(Vu,ep)(zy,2') [ dey < Cp/ |0, u(z1,2")|F day.
R R
Integrating with respect to z’ yields

/ |M(Vu,er)(z)|P do < Cp/ / |0, u(w1, 2")|P day do’ < Cp/ |Vu(x)|’ d,
R4 RA—1 JR R4

and (2.12) follows.
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Using (2.12), we deduce from (2.11) that
As(w) < Cpa / Vul? de,
R4
which is (1.6). From (2.6), (2.7), (2.8), and (2.10) we derive, using the dominated convergence theorem, that
lim Ag(u) :/ |Vul’ dz.
6—0 R

This completes Step 1.
Step 2: Proof of (1.6) and (1.7) when §2 is bounded and u € W1P(£2). We first claim that

lim As(u) = / |Vul|P for u € WHP(0). (2.13)
6—0 0

Indeed, consider an extension of u in R? which belongs to W1?(R9), and is still denoted by u. By the same
method as in the case 2 = R%, we have

lim dx/ o (Jule) = u{Sy)D dy = / |Vul|Pdx (2.14)
§—0 /0 R |z — y|p+ 7]
and, for D € {2 and ¢ > 0,
lim dx/ o (Ju(z) _fgym dy :/ V| da. (2.15)
5=0J/p B(ze) |z—yl’ D
Combining (2.14) and (2.15) yields (2.13).
We next show that
As(u) < Cp,g/ |Vu|? dz for u € WHP(02). (2.16)
o

Without loss of generality, we may assume that |, o u = 0. Consider an extension U of u in R? such that

/ VU de < cp,g/ IVl da.
Rd Q
Such an extension exists since {2 is smooth and fQ u =0, see, e.g., [2, Chapter 9]. Using the fact
Ao, Q) < A5(U,RY) < Cy g / VU da,
Rd
we get (2.16). The proof is complete. [

3. Proof of Theorem 2

We first recall the meaning of I'-convergence. One says that As(-, £2) EN Ao(+, 2) in LP(£2) as 6 — 0 if

(G1) For each g € LP(£2) and for every family (gs) C LP(§2) such that (gs) converges to g in LP({2) as
0 — 0, one has
lim inf A5(gs, £2) > Ao(g, £2).
=0

(G2) For each g € LP(2), there exists a family (g5) C LP({2) such that (gs) converges to g in LP({2) as
0 — 0, and

lim sup 45(gs, 2) < Ap(g, £2).
6—0
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Denote @ the unit open cube, i.e., Q@ = (0,1)¢ and set

d
U(z) = dil/Qij in Q,

=1

so that |VU| =1 in Q.
In the following two subsections, we establish properties (G1) and (G2) where « is the constant defined
by
k = inf lim inf As(vs, Q). (3.1)
6—0

Here the infimum is taken over all families of functions (vs) C LP(Q) such that vs — U in LP(Q) as 6 — 0.

3.1. Proof of Property (G1)
We begin with

Lemma 1. Letd>1,p > 1, S be an open bounded subset of R? with Lipschitz boundary, and let g be an
affine function. Then
infli%niélf A5(gs,S) = kIVg”|S|, (3.2)
—

where the infimum is taken over all families (gs) C LP(S) such that gs — g in LP(S) as § — 0.

Proof. The proof of Lemma 1 is based on the definition of x in (3.1) and a covering argument. It is identical
to the one of the first part of [3, Lemma 6]. The details are omitted. O

The proof of Property (G1) for p > 1 relies on the following lemma with roots in [6].

Lemma 2. Letd>1,p>1, and € > 0. There exist two positive constants 51, by such that for every open
cube Q which is an image of Q by a dilation, for every a € R?, every b € R, and every h € LP(Q) satisfying

][ Ih(z) — (@, z) + ) dx < &1]al”| Q" (3.3)

one has

A5(h, @) > (15— 2)|al’|Q] for & € (0,8]al|Q]"). (3.4)

Hereafter, as usual, we denote fA f= ﬁ fA f

Proof. By a change of variables, without loss of generality, it suffices to prove Lemma 2 in the case @ =Q,
la] = 1, and b = 0. We prove this by contradiction. Suppose that this is not true. There exist €9 > 0, a
sequence of measurable functions (h,,) C LP(Q), a sequence (a,) C R%, and a sequence (§,,) converging to 0
such that |a,| =1,

1
/ ha(e) — ) < T and A, (i Q) < K~ o,
Q

Without loss of generality, we may assume that (a,) converges to a for some a € R? with |a] = 1. It
follows that (h,) converges to (a,.) in L?(Q). Applying Lemma 1 with S = @ and g = (a,-), we obtain a
contradiction. The conclusion follows. [

The second key ingredient in the proof of Property (G1) is the following useful property of functions in
Whr(RE),
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Lemma 3. Letd>1,p> 1, and u € W'P(R?). Given g1 > 0, there exist a subset B = B(g1) of Lebesgue
points of u and Vu, and an integer £ = €(g1) > 1 such that

/ |Vul? dz < 61/ |Vul? dz, (3.5)
R\ B R4

and, for every open cube Q' with \Q'\l/d <1/¢ and Q' N B #£ 0, and for every x € Q' N B,

1

|Q/|P o |u(y) - U({E) - (Vu(x),y - $>|pdy <& (36)
and
V@l = (1-2) f [Vuto)] dy (3.7
Ql

Proof. We first recall the following property of W1?(R%) functions (see e.g., [3, Theorem 3.4.2]): for a.e.

x € RY, )

. P _

o )~ ute) — (Vute)y " dy =0, (38)

where Q(z,7) := x + (—r,7)? for z € R? and r > 0.
Given n € N, define, for a.e. x € R,

pn(2) = sup {1][ |u(y) — u(z) = (Vu(z),y — 2)[" dy; r € (0, 1/n)} (3.9)
Q)

rp
and

Tn(z) = sup ][ |Vu(y) — Vu(z)[” dy;r € (0,1/n) ¢ . (3.10)
Q(x,r)

Note that, by (3.8), pu(z) — 0 for a.e. x € R? as n — +oo. We also have, 7,,(z) — 0 for a.e. z € R? as
n — +oo (and in fact at every Lebesgue point of Vu). For m > 1, set

D,, = {x € (=m,m)% xz is a Lebesgue point of u and Vu, and |Vu(z)| > 1/m}.

Since
lim |Vul? dx = 0,
m—»—+00 Rd\Dm
there exists m > 1 such that
/ IVul? do < i/ Vul? da. (3.11)
Rd\Dm 2 Rd
Fix such an m. By Egorov’s theorem, there exists a subset B C D,, such that (p,) and (7,) converge to 0
uniformly on B, and
/ \Vul? do < il/ |Vl da. (3.12)
Dm\B 2 Jra

Combining (3.11) and (3.12) yields (3.5).
By the triangle inequality, we have, for every non-empty, open cube @’ and a.e. z € R? (in particular for
x € Q' N B),

(f, vuw i) < (f, 1vutn - vura) o)< (PO gy
provided

(e - vurrar) < (ot -1 ) um and wu@lz

— €1
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Since (p,,) and (7,,) converge to 0 uniformly on B and |Vu(z)| > 1/m for x € B, it follows from (3.13) that
there exists an £ > 1 such that (3.6) and (3.7) hold when |Q’|1/d <1/fand @ NB # 0, and z € Q' N B.
The proof is complete. [

We are ready to give the

Proof of Property (G1). We only consider the case 2 = R?. The other case can be handled as in [3] and
is left to the reader. We follow the same strategy as in [6].
In order to establish Property (G1), it suffices to prove that

liminf 45, (gx, R?) > /@/ |Vg|” dz (3.14)
k—+o00 Rd

for every g € LP(RY), (§;) C Ry and (g,) € LP(RY) such that 6, — 0 and g — ¢ in LP(R).
Without loss of generality, we may assume that liminfy_, | o 4s, (g, R?) < +oo0. It follows from [6] that
g € WHP(RY). Fix ¢ > 0 (arbitrary) and let 6 be the positive constant in Lemma 2. Set, for m > 1,

Ay = {x e R?% z is a Lebesgue point of g and Vg, and |Vg(z)| < 1/m}.
Since

lim V| dz =0,

m——+o0 A

there exists m > 1 such that

/ Vgl dz < E/ |Vg|? dz. (3.15)
Am 2 Jpd

Fix such an integer m. By Lemma 3 applied to v = g and £, = min{e/2,d1/(2m)P}, there exist a subset B
of Lebesgue points of g and Vg, and a positive integer ¢ such that

€
/Rd\B |Vg|" do < & /]Rd Vgl dz < 5./]1@61 |Vg|? du, (3.16)

and for every open cube )’ with |Q’|1/d <1/¢ and Q' N B # (), and, for every z € Q' N B,

1

o7 Ty |9(y) — g(2) = (Vg(x),y — 2)["dy < &1 < b1/(2m)” (3.17)

and
Vo@) 1@ = (1 - &) / Vgl?dy > (1<) / Vol” dy. (3.18)
Q' Q'

Fix such a set B and such an integer £. Set
B,,:= B\ A4,,.

Since R?\ (B\ A,,) C (R?\ B) U A,,, it follows that

/ |Vg|” dz :/ |Vg|” dx S/ |Vgl? dm—i—/ |Vgl? dx.
R\ By, R\ (B\Am,) R\ B Am

We deduce from (3.15) and (3.16) that

/ Vgl dw < 6/ V" da. (3.19)
R4\ By, R4
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Set P, = %Zd. Let €2 be the collection of all open cubes with side length 1/¢ whose vertices belong to Py
and denote

3o ={Q €% Q' N B, £0}.
Take Q' € J; and x € Q' N By,. Since gp — ¢ in LP(Q’), from (3.17), we obtain, for large k,
1
|Q/|:D/d
since |Vg(z)| > 1/m for z € B,, C R?\ A,,. Next, we apply Lemma 2 with @ =Q', h = gy, a =Vg(x),
b= g(z), and large k; we have
As(gr, Q) = (5 — )| Vg(@)|Q| for & € (0,6 Vg ()|,
which implies, by (3.18),

1 o) ote) = (ate)y =" dy < b/ < b Vo)

lim inf A5, (g5, Q") > (k —e)(1 — 5)/ [Vgl? dy. (3.20)
k—4o00 Q'
Since

.. dy > .. /
lim inf A5, (¢, RY) > Q/ZE; lim inf 45 (gx, Q'),
¥4

it follows from (3.20) that

. . d D
fiminf s, (90,2 > (-1 -2) 3 [ [Vgldo
Qe
(3.19)
> (k—e)(1— 5)/ VglPdz > (k—¢)(1 75)2/ |Vg|? d;
m R
in the second inequality, we have used the fact B,, is contained in UQ, Q' up to a null set. Since £ > 0 is

arbitrary, one has

eJy

lim inf A5, (gx, RY) > H/ Vgl” dz.
Rd

k— 400

The proof is complete. [
3.2. Proof of Property (G2)

The proof of Property (G2) for p > 1 is the same as the one for p = 1 given in [3]. The details are omitted.
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