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a b s t r a c t

We study the pointwise convergence and the Γ -convergence of a family of non-
local, non-convex functionals Λδ in Lp(Ω) for p > 1. We show that the limits are
multiples of

´
Ω |∇u|p. This is a continuation of our previous work where the case

p = 1 was considered.
© 2019 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main results

Assume that φ : [0, +∞) → [0, +∞) is defined at every point of [0, +∞), φ is continuous on [0, +∞)
except at a finite number of points in (0, +∞) where it admits a limit from the left and from the right, and
φ(0) = 0. Let Ω ⊂ Rd (d ≥ 1) denote a domain which is either bounded and smooth, or Ω = Rd. Given a
measurable function u on Ω , and a parameter δ > 0, we define the following non-local functionals, for p > 1,

Λ(u,Ω) :=
ˆ
Ω

ˆ
Ω

φ(|u(x) − u(y)|)
|x − y|p+d

dx dy and Λδ(u,Ω) := δpΛ(u/δ,Ω). (1.1)

To simplify the notation, we will often delete Ω and write Λδ(u) instead of Λδ(u,Ω).
As in [3], we consider the following four assumptions on φ:

φ(t) ≤ atp+1 in [0, 1] for some positive constant a, (1.2)

φ(t) ≤ b in R+ for some positive constant b, (1.3)

φ is non-decreasing, (1.4)
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and
γd,p

ˆ ∞

0
φ(t)t−(p+1) dt = 1, where γd,p :=

ˆ
Sd−1

|σ · e|p dσ for some e ∈ Sd−1. (1.5)

In this paper, we study the pointwise and the Γ -convergence of Λδ as δ → 0 for p > 1. This is a
continuation of our previous work [3] where the case p = 1 was investigated in great details. Concerning
the pointwise convergence of Λδ, our main result is

Theorem 1. Let d ≥ 1 and p > 1. Assume (1.2), (1.3), and (1.5) (the monotonicity assumption (1.4) is
not required here). We have

(i) There exists a positive constant Cp,Ω such that

Λδ(u,Ω) ≤ Cp,Ω

ˆ
Ω

|∇u|p dx ∀ u ∈ W 1,p(Ω), ∀ δ > 0; (1.6)

moreover,
lim
δ→0

Λδ(u,Ω) =
ˆ
Ω

|∇u|p dx ∀ u ∈ W 1,p(Ω). (1.7)

(ii) Assume in addition that φ satisfies (1.4). Let u ∈ Lp(Ω) be such that

lim inf
δ→0

Λδ(u,Ω) < +∞, (1.8)

then u ∈ W 1,p(Ω).

Remark 1. Theorem 1 provides a characterization of the Sobolev space W 1,p(Ω) for p > 1:

W 1,p(Ω) =
{

u ∈ Lp(Ω); lim inf
δ→0

Λδ(u) < +∞
}

.

This fact is originally due to Bourgain and Nguyen [1,4] when φ = φ̂1 := c1(1,+∞) for an appropriate
constant c.

There are some similarities but also striking differences between the cases p > 1 and p = 1.
(a) First note a similarity. Let p = 1 and φ satisfy (1.2)–(1.4), and assume that u ∈ L1(Ω) verifies

lim inf
δ→0

Λδ(u,Ω) < +∞,

then u ∈ BV (Ω) (see [1,3]).
(b) Next is a major difference. Let p = 1. There exists u ∈ W 1,1(Ω) such that, for all φ satisfying

(1.2)–(1.4), one has
lim
δ→0

Λδ(u,Ω) = +∞

[3, Pathology 1]. In particular, (1.6) and (1.7) do not hold for p = 1. An example in the same spirit was
originally constructed by Ponce and is presented in [4]. Other pathologies occurring in the case p = 1 can
be found in [3, Section 2.2].

As we will see later, the proof of (1.6) involves the theory of maximal functions. The use of this theory
was suggested independently by Nguyen [4] and Ponce and van Schaftingen (unpublished communication to
the authors). The proof of (1.6) uses the same strategy as in [4].

We point out that assertion (ii) fails without the monotonicity condition (1.4) on φ. Here is an example
e.g. with Ω = R. Let φ = c1(1,2) for an appropriate, positive constant c. Let u = 1(0,1). One can easily check
that Λδ(u) = 0 for δ ∈ (0, 1/2) and it is clear that u ̸∈ W 1,p(R) for p > 1.
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Concerning the Γ -convergence of Λδ, our main result is

Theorem 2. Let d ≥ 1 and p > 1. Assume (1.2)–(1.5). Then

Λδ(·,Ω) Γ -converges in Lp(Ω) to Λ0(·,Ω) := κ

ˆ
Ω

|∇ · |p dx,

as δ → 0, for some constant κ which depends only on p and φ, and verifies

0 < κ ≤ 1. (1.9)

Theorem 2 was known earlier when φ = φ̂1 [5,6].
The paper is organized as follows. Theorem 1 is proved in Section 2 and the proof of Theorem 2 is given

in Section 3. Throughout the paper, we denote

φδ(t) := δpφ(t/δ) for p > 1, δ > 0, t ≥ 0.

2. Proof of Theorem 1

In view of the fact that lim inft→+∞ φ(t) > 0, assertion (1.8) is a direct consequence of [1, Theorem 1];
note that [1, Theorem 1] is stated for Ω = Rd but the proof can be easily adapted to the case where Ω is
bounded. It could also be deduced from Theorem 2.

We now establish assertions (1.6) and (1.7). The proof consists of two steps.
Step 1 : Proof of (1.6) and (1.7) when Ω = Rd and u ∈ W 1,p(Rd). Replacing y by x + z and using polar

coordinates in the z variable, we findˆ
Rd

dx

ˆ
Rd

φδ(|u(x) − u(y)|)
|x − y|p+d

dy =
ˆ
Rd

dx

ˆ +∞

0
dh

ˆ
Sd−1

φδ(|u(x + hσ) − u(x)|)
hp+1 dσ. (2.1)

We have ˆ
Rd

dx

ˆ +∞

0
dh

ˆ
Sd−1

φδ(|u(x + hσ) − u(x)|)
hp+1 dσ

=
ˆ
Rd

dx

ˆ +∞

0
dh

ˆ
Sd−1

δpφ
(

|u(x + hσ) − u(x)|
/

δ
)

hp+1 dσ. (2.2)

Rescaling the variable h gives
ˆ
Rd

dx

ˆ +∞

0
dh

ˆ
Sd−1

δpφ
(

|u(x + hσ) − u(x)|
/

δ
)

hp+1 dσ

=
ˆ
Rd

dx

ˆ +∞

0
dh

ˆ
Sd−1

φ
(

|u(x + δhσ) − u(x)|
/

δ
)

hp+1 dσ. (2.3)

Combining (2.1), (2.2), and (2.3) yields
ˆ
Rd

dx

ˆ
Rd

φδ(|u(x) − u(y)|)
|x − y|d+p

dy =
ˆ
Rd

dx

ˆ +∞

0
dh

ˆ
Sd−1

φ
(

|u(x + δhσ) − u(x)|
/

δ
)

hp+1 dσ. (2.4)

Note that

lim
δ→0

|u(x + δhσ) − u(x)|
δ

= |⟨∇u(x), σ⟩|h for a.e. (x, h, σ) ∈ Rd × [0, +∞) × Sd−1. (2.5)

Here and in what follows, ⟨., .⟩ denotes the usual scalar product in Rd. Since φ is continuous at 0 and on
(0, +∞) except at a finite number of points, it follows that

lim
δ→0

1
hp+1 φ

(
|u(x + δhσ) − u(x)|

/
δ
)

= 1
hp+1 φ

(
|⟨∇u(x), σ⟩|h

)
for a.e. (x, h, σ) ∈ Rd × (0, +∞) × Sd−1. (2.6)
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Rescaling once more the variable h gives
ˆ ∞

0
dh

ˆ
Sd−1

1
hp+1 φ

(
|⟨∇u(x), σ⟩|h

)
dσ = |∇u(x)|p

ˆ ∞

0
φ(t)t−(p+1) dt

ˆ
Sd−1

|⟨σ, e⟩|p dσ; (2.7)

here we have also used the obvious fact that, for every V ∈ Rd, and for any fixed e ∈ Sd−1,
ˆ
Sd−1

|⟨V, σ⟩|p dσ = |V |p
ˆ
Sd−1

|⟨e, σ⟩|p dσ.

Thus, by the normalization condition (1.5), we obtain
ˆ
Rd

dx

ˆ ∞

0
dh

ˆ
Sd−1

1
hp+1 φ

(
|⟨∇u(x), σ⟩|h

)
dσ =

ˆ
Rd

|∇u|p dx. (2.8)

Set
φ̃(t) =

{
atp+1 for t ∈ [0, 1),

b for t ∈ [1, +∞).
Then

φ̃ is non-decreasing and φ ≤ φ̃. (2.9)

Note that, for a.e. (x, h, σ) ∈ Rd × (0, +∞) × Sd−1,

|u(x + δhσ) − u(x)|
δ

≤ 1
δ

ˆ hδ

0
|⟨∇u(x + sσ), σ⟩| ds ≤ hM(∇u, σ)(x), (2.10)

where
M(∇u, σ)(x) := sup

t>0

1
t

ˆ t

0
|⟨∇u(x + sσ), σ⟩| ds.

Combining (2.4) and (2.10), we derive from (2.9) that

Λδ(u) ≤
ˆ
Sd−1

ˆ
Rd

ˆ ∞

0

φ̃(h|M(∇u, σ)(x)|)
hp+1 dh dx dσ

=
ˆ +∞

0
φ̃(t)t−(p+1) dt

ˆ
Sd−1

ˆ
Rd

|M(∇u, σ)(x)|p dx dσ. (2.11)

We claim that, for σ ∈ Sd−1,
ˆ
Rd

|M(∇u, σ)(x)|p dx ≤ Cp

ˆ
Rd

|∇u(x)|p dx. (2.12)

For notational ease, we will only consider the case σ = e1. By the theory of maximal functions (see e.g. [7]),
one has, for g ∈ Lp(R), ˆ

R

⏐⏐⏐⏐⏐sup
t>0

 ξ+t

ξ−t

|g(s)| ds

⏐⏐⏐⏐⏐
p

dξ ≤ Cp

ˆ
R

|g(ξ)|p dξ.

Using this inequality with g(x1) = ∂x1u(x1, x′) for x′ ∈ Rd−1, we obtain
ˆ
R

|M(∇u, e1)(x1, x′)|p dx1 ≤ Cp

ˆ
R

|∂x1u(x1, x′)|p dx1.

Integrating with respect to x′ yields
ˆ
Rd

|M(∇u, e1)(x)|p dx ≤ Cp

ˆ
Rd−1

ˆ
R

|∂x1u(x1, x′)|p dx1 dx′ ≤ Cp

ˆ
Rd

|∇u(x)|p dx,

and (2.12) follows.
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Using (2.12), we deduce from (2.11) that

Λδ(u) ≤ Cp,d

ˆ
Rd

|∇u|p dx,

which is (1.6). From (2.6), (2.7), (2.8), and (2.10) we derive, using the dominated convergence theorem, that

lim
δ→0

Λδ(u) =
ˆ
Rd

|∇u|p dx.

This completes Step 1.
Step 2 : Proof of (1.6) and (1.7) when Ω is bounded and u ∈ W 1,p(Ω). We first claim that

lim
δ→0

Λδ(u) =
ˆ
Ω

|∇u|p for u ∈ W 1,p(Ω). (2.13)

Indeed, consider an extension of u in Rd which belongs to W 1,p(Rd), and is still denoted by u. By the same
method as in the case Ω = Rd, we have

lim
δ→0

ˆ
Ω

dx

ˆ
Rd

φδ(|u(x) − u(y)|)
|x − y|p+d

dy =
ˆ
Ω

|∇u|pdx (2.14)

and, for D ⋐ Ω and ε > 0,

lim
δ→0

ˆ
D

dx

ˆ
B(x,ε)

φδ(|u(x) − u(y)|)
|x − y|p+d

dy =
ˆ

D

|∇u|p dx. (2.15)

Combining (2.14) and (2.15) yields (2.13).
We next show that

Λδ(u) ≤ Cp,Ω

ˆ
Ω

|∇u|p dx for u ∈ W 1,p(Ω). (2.16)

Without loss of generality, we may assume that
´
Ω

u = 0. Consider an extension U of u in Rd such that
ˆ
Rd

|∇U |p dx ≤ Cp,Ω

ˆ
Ω

|∇u|p dx.

Such an extension exists since Ω is smooth and
´
Ω

u = 0, see, e.g., [2, Chapter 9]. Using the fact

Λδ(u,Ω) ≤ Λδ(U,Rd) ≤ Cp,d

ˆ
Rd

|∇U |p dx,

we get (2.16). The proof is complete. □

3. Proof of Theorem 2

We first recall the meaning of Γ -convergence. One says that Λδ(·,Ω) Γ→ Λ0(·,Ω) in Lp(Ω) as δ → 0 if

(G1) For each g ∈ Lp(Ω) and for every family (gδ) ⊂ Lp(Ω) such that (gδ) converges to g in Lp(Ω) as
δ → 0, one has

lim inf
δ→0

Λδ(gδ,Ω) ≥ Λ0(g,Ω).

(G2) For each g ∈ Lp(Ω), there exists a family (gδ) ⊂ Lp(Ω) such that (gδ) converges to g in Lp(Ω) as
δ → 0, and

lim sup
δ→0

Λδ(gδ,Ω) ≤ Λ0(g,Ω).
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Denote Q the unit open cube, i.e., Q = (0, 1)d and set

U(x) = d−1/2
d∑

j=1
xj in Q,

so that |∇U | = 1 in Q.
In the following two subsections, we establish properties (G1) and (G2) where κ is the constant defined

by
κ = inf lim inf

δ→0
Λδ(vδ, Q). (3.1)

Here the infimum is taken over all families of functions (vδ) ⊂ Lp(Q) such that vδ → U in Lp(Q) as δ → 0.

3.1. Proof of Property (G1)

We begin with

Lemma 1. Let d ≥ 1, p > 1, S be an open bounded subset of Rd with Lipschitz boundary, and let g be an
affine function. Then

inf lim inf
δ→0

Λδ(gδ, S) = κ|∇g|p|S|, (3.2)

where the infimum is taken over all families (gδ) ⊂ Lp(S) such that gδ → g in Lp(S) as δ → 0.

Proof. The proof of Lemma 1 is based on the definition of κ in (3.1) and a covering argument. It is identical
to the one of the first part of [3, Lemma 6]. The details are omitted. □

The proof of Property (G1) for p > 1 relies on the following lemma with roots in [6].

Lemma 2. Let d ≥ 1, p > 1, and ε > 0. There exist two positive constants δ̂1, δ̂2 such that for every open
cube Q̃ which is an image of Q by a dilation, for every a ∈ Rd, every b ∈ R, and every h ∈ Lp(Q̃) satisfying

 
Q̃

|h(x) − (⟨a, x⟩ + b)|p dx ≤ δ̂1|a|p|Q̃|
p/d

, (3.3)

one has
Λδ(h, Q̃) ≥ (κ − ε)|a|p|Q̃| for δ ∈ (0, δ̂2|a||Q̃|

1/d
). (3.4)

Hereafter, as usual, we denote
ffl

A
f = 1

|A|
´

A
f .

Proof. By a change of variables, without loss of generality, it suffices to prove Lemma 2 in the case Q̃ = Q,
|a| = 1, and b = 0. We prove this by contradiction. Suppose that this is not true. There exist ε0 > 0, a
sequence of measurable functions (hn) ⊂ Lp(Q), a sequence (an) ⊂ Rd, and a sequence (δn) converging to 0
such that |an| = 1, ˆ

Q

|hn(x) − ⟨an, x⟩|p ≤ 1
n

, and Λδn(hn, Q) < κ − ε0.

Without loss of generality, we may assume that (an) converges to a for some a ∈ Rd with |a| = 1. It
follows that (hn) converges to ⟨a, .⟩ in Lp(Q). Applying Lemma 1 with S = Q and g = ⟨a, ·⟩, we obtain a
contradiction. The conclusion follows. □

The second key ingredient in the proof of Property (G1) is the following useful property of functions in
W 1,p(Rd).
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Lemma 3. Let d ≥ 1, p > 1, and u ∈ W 1,p(Rd). Given ε1 > 0, there exist a subset B = B(ε1) of Lebesgue
points of u and ∇u, and an integer ℓ = ℓ(ε1) ≥ 1 such thatˆ

Rd\B

|∇u|p dx ≤ ε1

ˆ
Rd

|∇u|p dx, (3.5)

and, for every open cube Q′ with |Q′|1/d ≤ 1/ℓ and Q′ ∩ B ̸= ∅, and for every x ∈ Q′ ∩ B,

1
|Q′|p

 
Q′

⏐⏐u(y) − u(x) − ⟨∇u(x), y − x⟩
⏐⏐p

dy ≤ ε1 (3.6)

and
|∇u(x)|p ≥ (1 − ε1)

 
Q′

|∇u(y)|p dy. (3.7)

Proof. We first recall the following property of W 1,p(Rd) functions (see e.g., [8, Theorem 3.4.2]): for a.e.
x ∈ Rd,

lim
r→0

1
rp

 
Q(x,r)

⏐⏐u(y) − u(x) − ⟨∇u(x), y − x⟩
⏐⏐p

dy = 0, (3.8)

where Q(x, r) := x + (−r, r)d for x ∈ Rd and r > 0.
Given n ∈ N, define, for a.e. x ∈ Rd,

ρn(x) = sup
{

1
rp

 
Q(x,r)

⏐⏐u(y) − u(x) − ⟨∇u(x), y − x⟩
⏐⏐p

dy; r ∈ (0, 1/n)
}

(3.9)

and

τn(x) = sup
{ 

Q(x,r)
|∇u(y) − ∇u(x)|p dy; r ∈ (0, 1/n)

}
. (3.10)

Note that, by (3.8), ρn(x) → 0 for a.e. x ∈ Rd as n → +∞. We also have, τn(x) → 0 for a.e. x ∈ Rd as
n → +∞ (and in fact at every Lebesgue point of ∇u). For m ≥ 1, set

Dm =
{

x ∈ (−m, m)d; x is a Lebesgue point of u and ∇u, and |∇u(x)| ≥ 1/m
}

.

Since
lim

m→+∞

ˆ
Rd\Dm

|∇u|p dx = 0,

there exists m ≥ 1 such that ˆ
Rd\Dm

|∇u|p dx ≤ ε1

2

ˆ
Rd

|∇u|p dx. (3.11)

Fix such an m. By Egorov’s theorem, there exists a subset B ⊂ Dm such that (ρn) and (τn) converge to 0
uniformly on B, and ˆ

Dm\B

|∇u|p dx ≤ ε1

2

ˆ
Rd

|∇u|p dx. (3.12)

Combining (3.11) and (3.12) yields (3.5).
By the triangle inequality, we have, for every non-empty, open cube Q′ and a.e. x ∈ Rd (in particular for

x ∈ Q′ ∩ B), ( 
Q′

|∇u(y)|p dy

)1/p

≤
( 

Q′
|∇u(y) − ∇u(x)|p dy

)1/p

+ |∇u(x)| ≤ |∇u(x)|
(1 − ε1)1/p

, (3.13)

provided ( 
Q′

|∇u(y) − ∇u(x)|p dy

)1/p

≤
(

1
(1 − ε1)1/p

− 1
)

1/m and |∇u(x)| ≥ 1/m.
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Since (ρn) and (τn) converge to 0 uniformly on B and |∇u(x)| ≥ 1/m for x ∈ B, it follows from (3.13) that
there exists an ℓ ≥ 1 such that (3.6) and (3.7) hold when |Q′|1/d ≤ 1/ℓ and Q′ ∩ B ̸= ∅, and x ∈ Q′ ∩ B.
The proof is complete. □

We are ready to give the

Proof of Property (G1). We only consider the case Ω = Rd. The other case can be handled as in [3] and
is left to the reader. We follow the same strategy as in [6].

In order to establish Property (G1), it suffices to prove that

lim inf
k→+∞

Λδk
(gk,Rd) ≥ κ

ˆ
Rd

|∇g|p dx (3.14)

for every g ∈ Lp(Rd), (δk) ⊂ R+ and (gk) ⊂ Lp(Rd) such that δk → 0 and gk → g in Lp(Rd).
Without loss of generality, we may assume that lim infk→+∞ Λδk

(gk,Rd) < +∞. It follows from [6] that
g ∈ W 1,p(Rd). Fix ε > 0 (arbitrary) and let δ̂1 be the positive constant in Lemma 2. Set, for m ≥ 1,

Am =
{

x ∈ Rd; x is a Lebesgue point of g and ∇g, and |∇g(x)| ≤ 1/m
}

.

Since
lim

m→+∞

ˆ
Am

|∇g|p dx = 0,

there exists m ≥ 1 such that ˆ
Am

|∇g|p dx ≤ ε

2

ˆ
Rd

|∇g|p dx. (3.15)

Fix such an integer m. By Lemma 3 applied to u = g and ε1 = min{ε/2, δ1/(2m)p}, there exist a subset B

of Lebesgue points of g and ∇g, and a positive integer ℓ such that
ˆ
Rd\B

|∇g|p dx ≤ ε1

ˆ
Rd

|∇g|p dx ≤ ε

2

ˆ
Rd

|∇g|p dx, (3.16)

and for every open cube Q′ with |Q′|1/d ≤ 1/ℓ and Q′ ∩ B ̸= ∅, and, for every x ∈ Q′ ∩ B,

1
|Q′|p/d

 
Q′

⏐⏐g(y) − g(x) − ⟨∇g(x), y − x⟩
⏐⏐p

dy ≤ ε1 ≤ δ̂1/(2m)p (3.17)

and
|∇g(x)|p|Q′| ≥ (1 − ε1)

ˆ
Q′

|∇g|p dy ≥ (1 − ε)
ˆ

Q′
|∇g|p dy. (3.18)

Fix such a set B and such an integer ℓ. Set

Bm := B \ Am.

Since Rd \ (B \ Am) ⊂ (Rd \ B) ∪ Am, it follows that
ˆ
Rd\Bm

|∇g|p dx =
ˆ
Rd\(B\Am)

|∇g|p dx ≤
ˆ
Rd\B

|∇g|p dx +
ˆ

Am

|∇g|p dx.

We deduce from (3.15) and (3.16) that
ˆ
Rd\Bm

|∇g|p dx ≤ ε

ˆ
Rd

|∇g|p dx. (3.19)
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Set Pℓ = 1
ℓZ

d. Let Ωℓ be the collection of all open cubes with side length 1/ℓ whose vertices belong to Pℓ

and denote
Jℓ =

{
Q′ ∈ Ωℓ; Q′ ∩ Bm ̸= ∅

}
.

Take Q′ ∈ Jℓ and x ∈ Q′ ∩ Bm. Since gk → g in Lp(Q′), from (3.17), we obtain, for large k,
1

|Q′|p/d

 
Q′

⏐⏐gk(y) − g(x) − ⟨∇g(x), y − x⟩
⏐⏐p

dy < δ̂1/mp ≤ δ̂1|∇g(x)|p,

since |∇g(x)| ≥ 1/m for x ∈ Bm ⊂ Rd \ Am. Next, we apply Lemma 2 with Q̃ = Q′, h = gk, a = ∇g(x),
b = g(x), and large k; we have

Λδ(gk, Q′) ≥ (κ − ε)|∇g(x)|p|Q′| for δ ∈ (0, δ̂2|∇g(x)|p|Q′|1/d),

which implies, by (3.18),
lim inf
k→+∞

Λδk
(gk, Q′) ≥ (κ − ε)(1 − ε)

ˆ
Q′

|∇g|p dy. (3.20)

Since
lim inf
k→+∞

Λδk
(gk,Rd) ≥

∑
Q′∈Jℓ

lim inf
k→+∞

Λδ(gk, Q′),

it follows from (3.20) that

lim inf
k→+∞

Λδk
(gk,Rd) ≥ (κ − ε)(1 − ε)

∑
Q′∈Jℓ

ˆ
Q′

|∇g|p dx

≥ (κ − ε)(1 − ε)
ˆ

Bm

|∇g|p dx
(3.19)

≥ (κ − ε)(1 − ε)2
ˆ
Rd

|∇g|p dx;

in the second inequality, we have used the fact Bm is contained in
⋃

Q′∈Jℓ
Q′ up to a null set. Since ε > 0 is

arbitrary, one has
lim inf
k→+∞

Λδk
(gk,Rd) ≥ κ

ˆ
Rd

|∇g|p dx.

The proof is complete. □

3.2. Proof of Property (G2)

The proof of Property (G2) for p > 1 is the same as the one for p = 1 given in [3]. The details are omitted.
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