Available online at www.sciencedirect.com

SCIENCE(dDIRECT“

JOURNAL OF
Functional

Analysis

Journal of Functional Analysis 229 (2005) 95-120 —
www.elsevier.com/locate/jfa

Reduced measures on the boundary
Haim Brezi&®*, Augusto C. Ponce

8L aboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Boi'te courier 187,
75252 Paris Cedex 05, France
bDepartment of Mathematics, Rutgers University, Hill Center, Busch Campus, 110 Frelinghuysen Rd.,
Piscataway, NJ 08854, USA
CInstitute for Advanced Study, Princeton, NJ 08540, USA

Received 7 December 2004; accepted 7 December 2004
Communicated by H. Brezis
Available online 8 February 2005

Abstract

We study the existence of solutions of the nonlinear problem

—Au+gu) =0 inQ,
0.1
u =p onaQ,

where u is a bounded measure and: R — R is a nondecreasing continuous function with
g(t) =0, vVt <0. Problem (0.1) admits a solution for everye Ll(aﬂ), but this need not be

the case whenu is a general bounded measure. We introduce a concept of reduced measure
w* (in the spirit of Brezis et al. (Ann. Math. Stud., to appear)); this is the “closest” measure
to u for which (0.1) admits a solution.
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1. Introduction

Let Q c RY, N>2, be a smooth bounded domain. let R — R be a continuous,
nondecreasing function such that0) = 0. In this paper, we are interested in the
problem

—Au+gu) =0 inQ,
{ u =u o0naoQ, (1.1)

where u is a bounded measure aif. The right concept of weak solution of.Q) is
the following:

¢

—/ uAc+f g(u)c=—/ —du V(e C§Q),
Q Q oQ On

ue LYQ), gw)py e LY(Q) and
(1.2)

wherepg(x) = d(x, 0Q), Vx € Q, (;—n denotes the derivative with respect to the outward
normal of 0Q, and

C3(Q) = {{ € C?(Q); { = 0 on 0Q}.

If u is a solution of 1.1), thenu € Wlf,’Cp(Q), Vp < oo (see[3, Theorem 5j.

It has been proved by Brezis (1972, unpublished;[$88 that (L.1) admits a unique
weak solution wheru is any L1-function (for a general nonlinearity). Wheng is a
power, the study of1(.1) for measures was initiated by Gmira—\Vérfirb] (in the same
spirit as[1]). They proved that ifg(r) = |t|?~1r and 1< p < ¥*L then (1.1) has a

N—1'
solution for any measur@g. They also showed that ifa)%—ﬂ and u = o4, a € 09,
then (L.1) has no solution. The set of measunesgor which (1.1) has a solution has

been completely characterized whe> %—f} In this case, 1.1) has a solution if and

only if u(A) = 0 for every Borel setA C 0Q such thatC,, ,(A) =0, whereCy,,,
denotes the Bessel capacity 60 associated t&V2/7-?". This result was established by
Le Gall[17] (for p = 2) and by Dynkin—Kuznetsofd2] (for p < 2) using probabilistic
tools and by Marcus—Verof20] (for p > 2) using purely analytical methods; see also
Marcus—Véron[21] for a unified approach for anp}%—ﬂ. We refer the reader to
[18,19,22]for other related results.
Our goal in this paper is to develop fol.() the same program as i@] for the
problem
—Au+gu) =1 inQ,
{ u =0 onodQ, (1.3)

where/, in this case, is a measure i We shall analyze the nonexistence mechanism
behind (.1) for a general nonlinearity. In [4] we have shown that the Newtonian
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(H') capacity inQ, cap,1, plays a major role in the study ofl.@); one of the main
results there asserts that.§ has a solution for every if and only if A(E) = O for
every Borel setE C Q such that capi(E) = 0. For problem 1.1), the analogous
quantity is the Hausdorff measufé”~1 on dQ (i.e., (N — 1)-dimensional Lebesgue
measure o). In fact, many of the results if#] remain valid provided one replaces
in the statements thé/!-capacity by the(N — 1)-Hausdorff measure. Some of the
proofs, however, have to be substantially modified.

Concerning the functiorg we will assumethroughout the rest of the papehat
g : R — R is continuous, nondecreasing, and that

g(t) =0 Vvr<O0. (1.4)

The space of bounded measuresddhis denoted byM (0Q) and is equipped with
the standard norm

il = SUD{ﬁgwdu: @ € C(0Q) and ||<p||Loo<l}.
o

By a (weak)solutionu of (1.1) we mean thatX.2) holds. A (weak)subsolutionof
(1.2) is a functionv satisfying

ve LY(Q), gw)py e LY(Q) and
(1.5)

—/ vA§+/g(u)§< —/ Edp Ve @), (=0 inQ.
Q 0 a0 On

We will say thatu € M(2Q) is a good measuraf (1.1) admits a solution. Ifu
is a good measure, then Ed.1) has exactly one solution (see[20]; although this
result is stated there wheg is a power, the proof remains unchanged for a general
nonlinearityg). We denote byg the set of good measures (relativeglp when we need
to make explicit the dependence grwe shall writeG(g). Recall thatZ!-functions on
0Q belong toG(g) for every g.

In the sequel we denote bfg;) a sequence of functiong, : R — R which are
continuous, nondecreasing and satisfy the following conditions:

0<g1(n)<ga(r)< -+ <gt) VieR, (1.6)
g(t) —> g(t) VreR. (1.7)

We assume in addition that eagh has subcritical growth, i.e., that there ex@&t> 0

and p < %—fl (possibly depending ok) such that

g(<C(1)P +1) VreR. (1.8)

A good example to keep in mind ig (t) = min{g(¢), k}, Vt € R.
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Since (L.8) holds, then for every: € M(0Q) there exists a unique solutian, of

{ —Aug +gr(ug) =0 inQ,

U =pu onoQ. (1.9)

The convergence of the sequengg) follows from the next result, established [,
Section 9.3]

Theorem 1. Ask 1 oo, uy | u* in LY(Q), with gu*)pg € L1(Q), and u* satisfies

{—*Au +ew*) =0 inQ, (L.10)

u =u* on 0Q

for someu* € M(0Q) such thatp*<p. In addition u* is the largest subsolution
of (1.2).

Remark 1. An alternative approximation mechanism consists of keepinfixed and
considering a sequence of functiops € L1(0Q) weakly converging tou. Let v; be
the solution of {.1) associated tq. It would be interesting to prove thag — u*
in LY(Q) for some appropriate choices of sequen¢es (for measures iR, see[4,
Theorem 11)

An important consequence of Theordis thatu*—and thusy*—does not depend
on the choice of the truncating sequengg). We call ¢* the reduced measurassoci-
ated tou. If g has subcritical growth, theg* = p for everyu € M(0Q) (see Exampld
below). However, ifg has critical or supercritical growth, theui® might be different
from u. In this caseu* depends both on the measyreand on the nonlinearity.

By definition, u* is a good measureC i (since (.10 has a solutioru™®). One of
the main properties satisfied hy is the following:

Theorem 2. The reduced measure® is the largest good measurg p.
A consequence of Theorefhis

Corollary 1. There exists a Borel s& c dQ with %#¥~1(Z) = 0 such that
(= pH(EQ\ X) =0. (1.11)

To see this, letu, and pg denote, respectively, the absolutely continuous and the
singular parts ofu with respect toH"~1. Sinceu, € L*(0Q), then u, is good. Thus,
Ua — U5 is also a good measure (see Propositiobelow). We then conclude from
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Theorem2 that u, — pug <p* <u. Hence,

O<pu— ' <p— pg+ s = g
and sou — p* is concentrated on a set of zett¥—1-measure.
Remark 2. Corollary 1 is the “best one can say” about-u* for a generalnonlinearity
g. In fact, given any measure>0 concentrated on a set of zett' ~1-measure, there
exists someg such thaty® = 0 (see Theoren¥ below). In particular,u — u* can be

any nonnegative measure concentrated on a set of #Yol-measure in/Q.

It is not difficult to see that ifu € M(6Q) and ut e L1(0Q), then u € G(g) for
every g (see Propositiorb below). The converse is also true:

Theorem 3. Let u € M(Q). If ue G(g) for every g then u* e L1(0Q).
A key ingredient in the proof of Theore is the following:

Theorem 4. For every compact sek C 0Q, we have
N-1 ; 25, K ; ;
HYTHK) = inf |ALl; e Co(), —6—21 in some neighborhood & ;.
0 n

Remark 3. As we have already pointed out, the meas#®—1 plays here the same
role as cap: in [4]. There, for every compact s& C Q we showed that

1
capy1(K) = > inf {/Q |Apl; ¢ € C(Q), =1 in some neighborhood df},

which is the counterpart of Theores

We now address different question. Could it happen that, for some fixggl the
only good measureg are those satisfyingt e L1(0Q)? The answer is negative. In
fact,

Theorem 5. For any g there exists a good measure>0 such thatu ¢ L1(0Q).

A natural question is to combine the results[4] with those in the present paper,
i.e., consider the problem

{ —Au+gu) =1 inQ,

u =4 onaoQ, (1.12)
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where A € M(Q) and u € M(0Q). We say that the paiti, ) is good if (1.12 has
a solution in the usual weak sense (wiiku)py € L1(Q)). Surprisingly, the problem
“uncouples”. More precisely,

Theorem 6. Let 2 € M(Q) and u € M(dQ). The pair (4, u) is good if and only
if 1 is a good measure fof1.3) and u is a good measure fofl.1). Furthermore

()‘7 ,I.L)* = (i*? ,L(*)

This paper is organized as follows. In the next section we prove The@em
Section3, we present several properties satisfied by the mappirg u* and by the
set of good measure§. Theorem4 will be established in Sectiod. We show in
Section5 that for every singular measuge>0 there exists some such thatuy* = 0;
we then deduce Theorefas a corollary. Theorerb will be proved in Sectiorb. In
Section7, we give the explicit value of* in the case wherg(¢) = ¢?, t >0, for any
p > 1. In the last section we present the proof of Theo®em

Some of the results in this paper were announcef#tjn

2. Proof of Theorem 2
The main ingredient in the proof of Theoremis the following:

Lemma 1. Given f € LY(Q; pgdx), i € M(Q) and u € M(9Q), let w € L*(Q) be
the unique solution of

f/wAngchr/gd;ﬁ/ %d,u V{ € C3(Q).
Q Q Q oQ On

If w>0 a.e. inQ, then x>0 on Q.

This result is fairly well-known. We present a proof for the convenience of the reader.
For measures i), the counterpart of Lemma is the “Inverse” maximum principle
of [8] (see[4]).

Proof of Lemma 1. Given ¢ € C*®(0Q), ¢>0 on dQ, let { € C3(Q), { > 0 in Q,
be such that—% = ¢ on 0Q. Let §; | 0 be a sequence of regular values(ofFor
eachj>1, set{; = { —9J; and w; = [{ > ¢;]. In particular,(; € Ci(@)), {;=0
in wj, and —% >0 on dw;. By standard elliptic estimates (s¢25]), we know that
w € WI%;C”(Q), Vp < 34; thus,w has a nonnegativé!-trace ondw;. Therefore,

Cod) % s y
gjdv— - w = fcj—’- é’jdh.
i 0 oy

j w; ON )
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As j — oo, we conclude that

(LwA?ﬁAfZ+A¥Mi<0

Thus,

/mWM:—Agg—idu=—(fgzwAC+/§zfc+/gzcdi> >0.

Since ¢ >0 was arbitrary, we conclude that=0. O
We can now establish Theoref

Proof of Theorem 2. Assumev is a good measureC u. Let v denote the solution of

—Av+gw) =0 inQ,
v =y on Q.

Sincev<y, it follows thatv is a subsolution of{.1). Thus, by Theoreni, v<u* a.e.
Applying Lemmal to the functionw = u* — v, we then conclude that* —v>0. O

3. Some properties ofG and p*

Here is a list of properties which can be established exactly §4.ir-or this reason,
we shall omit their proofs.

Proposition 1. Supposeu; is a good measure. The@any measureu, < pq is also a
good measure

Proposition 2. If pq, u, are good measureshen so issup{uq, uo}.
Proposition 3. The setG of good measures is convex

Proposition 4. We have
G+ LR Cg.

Proposition 5. Let u € M(9Q). Then u e G if and only if u™ € G.

Proposition 6. Let p € M(0Q). Then p € G if and only if ug € G, where ug denotes
the singular part ofu with respect toxV—1.
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Proposition 7. Let u € M(3Q). Then u € G if and only if there exist functions
fo € LYQ; pgdx) and vg € L1(Q) such thatg(vg) € L1(Q; pgdx) and

0 _
f —gdﬂzf foC+f wAl V¢ e CEQ). (3.1)
oQ On Q Q

Proposition7 is the analog of a result of Gallouét—Morgl4]; see alsq4, Theo-
rem 6}

Proposition 8. For every measure:, we have
O<u— p<ut. 3.2)
Proposition 9. For every measure:;, we have
WHt=@H* and WH =u". (3:3)
Proposition 10. Let 1 € M(0Q). Then
= 1l = (2'8 = vl (3.4)

Moreover p* is the unique good measure which achieves the minimu(8.&.

Proposition 11. Let u € M(dQ) and h € LY(Q; podx). The problem

(3.5)

—Av+gw) =h InQ,
v =pu onoQ,

has a solution if and only ift € G(g).

By a solutionv of (3.5) we mean thav € L1(Q) satisfiesg(v) € LY(Q; pgdx) and

—/QvAC—i-/Qg(v)C:/QhC—/(;Q%dV V(€ C§(Q). (3.6)

In view of Lemma2 below such a solution, whenever it exists, is unique.

The proofs of Propositiong and 11 require an extra argument. We shall present a
proof based on Lemma-6 below.

Givenh € LY(Q; pydx), let Ag(h) denote the set of measurgdor which 3.5 has
a solution. By Lemma& below, A, (k) is closed with respect to the strong topology in
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M(09Q). Our goal is to show thatd, () is independent ofr and A, (h) = G(g), Vh.
In the sequel, we shall denote Il§y the solution of

—Ajg =1 inQ,
{o =0 onodQ.

We start with the following:
Lemma 2. Let h; € LY(Q; podx), i = 1,2. Given p; € A, (h;), let v; denote the
solution of (3.5 corresponding tai;, y;. Then

/|v1—vz|+/ |g<v1>—g(v2>|co</ |h1—h2|Co+C/ -l @37
Q Q Q oQ

Proof. Apply Lemma 1.5 in[20]. O

Lemma 3. Assume ¢ satisfies
g<C(tIP +1) VieR, (3.8)

for somep < ¥+, Then for everyh e L1(Q; podx), we haveAy(h) = M(0Q).

Proof. This result is established if15] for # = 0. The same proof there also applies
for h e L®(Q). The general case whene L1(Q; pydx) then follows by density using
Lemma?2 above. O

Given u € M(0Q), let v; be the solution of

{ —Avip +gr(vg) =h inQ, (3.9)

Uk =u o0naoQ,

where (gr) is a sequence of functions satisfying.&—(1.8).

Lemma 4. Given u € Az (h), let v denote the solution 0f3.5). Assumev; satisfies
(3.9. Then

u—v in LYQ) and g(n) — gv) in LYQ; pgdx). (3.10)

Proof. The lemma follows by mimicking the proof of Proposition 3 [#] and using
Lemma?2 above. O

Lemma 5. Let iy, ho € LY(Q; podx). If hi<hy a.e, then Ag(h1) D A, (h2).
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Proof. Let u € Ag(ho) and let(gy) be a sequence satisfyind.—(1.8). Denote by
vik, i =1, 2, the solution of

—Avix + gk(vix) =h; inQ,
Vi k =u onoQ.

Let v; be such thaw; | v; in LY(Q) ask 1 co. By Lemma4 above, we have
gk(va) — g(v2) i LY(Q; pody).

By [4, Corollary B.2] h1<hy a.e. impliesvy x <vz i a.e.; thusgr(vix) <gi(v2x) a.e.
It then follows by dominated convergence that

gr(vir) — gvr)  in LYQ; pgdx).

Therefore,u € Ag(h1). This concludes the proof of the lemmal]

Lemma 6. Assumeu satisfies(3.1) for some fo € LY(Q; pgdx) and v € L1(Q), with
g(vo) € LY(Q; podx). Then problem (3.5 has a solution for everyr € LY(Q; pgdx).

Proof. Fix o < 1. Givenm>1, let M,, = % Since
ovg +mlg<vg a.e. on the sefvg>M,,],

we haveg(ovg + m{g) € LYQ; pPodx); moreover,
0 _
- f (oo + m{g)AL = / (oufo +m)C — a/ —g du V(e C5Q).
Q Q 00 on

Thus, au € Ag(hy), Where
hm = afo +m + g(owo + m{o).
Given h € LY(Q; podx), let
Iy = min{h, hy).

Since h,, <h,, a.e., it follows from Lemma5 that op € Ag(hy), Ym>1. Note that
hw — hin LY(Q; pgdx) asm — oo; thus, by Lemma2 we getou € Az (h). Since
this holds true for every: < 1, we must haveu € Ag(h). O
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Proof of Proposition 7. Clearly, if u is a good measure, the.{) holds. Conversely,
assumeyu satisfies 8.1) for someuwg, fp. It then follows from the previous lemma that
(3.5 has a solution forr = 0. In other words is good. O
Proof of Proposition 11. If u is good, then 3.1) holds. Thus, by Lemm& above we
conclude that problem3(5) has a solution for everyt € LY(Q; pydx). Conversely, if
(3.5 has a solution for somé e LY(Q; pydx), then @.1) holds. Applying Proposi-
tion 7, we deduce that is good. O

4. Proof of Theorem 4

Given a compact sek c 0Q, we define the capacity

C

cpo(K) = inf {/ AL]; ( € CO(Q) >1 in some neighborhood o{’}

In order to establish Theored we will need a few preliminary results. We start
with

Lemma 7. Let K C 0Q be a compact set. Given> 0, there exists) € C3(Q) such
that >0 in Q, "‘/’ >1 in some neighborhood of K and

/QIAlPKcaQ(K) +&. (4.1)

Proof. Givene > 0, let{ € C (Q) be such that—‘é >1 in some neighborhood ok
and

&
/ IAC|<cm(K)+§. (4.2)
Q
We now extend. as aC2-function in the whole spac&”. We then let
Je(x) = /RN pr(x — V) [AL()|dy Vx €Q,

where (p,) is any sequence of nonnegative modifiers such that gugpB1/«, Yk > 1.
As k — oo, we have

fi — |AZ]  uniformly in Q. (4.3)
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Let v, € C3(Q) be the solution of

—Avk = fk in Q,
Uk =0 onodQ.

Since f; >0, we havev; >0 in Q. Moreover, 4.3) implies

avk

0
— — @ uniformly on 0Q, (4.4)
on on

wherev is the solution of

—Av = |A{ in Q,
v =0 on Q.

By the maximum principle{<v in Q. Since{ = v = 0 on dQ, we have

which implies tha —%21 in some neighborhood of. In view of (4.4), we can fix

ko>1 sufficiently large so thaf% >o in some neighborhood ok, wherea < 1. We
may also assume that
&
A a0
IREEY:

ko

where A, = N 1 (Q) \ Q.
Set °

1
W = &Ukoa

so thatyy >0 in Q and —%21 in some neighborhood of. Moreover,

1 1 & 1 3
/Q|A‘P|=&/Q|Avko|<&</Q|AC|+Z><&<C59(K)+Z)-

Therefore, by taking

_ oK) +F
CCQ(K) +¢é

we conclude thaty satisfies 4.1). O
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We next prove

Lemma 8. Let K C dQ be a compact set. Given> 0, there exists) € C3(Q) such
that 0<y <e in Q, —%21 in some neighborhood of ,K

on

4

Po

<l+e (4.5)
LOO

/|A¢I<HN‘1(K)+8 and ‘
Q

Proof. Let 6 > 0 be such that
HY (N5 (K) N oQ) <HNY(K) + e

We now fix { € C2(Q) such that{ > 0 in Q, —f—; =1in Ny (K) N oQ, f—; =0in

0Q\ Ns(K), 0< — %gl on 0Q, and ||p%||Loo<1+e. Let a € (0, ) be sufficiently
small so that

/ |AL| < e.
[{<a]

Let
u=a—(@-07 inQ
In particular, 6<u<e¢ in Q. It is easy to see thatu € M(Q) andAu = Al in [{ < a].

Sinceu is bounded and achieves its maximum everywhere on thé{set], we can
apply Corollary 1.3 in[5] to deduce that

in the sense of measures. Thus,

1Aulipt == fiz oy D+ fizcay 1AL

(4.6)
<= JoAu+2 [ IALS = fo Au+ 2e.

On the other hand, proceeding as in the proof of Leminane can findy Cg(ﬁ)
such that &y <z in Q, —£ >1 on 2@,

4

Po

u
< | —
Po

+e<l+ 2 4.7)

L>® L*>®
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and
/Q AYI< [ Al g + . 4.8)

By (4.6) and @.8), we have

/|Alﬂ|< —/Au~|—33.
o) o)

Sinceu = { in a neighborhood 0PQ,

L= L= Lo
Au = — = —.
Q a0 On 5Q 0n

Thus,

0

/ Ay < — f %y Be<HY L (N5 (K) N 0Q) + e <HY LK) + 4e.
Q oQ on

This concludes the proof of the lemmal]

Proof of Theorem 4. Givene > 0, lety € C2(Q) be the function given by Lemma

Sincey >0 in Q, we have—% >0 on ¢Q. Thus, integrating by parts and using.1)
we get

W= [ Lo [ aps [ a0 +e
oQ 0n o0 o0
Sincee > 0 was arbitrary, we deduce that
HY LK) <cpn(K).

The reverse inequality immediately follows from Lemi@a O

5. Nonnegative measures which are good for every must belong to L1(6Q)
We start with

Theorem 7. Given a Borel seE ¢ dQ of zero#"’ ~-measurethere exists g such that

u* = —u~  for every measurg: concentrated ork.
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In particular, for every nonnegative: € M (6Q) concentrated on a set of zef™ -
measure there exists some g such that = 0.

Proof. Let T c dQ be a Borel set such th&tV~1(X) = 0. Let (K;) be an increasing
sequence of compact subsets3bfuch that

e\ ko =0 (5.1)
k

For eachk >1, Ki has zeroH"~1-measure. By Lemm&, one can findy, € C3(Q)

such that Gy, < min{%, 2p0} in Q, —%21 in some neighborhood of, and

1
f Ay <= Vk=1
o k

In particular,

A
A% 0 in L@ podi).

Po

Passing to a subsequence if necessary, we may assume that

% — 0 a.e. and A
Po o

<G e LYQ; podx) Vk=1.

According to a theorem of De La Vallée-Poussin (sf& Remarque 23]or
[7, Théoreme 11.22)] there exists a convex functioh : [0, c0) — [0, c0) such that
h(0) =0, h(s) >0 for s > 0,

lim ) =400, and h(G) e LYQ; pydx).

t—oo t

Seth(s) = 400 for s < 0. Let g = h* be the convex conjugate @f. Note thath* is
finite in view of the coercivity ofr, and we haver*(r) = 0 if ¢+ <O.

We claim thatg satisfies all the required properties. In fact, Jebe any measure
concentrated ox and setv = (u*)™, where the reduced measuyré is computed with
respect tog. By Proposition5, v is a good measure. Late L1(Q), u >0 a.e., be such
that g(u)py € L1(Q) and

—/ uAC+f g(u)C:—/ LN V(e C3(Q). (5.2)
o) Q oQ On
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Recall thaty, >0 in Q andy, = 0 on 0Q; thus, —% >0 on dQ. Using y, as a test
function in 6.2), we get

0
ko< - [ Wd%—/ﬁmm+ammL (5.3)
oQ On Q
Note that
luAY, + gy | — 0 a.e.
and

1
po + g) =~ pg
Po

A
A, + gy < u 2V
Po

A
<g<u>po+h( Vi
Po

)m+%wm
< 3g(u)pg + Gpg € LH(Q).

By dominated convergence, we conclude that the right-hand sidg.8f donverges to
0 ask — oo. Thus,

WHT(Kp) = v(Kx) =0 Vk>1,

so that, by 5.1) and Propositior8, (u*)T(X) = 0. Sincepu is concentrated oiX, we
have (u*)* = 0; thus, by Propositior®,

W= Ht - W =—pu,
which is the desired result..(]

We now present the

Proof of Theorem 3. Assumepu € M(0Q) is good for everyg. Given a Borel set
T c aQ of zero HN¥~1-measure, lev = ut|s. By Theorem?7, there exists somgg

such thatv* = 0. On the other hand, by Propositiohsand 5, v is good for gg. Thus,
v=v* = 0. In other words,

u(X) =0 for every Borel se c dQ such thatHN‘l(Z) =0.

We conclude thapt € L1(6Q). O
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6. How to construct good measures which are not in.1(6Q)

In this section, we establish TheoreBn We shall closely follow the strategy used
in [24] to construct good measures for probleml.3( which are not
diffuse.

Let (¢;) be a decreasing sequence of positive numbers such that

1 1
01 < > and {41 < zﬂk Vk>1. (6.1)

We start by briefly recalling the construction of the Cantor et [—3, 2]V~ asso-
ciated to the subsequenc€y;). We refer the reader tq24, Section 2] for
details.

We proceed by induction as follows. Lef = [—31, 31V%, ¢o = 1 and ko = 0.
Let F; be the set obtained after thigh step; F; is the union of 2V~D% cubesQ;
of side ¢,. Inside eachQ;, select N=Dkj+1=k) cubes(Q;, of side €k, uniformly

" . . . Ok
distributed inQ;; the distance between the centers of any two cudgsis > m
Let

+1

Fipa={J Qin-
in

The setF is given by

~
I
o

We now fix a diffeomorphism
®: (-1 DVt 5 o(-1, ¥ caQ

and definef = ®(F). From now on, we shall identify” with F, and simply denote
F by F. For eachj>1, let

1
W T F
in particular,u; € L1(6Q). The uniform measure concentrated dn u, is the weak

limit of (x;) in M(0Q) asj — oo. In particular,uy >0 andu;(0Q) = 1. An important
property satisfied by is given by the next
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Lemma 9. For everyx € 0Q, we have

1 . U,
S(N—Dk; 11 it lhya S :

NP re )
fp(Br(x) N Q) < N-1
1 r f Ekj < <€
2(N=D)k; E ! 2(kjr1—kj) STk

(6.2)

We say thata <b if there existsC > 0, depending only onV, such thata <Cb.
By a ~ b, we mean that: <b and b <a. We refer the reader tf24] for a proof of
Lemmay; although a slightly stronger assumption th&nl) is made there, the proof
of (6.2) remains unchanged.

Let v € LY(Q) be the unique solution of

{ —Av =0 inQ, 6.3)

v =up onoQ.

Our next step is to establish the following:

Proposition 12. Let F C 0Q be the Cantor set associated to the subseque{ﬁge
and letv be the solution 06.3). Assume that

2Ki+1gy
i (6.4)
2k/'5k

j
Then there existsC > 0 such that

1 / 1 14 1 0 Nt
ki ki
v(x)<C N-1 Z —1k; pN—1 < j) Z —Dk; pN—-1 ( l )
T Wbk T\l ) T A WDk N

(6.5)
for everyx € Q such thatty,,, < d(x,0Q)<t;, j>1.

Proof. We shall suppose for simplicity tha® = Rﬁ is the upper-half space. In
this case, the solutionv of (6.3) can be explicitly written as (see Lemma0
below)

o0
t
v(z, 1) = NCN/ i 1r(Bs(z) NoRY)ds Vze RV vr >0,

N
0 (s2+12)5H1
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wherecy = LN/ - Applyin Lemma9, we have
N2 pplying

o
vz, NS Y (Ai+ B) + Co,
i=1

where

L.

1 T st
Ai = 2Dl /2 o TR
T gy (s2+12)z+

t Ly SN
= _——
(N=Dki pN=1 | % 2 4 2y5+1

2 leki Z(ki+ll_ki) (s +19)2

o st
C() = / I ———— ds
by (82 + t2)7+1

An elementary (but tedious) computation usir@g4f shows that

1 EkH_l N+1 ]

if t> 40,

2N=DkiyrpN-1 \ ¢ i
kit

Y 1 t .
2(N=Dkiv1pN =1\ ¢ TS g
kit1

i+1

1 (ﬁk >N+l .
— | = if t> 4

—1k; pN—1 i’
2N 1)kz£ki t

1
~ | 20v-DrigN L
! ( ! ) if 1<
X tkit1o
Z(N—l)kiﬁ—lﬁl]{\f:ll Cin i

if Crq < t<ly,,

m |f > Ekl,
Cox tt .
E_N if £ <lg,.

ki1
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(6.6)

(6.7)

(6.8)

(6.9)
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We now assume thaty; , < <. Inserting 6.7)—(6.9) into (6.6), we obtain 6.5).
In order to conclude the proof of Propositid2, we establish the following:

Lemma 10. Givenv € M(RY~1), let w be the solution of

—Aw =0 in RY,
{ w =v ondRY. (6.10)
Then
= st 5 N-1
w(z, 1) =Ney | ————v(By(2))ds VzeR Vv > 0, (6.11)
0 (SZ_'_t2)7+1

where B;(z) denotes the ball irﬁ[Rﬁ of radius s centered at. z
Proof. Assumeu = f € ch(RN—l). Then,w is given as the Poisson integral ¢t

t
w(z, 1) = CN/ —— f()dx VzeR'Tl vr>o.
RV (lx — 7|24+ 12) 2

Thus,

© t
w(z,t):cN/ —N</~ f) ds
0 (s2+4+12)2 \JiB)
e t d
o [T (] )
0 (24127 ds \JB»

Integrating by parts with respect tg we obtain 6.11) for u = f. This establishes
(6.17) when u is a smooth function. The general case easily follows using a density
argument (see, e.g20, Lemma 1.4] O

We may now turn to the

Proof of Theorem 5. Let (k;) be an increasing sequence of positive integers such that

g(@NIy<2%i V=1 (6.12)
Let (¢x) be any sequence satisfyin§.{) and such that

1

Ekj:m

Vi1
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Let F be the Cantor set associated(#3;). Since

N— 1
2(N—1)k/g]1{Vi 1:m—>0 asj — oo,

we have|F| = 0; thus, ur ¢ L1(0Q). We claim thatu, is a good measure. In fact,
let v be the solution of §.3). A simple computation shows that

i 00 N+1
> ;Nl (ﬂﬁ)Jf > : N1 ( i ) <Cc2W-DJ
. 2(N—l)k,~gk’_ L, i 2(N—1)k,[kl_ Cija

i=
for some constan€ > 0 sufficiently large. It follows from Propositiof2 that
v)<C2VDT it gy <d(x, 0 <, V)=l

DenotingQ; = {x € Q: d(x, 0Q) > £}, we then have

/ gWpo =) / g()po + / gW)pg
Q j=1 Qj+1\Qj O\Qq

<C Y g(C2N D 19,11\Q)] + O (D).
j=1

Since |Q;11\Q;|< Cl;, we get

00 = Y

g(C2IN=DJ)

/Qg(v)po<C E W—FO(D- (6.13)
j=1

Note that, forj >1 sufficiently large, we havé 2V -/ < 2N/, We deduce from@.12)
and 6.13 that g(v) € L(Q; pydx). By Proposition7, we conclude that is a good
measure. [J

7. The case whereg(t) = t?

We describe here some examples where the measuoan be explicitly identified.

: N+1
Example 1. g(1) =7, >0, with 1< p < 3.

In this case, every measure is good (§&8]); thus, u* = u, Yu € M(0Q).
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; N+1
Example 2. g(1) =7, 1 >0, with p> 317
By [21], a nonnegative measureis good if and only ifv(A) = O for every Borel

set A C 0Q such thatCy/, ,(A) = 0. Recall (seg13]) that any measure¢. can be
uniquely decomposed as

W= + Uy,
where p;(A) = 0 for every Borel setA C 0Q such thatCy/, ,(A) = 0, and u,

is concentrated on a set of ze(,, ,-capacity. Using the same argument as[4n
Section 8] one then shows that for evegye M(0Q) we have

p= =g
Here is an interesting
Open Problem 1. Let N =2 andg(r) = € —1,1>0. Is there a simple characterization
of the set of good measures relative d®@ Is there an explicit formula of* in terms
of u?

There are some partial results in this direction; 8] and also[23].

8. Proof of Theorem 6
We start with the following:

Lemma 11. Let 2 € M(Q) and u € M(6Q). Assume that there exists € L1(Q) such
that g(w) € LY(Q; pgdx) and

—/ wAC+/ g(w)C}/Cdi—/ %du Ve C3Q), (>0inQ. (8.1)
Q Q Q Q0

Q on
Then the pair (4, p) is good

Proof. Since 8.1) holds, there exisyy € M(6€) and a locally bounded measuig
in Q, with [, pod|20| < oo, such thatug>pu on dQ, o>1 in Q, and

—/QwAc+/Qg(w>c=/Qccuo—/m%duo Vi e Q).

(The existence oflp and yq is sketched in4, Remark B.1].
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Let (gx) be a sequence of bounded functions satisfyih@)<(1.7). Let uy, w; be the

solutions associated tQ, u), (Lo, tg), resp. Then, as in the proof of Lemn3aabove,
we have

gr(up) <gr(wg) > gw) in LXQ; pgdx).
On the other handy; | u in L1(Q). Thus, by dominated convergence,
gr(up) — gw) in LYQ; pydx).

We conclude that: satisfies {.12. Therefore,(/, 1) is good. O

Proof of Theorem 6.
Step 1 Proof of

(o W™ = (2%, 1"). (8.2)
Let u; be such that

—Aup + gr(ug) =4 in Q,
uy =u onoQ.

Then,u; | 4 in LY(Q). By Fatou, we deduce that(i) € LY(Q; ppdx) and

—/ﬁAC+/g(12)C</ Cdi—/ ﬁdﬂ V(e C3(@), (=0 in Q.
Q Q Q 0

0Q On

By [4, Remark B.1] there existi € M(dQ) and a locally bounded measuzein Q,
with [, pod|Al < oo, such that

—/aAch/g(ﬁ)g:/gdi—/ %dﬂ Vi e C3(Q).
Q Q Q o0 0n

Note thatZi< A in Q and i< on éQ. We claim that

@) (Da = 2d = (Wg;

(b) (A= (A

(€) i=p".

The subscripts “d” and “c” denote the diffuse and the concentrated parts of the measure
with respect to cap: (see[13]). We then deduce from (a) and (b) that= 4*; in
particular, 1 € M(Q).
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Proof of (a): The second equality in (a) is established4h Proceeding exactly as
in the proof of Lemma 1 there, one shows that

izl — .

Thus, (j,)d>id. Sinceigi, we conclude tha(i)d = 4.

Proof of (b): Since the pair2*, 0) is good, it follows from Lemmall above that
(¥, —u™) is also good. Letv; be the solution of .12 corresponding taA*, —u™).
By [4, Corollary B.2] we havev; <uy a.e.,Vk>1. Thus,

A

vi<u a.e.
By the “Inverse” maximum principle (sef8]), we obtain
(X6 = (—AvD)e< (—Ai)e = (De. (8.3)
We conclude from (a) and3(3) that
AL

In particular,i e M(Q). Since (/, it) is good, we can apply Lemmal to deduce
that (4, — (1)) is also good. Letw, denote the corresponding solution. Cleaily, is
a subsolution of 1.3). Thus,

vo <V a.e,

where v* is the largest subsolution ol @), i.e., v* is the solution of {.3) with data
A*. Applying the “Inverse” maximum principle, we conclude that

(De = (—Avp)c < (—Av¥)e = (M) (8.4)

We deduce from&.3) and 8.4) that ()¢ = (1*)c.

Proof of (c): The argument in this case is the same as in the proofpbpfand
is omitted (one should use Lemniain Section2 above, instead of the “Inverse”
maximum principle).

It now follows from (a)—(c) that. = 2* and i = p*. This concludes the proof of
Step 1.

Step2: Proof of the theorem completed.

Assume (4, u) is good. Thus,(4, w* = (4, u). We deduce from the previous step
that A* = / and u* = . In other words,. is a good measure forl(3) and u is good
for (1.2). Similarly, the converse follows. The proof of Theordiris complete. [J



H. Brezis, A.C. Ponce/Journal of Functional Analysis 229 (2005) 95-120 119

Open Direction 1. In all the problems above, the equation his nonlinear but the
boundary condition is the usual Dirichlet condition. It might be interesting to investigate
problems involving nonlinear boundary conditions. Here is a typical example:

—Au+u =0 inQ

M L ew) =u onoQ,
on

(8.5)

whereg and u are as in the Introduction. This type of problems arises in Physics for
various choices of, possibly graphs; see, ef§]. They have been studied [8] when
1 e L2(0Q).
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