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Abstract

We study the existence of solutions of the nonlinear problem




−�u+ g(u) = 0 in �,

u = � on ��,
(0.1)

where � is a bounded measure andg : R → R is a nondecreasing continuous function with
g(t) = 0, ∀t�0. Problem (0.1) admits a solution for every� ∈ L1(��), but this need not be
the case when� is a general bounded measure. We introduce a concept of reduced measure
�∗ (in the spirit of Brezis et al. (Ann. Math. Stud., to appear)); this is the “closest” measure
to � for which (0.1) admits a solution.
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1. Introduction

Let � ⊂ RN , N�2, be a smooth bounded domain. Letg : R → R be a continuous,
nondecreasing function such thatg(0) = 0. In this paper, we are interested in the
problem

{−�u+ g(u) = 0 in �,
u = � on ��,

(1.1)

where� is a bounded measure on��. The right concept of weak solution of (1.1) is
the following:



u ∈ L1(�), g(u)�0 ∈ L1(�) and
−
∫
�
u�� +

∫
�
g(u)� = −

∫
��

��

�n
d� ∀� ∈ C2

0(�),
(1.2)

where�0(x) = d(x, ��), ∀x ∈ �, �
�n denotes the derivative with respect to the outward

normal of ��, and

C2
0(�) = {� ∈ C2(�); � = 0 on ��}.

If u is a solution of (1.1), thenu ∈ W2,p
loc (�), ∀p <∞ (see[3, Theorem 5]).

It has been proved by Brezis (1972, unpublished; see[15]) that (1.1) admits a unique
weak solution when� is anyL1-function (for a general nonlinearityg). When g is a
power, the study of (1.1) for measures was initiated by Gmira–Véron[15] (in the same
spirit as [1]). They proved that ifg(t) = |t |p−1t and 1< p < N+1

N−1, then (1.1) has a

solution for any measure�. They also showed that ifp� N+1
N−1 and � = �a , a ∈ ��,

then (1.1) has no solution. The set of measures� for which (1.1) has a solution has
been completely characterized whenp� N+1

N−1. In this case, (1.1) has a solution if and
only if �(A) = 0 for every Borel setA ⊂ �� such thatC2/p,p′(A) = 0, whereC2/p,p′

denotes the Bessel capacity on�� associated toW2/p,p′
. This result was established by

Le Gall [17] (for p = 2) and by Dynkin–Kuznetsov[12] (for p < 2) using probabilistic
tools and by Marcus–Véron[20] (for p > 2) using purely analytical methods; see also
Marcus–Véron[21] for a unified approach for anyp� N+1

N−1. We refer the reader to
[18,19,22] for other related results.
Our goal in this paper is to develop for (1.1) the same program as in[4] for the

problem

{−�u+ g(u) = � in �,
u = 0 on ��,

(1.3)

where�, in this case, is a measure in�. We shall analyze the nonexistence mechanism
behind (1.1) for a general nonlinearityg. In [4] we have shown that the Newtonian
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(H 1) capacity in�, capH1, plays a major role in the study of (1.3); one of the main
results there asserts that (1.3) has a solution for everyg if and only if �(E) = 0 for
every Borel setE ⊂ � such that capH1(E) = 0. For problem (1.1), the analogous
quantity is the Hausdorff measureHN−1 on �� (i.e., (N − 1)-dimensional Lebesgue
measure on��). In fact, many of the results in[4] remain valid provided one replaces
in the statements theH 1-capacity by the(N − 1)-Hausdorff measure. Some of the
proofs, however, have to be substantially modified.
Concerning the functiong we will assumethroughout the rest of the paperthat

g : R → R is continuous, nondecreasing, and that

g(t) = 0 ∀t�0. (1.4)

The space of bounded measures on�� is denoted byM(��) and is equipped with
the standard norm

‖�‖M = sup

{∫
��

� d�; � ∈ C(��) and ‖�‖L∞ �1

}
.

By a (weak)solution u of (1.1) we mean that (1.2) holds. A (weak)subsolutionof
(1.1) is a functionv satisfying



v ∈ L1(�), g(v)�0 ∈ L1(�) and

−
∫
�
v�� +

∫
�
g(v)�� −

∫
��

��

�n
d� ∀� ∈ C2

0(�), ��0 in �.
(1.5)

We will say that� ∈ M(��) is a good measureif (1.1) admits a solution. If�
is a good measure, then Eq. (1.1) has exactly one solutionu (see[20]; although this
result is stated there wheng is a power, the proof remains unchanged for a general
nonlinearityg). We denote byG the set of good measures (relative tog); when we need
to make explicit the dependence ong we shall writeG(g). Recall thatL1-functions on
�� belong toG(g) for every g.
In the sequel we denote by(gk) a sequence of functionsgk : R → R which are

continuous, nondecreasing and satisfy the following conditions:

0�g1(t)�g2(t)� · · · �g(t) ∀t ∈ R, (1.6)

gk(t)→ g(t) ∀t ∈ R. (1.7)

We assume in addition that eachgk has subcritical growth, i.e., that there existC > 0
andp < N+1

N−1 (possibly depending onk) such that

gk(t)�C(|t |p + 1) ∀t ∈ R. (1.8)

A good example to keep in mind isgk(t) = min {g(t), k}, ∀t ∈ R.
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Since (1.8) holds, then for every� ∈ M(��) there exists a unique solutionuk of

{−�uk + gk(uk) = 0 in �,
uk = � on ��.

(1.9)

The convergence of the sequence(uk) follows from the next result, established in[4,
Section 9.3]:

Theorem 1. As k ↑ ∞, uk ↓ u∗ in L1(�), with g(u∗)�0 ∈ L1(�), and u∗ satisfies

{−�u∗ + g(u∗) = 0 in �,
u∗ = �∗ on ��

(1.10)

for some�∗ ∈ M(��) such that�∗ ��. In addition, u∗ is the largest subsolution
of (1.1).

Remark 1. An alternative approximation mechanism consists of keepingg fixed and
considering a sequence of functions�k ∈ L1(��) weakly converging to�. Let vk be
the solution of (1.1) associated to�k. It would be interesting to prove thatvk → u∗
in L1(�) for some appropriate choices of sequences(�k) (for measures in�, see[4,
Theorem 11]).

An important consequence of Theorem1 is thatu∗—and thus�∗—does not depend
on the choice of the truncating sequence(gk). We call �∗ the reduced measureassoci-
ated to�. If g has subcritical growth, then�∗ = � for every� ∈ M(��) (see Example1
below). However, ifg has critical or supercritical growth, then�∗ might be different
from �. In this case,�∗ depends both on the measure� and on the nonlinearityg.
By definition, �∗ is a good measure�� (since (1.10) has a solutionu∗). One of

the main properties satisfied by�∗ is the following:

Theorem 2. The reduced measure�∗ is the largest good measure��.

A consequence of Theorem2 is

Corollary 1. There exists a Borel set� ⊂ �� with HN−1(�) = 0 such that

(� − �∗)(�� \ �) = 0. (1.11)

To see this, let�a and �s denote, respectively, the absolutely continuous and the
singular parts of� with respect toHN−1. Since�a ∈ L1(��), then�a is good. Thus,
�a − �−

s is also a good measure (see Proposition1 below). We then conclude from
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Theorem2 that �a − �−
s ��∗ ��. Hence,

0�� − �∗ �� − �a + �−
s = �+

s

and so� − �∗ is concentrated on a set of zeroHN−1-measure.

Remark 2. Corollary1 is the “best one can say” about�−�∗ for a generalnonlinearity
g. In fact, given any measure��0 concentrated on a set of zeroHN−1-measure, there
exists someg such that�∗ = 0 (see Theorem7 below). In particular,� − �∗ can be
any nonnegative measure concentrated on a set of zeroHN−1-measure in��.

It is not difficult to see that if� ∈ M(��) and �+ ∈ L1(��), then � ∈ G(g) for
every g (see Proposition5 below). The converse is also true:

Theorem 3. Let � ∈ M(��). If � ∈ G(g) for every g, then �+ ∈ L1(��).

A key ingredient in the proof of Theorem3 is the following:

Theorem 4. For every compact setK ⊂ ��, we have

HN−1(K) = inf

{∫
�

|��|; � ∈ C2
0(�),−

��

�n
�1 in some neighborhood ofK

}
.

Remark 3. As we have already pointed out, the measureHN−1 plays here the same
role as capH1 in [4]. There, for every compact setK ⊂ � we showed that

capH1(K) = 1

2
inf

{∫
�

|��|; � ∈ C∞
c (�),��1 in some neighborhood ofK

}
,

which is the counterpart of Theorem4.

We now address adifferent question. Could it happen that, for some fixedg0, the
only good measures� are those satisfying�+ ∈ L1(��)? The answer is negative. In
fact,

Theorem 5. For any g, there exists a good measure��0 such that� �∈ L1(��).

A natural question is to combine the results of[4] with those in the present paper,
i.e., consider the problem

{−�u+ g(u) = � in �,
u = � on ��,

(1.12)
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where � ∈ M(�) and � ∈ M(��). We say that the pair(�, �) is good if (1.12) has
a solution in the usual weak sense (withg(u)�0 ∈ L1(�)). Surprisingly, the problem
“uncouples”. More precisely,

Theorem 6. Let � ∈ M(�) and � ∈ M(��). The pair (�, �) is good if and only
if � is a good measure for(1.3) and � is a good measure for(1.1). Furthermore,
(�, �)∗ = (�∗, �∗).

This paper is organized as follows. In the next section we prove Theorem2. In
Section3, we present several properties satisfied by the mapping� �→ �∗ and by the
set of good measuresG. Theorem4 will be established in Section4. We show in
Section5 that for every singular measure��0 there exists someg such that�∗ = 0;
we then deduce Theorem3 as a corollary. Theorem5 will be proved in Section6. In
Section7, we give the explicit value of�∗ in the case whereg(t) = tp, t�0, for any
p > 1. In the last section we present the proof of Theorem6.
Some of the results in this paper were announced in[4].

2. Proof of Theorem 2

The main ingredient in the proof of Theorem2 is the following:

Lemma 1. Given f ∈ L1(�; �0 dx), � ∈ M(�) and � ∈ M(��), let w ∈ L1(�) be
the unique solution of

−
∫
�
w�� =

∫
�
f � +

∫
�

� d� −
∫
��

��

�n
d� ∀� ∈ C2

0(�).

If w�0 a.e. in�, then ��0 on ��.

This result is fairly well-known. We present a proof for the convenience of the reader.
For measures in�, the counterpart of Lemma1 is the “Inverse” maximum principle
of [8] (see[4]).

Proof of Lemma 1. Given � ∈ C∞(��), ��0 on ��, let � ∈ C2
0(�), � > 0 in �,

be such that− ��
�n = � on ��. Let �j ↓ 0 be a sequence of regular values of�. For

each j�1, set �j = � − �j and �j = [� > �j ]. In particular, �j ∈ C2
0(�j ), �j �0

in �j , and−��j
�n �0 on ��j . By standard elliptic estimates (see[25]), we know that

w ∈ W1,p
loc (�), ∀p < N

N−1; thus,w has a nonnegativeL1-trace on��j . Therefore,

−
∫
�j
w��j =

∫
�j
f �j +

∫
�j

�j d� −
∫
��j

��j
�n
w�

∫
�j
f �j +

∫
�j

�j d�.
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As j → ∞, we conclude that

∫
�
w�� +

∫
�
f � +

∫
�

� d��0.

Thus,

∫
��

� d� = −
∫
��

��

�n
d� = −

(∫
�
w�� +

∫
�
f � +

∫
�

� d�

)
�0.

Since��0 was arbitrary, we conclude that��0. �

We can now establish Theorem2:

Proof of Theorem 2. Assume	 is a good measure��. Let v denote the solution of

{−�v + g(v) = 0 in �,
v = 	 on ��.

Since	��, it follows that v is a subsolution of (1.1). Thus, by Theorem1, v�u∗ a.e.
Applying Lemma1 to the functionw = u∗ − v, we then conclude that�∗ − 	�0. �

3. Some properties ofG and �∗

Here is a list of properties which can be established exactly as in[4]. For this reason,
we shall omit their proofs.

Proposition 1. Suppose�1 is a good measure. Then, any measure�2��1 is also a
good measure.

Proposition 2. If �1, �2 are good measures, then so issup{�1, �2}.

Proposition 3. The setG of good measures is convex.

Proposition 4. We have

G + L1(��) ⊂ G.

Proposition 5. Let � ∈ M(��). Then, � ∈ G if and only if �+ ∈ G.

Proposition 6. Let � ∈ M(��). Then, � ∈ G if and only if �s ∈ G, where�s denotes
the singular part of� with respect toHN−1.
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Proposition 7. Let � ∈ M(��). Then, � ∈ G if and only if there exist functions
f0 ∈ L1(�; �0 dx) and v0 ∈ L1(�) such thatg(v0) ∈ L1(�; �0 dx) and

∫
��

��

�n
d� =

∫
�
f0� +

∫
�
v0�� ∀� ∈ C2

0(�). (3.1)

Proposition7 is the analog of a result of Gallouët–Morel[14]; see also[4, Theo-
rem 6].

Proposition 8. For every measure�, we have

0�� − �∗ ��+. (3.2)

Proposition 9. For every measure�, we have

(�∗)+ = (�+)∗ and (�∗)− = �−. (3.3)

Proposition 10. Let � ∈ M(��). Then,

‖� − �∗‖M = min
	∈G

‖� − 	‖M. (3.4)

Moreover, �∗ is the unique good measure which achieves the minimum in(3.4).

Proposition 11. Let � ∈ M(��) and h ∈ L1(�; �0 dx). The problem

{−�v + g(v) = h in �,
v = � on ��,

(3.5)

has a solution if and only if� ∈ G(g).

By a solutionv of (3.5) we mean thatv ∈ L1(�) satisfiesg(v) ∈ L1(�; �0 dx) and

−
∫
�
v�� +

∫
�
g(v)� =

∫
�
h� −

∫
��

��

�n
d	 ∀� ∈ C2

0(�). (3.6)

In view of Lemma2 below such a solution, whenever it exists, is unique.
The proofs of Propositions7 and 11 require an extra argument. We shall present a

proof based on Lemmas2–6 below.
Given h ∈ L1(�; �0 dx), let Ag(h) denote the set of measures� for which (3.5) has

a solution. By Lemma2 below,Ag(h) is closed with respect to the strong topology in
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M(��). Our goal is to show thatAg(h) is independent ofh andAg(h) = G(g), ∀h.
In the sequel, we shall denote by�0 the solution of

{−��0 = 1 in �,
�0 = 0 on ��.

We start with the following:

Lemma 2. Let hi ∈ L1(�; �0 dx), i = 1,2. Given �i ∈ Ag(hi), let vi denote the
solution of (3.5) corresponding tohi, �i . Then,

∫
�

|v1 − v2| +
∫
�

|g(v1)− g(v2)|�0�
∫
�

|h1 − h2|�0 + C
∫
��

|�1 − �2|. (3.7)

Proof. Apply Lemma 1.5 in[20]. �

Lemma 3. Assume g satisfies

g(t)�C(|t |p + 1) ∀t ∈ R, (3.8)

for somep < N+1
N−1. Then, for everyh ∈ L1(�; �0 dx), we haveAg(h) = M(��).

Proof. This result is established in[15] for h = 0. The same proof there also applies
for h ∈ L∞(�). The general case whenh ∈ L1(�; �0 dx) then follows by density using
Lemma2 above. �
Given � ∈ M(��), let vk be the solution of

{−�vk + gk(vk) = h in �,
vk = � on ��,

(3.9)

where (gk) is a sequence of functions satisfying (1.6)–(1.8).

Lemma 4. Given � ∈ Ag(h), let v denote the solution of(3.5). Assumevk satisfies
(3.9). Then,

vk → v in L1(�) and gk(vk)→ g(v) in L1(�; �0 dx). (3.10)

Proof. The lemma follows by mimicking the proof of Proposition 3 in[4] and using
Lemma2 above. �

Lemma 5. Let h1, h2 ∈ L1(�; �0 dx). If h1�h2 a.e., thenAg(h1) ⊃ Ag(h2).
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Proof. Let � ∈ Ag(h2) and let (gk) be a sequence satisfying (1.6)–(1.8). Denote by
vi,k, i = 1,2, the solution of

{−�vi,k + gk(vi,k) = hi in �,
vi,k = � on ��.

Let vi be such thatvi,k ↓ vi in L1(�) as k ↑ ∞. By Lemma4 above, we have

gk(v2,k)→ g(v2) in L1(�; �0 dx).

By [4, Corollary B.2], h1�h2 a.e. impliesv1,k�v2,k a.e.; thus,gk(v1,k)�gk(v2,k) a.e.
It then follows by dominated convergence that

gk(v1,k)→ g(v1) in L1(�; �0 dx).

Therefore,� ∈ Ag(h1). This concludes the proof of the lemma.�

Lemma 6. Assume� satisfies(3.1) for somef0 ∈ L1(�; �0 dx) and v0 ∈ L1(�), with
g(v0) ∈ L1(�; �0 dx). Then, problem (3.5) has a solution for everyh ∈ L1(�; �0 dx).

Proof. Fix 
 < 1. Givenm�1, letMm = m‖�0‖L∞
1−
 . Since


v0 +m�0�v0 a.e. on the set[v0�Mm],

we haveg(
v0 +m�0) ∈ L1(�; �0 dx); moreover,

−
∫
�
(
v0 +m�0)�� =

∫
�
(
f0 +m)� − 


∫
��

��

�n
d� ∀� ∈ C2

0(�).

Thus,
� ∈ Ag(h̃m), where

h̃m = 
f0 +m+ g(
v0 +m�0).

Given h ∈ L1(�; �0 dx), let

hm = min {h, h̃m}.

Since hm� h̃m a.e., it follows from Lemma5 that 
� ∈ Ag(hm), ∀m�1. Note that
hm → h in L1(�; �0 dx) asm → ∞; thus, by Lemma2 we get 
� ∈ Ag(h). Since
this holds true for every
 < 1, we must have� ∈ Ag(h). �
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Proof of Proposition 7. Clearly, if � is a good measure, then (3.1) holds. Conversely,
assume� satisfies (3.1) for somev0, f0. It then follows from the previous lemma that
(3.5) has a solution forh = 0. In other words,� is good. �

Proof of Proposition 11. If � is good, then (3.1) holds. Thus, by Lemma6 above we
conclude that problem (3.5) has a solution for everyh ∈ L1(�; �0 dx). Conversely, if
(3.5) has a solution for someh ∈ L1(�; �0 dx), then (3.1) holds. Applying Proposi-
tion 7, we deduce that� is good. �

4. Proof of Theorem 4

Given a compact setK ⊂ ��, we define the capacity

c��(K) = inf

{∫
�

|��|; � ∈ C2
0(�),−

��

�n
�1 in some neighborhood ofK

}
.

In order to establish Theorem4 we will need a few preliminary results. We start
with

Lemma 7. Let K ⊂ �� be a compact set. Given� > 0, there exists� ∈ C2
0(�) such

that ��0 in �, −��
�n �1 in some neighborhood of K and

∫
�

|��|�c��(K)+ �. (4.1)

Proof. Given � > 0, let � ∈ C2
0(�) be such that− ��

�n�1 in some neighborhood ofK
and

∫
�

|��|�c��(K)+
�

2
. (4.2)

We now extend� as aC2-function in the whole spaceRN . We then let

fk(x) =
∫

RN
�k(x − y) |��(y)| dy ∀x ∈ �,

where(�k) is any sequence of nonnegative modifiers such that supp�k ⊂ B1/k, ∀k�1.
As k → ∞, we have

fk → |��| uniformly in �. (4.3)
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Let vk ∈ C2
0(�) be the solution of

{−�vk = fk in �,
vk = 0 on ��.

Sincefk�0, we havevk�0 in �. Moreover, (4.3) implies

�vk
�n

→ �v
�n

uniformly on ��, (4.4)

wherev is the solution of {−�v = |��| in �,
v = 0 on ��.

By the maximum principle,��v in �. Since� = v = 0 on ��, we have

− ��

�n
� − �v

�n
on ��,

which implies that− �v
�n�1 in some neighborhood ofK. In view of (4.4), we can fix

k0�1 sufficiently large so that
�vk0
�n �
 in some neighborhood ofK, where
 < 1. We

may also assume that ∫
Ak0

|��| < �

4
,

whereAk0 = N 1
k0
(�) \ �.

Set

� = 1



vk0,

so that��0 in � and−��
�n �1 in some neighborhood ofK. Moreover,

∫
�

|��| = 1




∫
�

|�vk0|�
1




(∫
�

|��| + �

4

)
� 1




(
c��(K)+

3�

4

)
.

Therefore, by taking


 = c��(K)+ 3�
4

c��(K)+ �
< 1,

we conclude that� satisfies (4.1). �



H. Brezis, A.C. Ponce / Journal of Functional Analysis 229 (2005) 95–120 107

We next prove

Lemma 8. Let K ⊂ �� be a compact set. Given� > 0, there exists� ∈ C2
0(�) such

that 0���� in �, −��
�n �1 in some neighborhood of K,

∫
�

|��|�HN−1(K)+ � and

∥∥∥∥ �

�0

∥∥∥∥
L∞

�1+ �. (4.5)

Proof. Let � > 0 be such that

HN−1(N�(K) ∩ ��)�HN−1(K)+ �.

We now fix � ∈ C2
0(�) such that� > 0 in �, − ��

�n = 1 in N �
2
(K) ∩ ��, ��

�n = 0 in

�� \ N�(K), 0� − ��
�n�1 on ��, and ‖ �

�0
‖L∞ �1+ �. Let a ∈ (0, �) be sufficiently

small so that

∫
[�<a]

|��| < �.

Let

u = a − (a − �)+ in �.

In particular, 0�u<� in �. It is easy to see that�u ∈ M(�) and�u = �� in [� < a].
Sinceu is bounded and achieves its maximum everywhere on the set[��a], we can
apply Corollary 1.3 in[5] to deduce that

−�u�0 in [��a],

in the sense of measures. Thus,

‖�u‖M = − ∫[��a] �u+ ∫
[�<a] |��|

� − ∫
� �u+ 2

∫
[�<a] |��|� − ∫

� �u+ 2�.


 (4.6)

On the other hand, proceeding as in the proof of Lemma7, one can find� ∈ C2
0(�)

such that 0���� in �, −��
�n �1 on ��,

∥∥∥∥ �

�0

∥∥∥∥
L∞

�
∥∥∥∥ u�0

∥∥∥∥
L∞

+ ��1+ 2� (4.7)



108 H. Brezis, A.C. Ponce / Journal of Functional Analysis 229 (2005) 95–120

and

∫
�

|��|�‖�u‖M + �. (4.8)

By (4.6) and (4.8), we have

∫
�

|��|� −
∫
�

�u+ 3�.

Sinceu = � in a neighborhood of��,

∫
�

�u =
∫
��

�u
�n

=
∫
��

��

�n
.

Thus,

∫
�

|��|� −
∫
��

��

�n
+ 3��HN−1(N�(K) ∩ ��)+ 3��HN−1(K)+ 4�.

This concludes the proof of the lemma.�

Proof of Theorem 4. Given � > 0, let � ∈ C2
0(�) be the function given by Lemma7.

Since��0 in �, we have− ��
�n �0 on ��. Thus, integrating by parts and using (4.1)

we get

HN−1(K)� −
∫
��

��

�n
= −

∫
��

���
∫
��

|��|�c��(K)+ �.

Since � > 0 was arbitrary, we deduce that

HN−1(K)�c��(K).

The reverse inequality immediately follows from Lemma8. �

5. Nonnegative measures which are good for everyg must belong toL1(��)

We start with

Theorem 7. Given a Borel set� ⊂ �� of zeroHN−1-measure, there exists g such that

�∗ = −�− for every measure� concentrated on�.
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In particular, for every nonnegative� ∈ M(��) concentrated on a set of zeroHN−1-
measure, there exists some g such that�∗ = 0.

Proof. Let � ⊂ �� be a Borel set such thatHN−1(�) = 0. Let (Kk) be an increasing
sequence of compact subsets of� such that

�+(�\
⋃
k

Kk) = 0. (5.1)

For eachk�1, Kk has zeroHN−1-measure. By Lemma8, one can find�k ∈ C2
0(�)

such that 0��k� min {1
k
,2�0} in �, −��k

�n �1 in some neighborhood ofKk, and

∫
�

|��k|�
1

k
∀k�1.

In particular,

��k
�0

→ 0 in L1(�; �0 dx).

Passing to a subsequence if necessary, we may assume that

��k
�0

→ 0 a.e. and
|��k|

�0
�G ∈ L1(�; �0 dx) ∀k�1.

According to a theorem of De La Vallée-Poussin (see[6, Remarque 23]or
[7, Théorème II.22]), there exists a convex functionh : [0,∞) → [0,∞) such that
h(0) = 0, h(s) > 0 for s > 0,

lim
t→∞

h(t)

t
= +∞, and h(G) ∈ L1(�; �0 dx).

Set h(s) = +∞ for s < 0. Let g = h∗ be the convex conjugate ofh. Note thath∗ is
finite in view of the coercivity ofh, and we haveh∗(t) = 0 if t�0.
We claim thatg satisfies all the required properties. In fact, let� be any measure

concentrated on� and set	 = (�∗)+, where the reduced measure�∗ is computed with
respect tog. By Proposition5, 	 is a good measure. Letu ∈ L1(�), u�0 a.e., be such
that g(u)�0 ∈ L1(�) and

−
∫
�
u�� +

∫
�
g(u)� = −

∫
��

��

�n
d	 ∀� ∈ C2

0(�). (5.2)
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Recall that�k�0 in � and�k = 0 on ��; thus,−��k
�n �0 on ��. Using�k as a test

function in (5.2), we get

	(Kk)� −
∫
��

��k
�n

d	� −
∫
�

|u��k + g(u)�k|. (5.3)

Note that

|u��k + g(u)�k| → 0 a.e.

and

|u��k + g(u)�k| � u
|��k|

�0
�0 + g(u)�k

�0
�0

� g(u)�0 + h
( |��k|

�0

)
�0 + 2g(u)�0

� 3g(u)�0 +G�0 ∈ L1(�).

By dominated convergence, we conclude that the right-hand side of (5.3) converges to
0 ask → ∞. Thus,

(�∗)+(Kk) = 	(Kk) = 0 ∀k�1,

so that, by (5.1) and Proposition8, (�∗)+(�) = 0. Since� is concentrated on�, we
have (�∗)+ = 0; thus, by Proposition9,

�∗ = (�∗)+ − (�∗)− = −�−,

which is the desired result.�

We now present the

Proof of Theorem 3. Assume� ∈ M(��) is good for everyg. Given a Borel set
� ⊂ �� of zero HN−1-measure, let	 = �+��. By Theorem7, there exists someg0
such that	∗ = 0. On the other hand, by Propositions1 and5, 	 is good forg0. Thus,
	 = 	∗ = 0. In other words,

�+(�) = 0 for every Borel set� ⊂ �� such thatHN−1(�) = 0.

We conclude that�+ ∈ L1(��). �
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6. How to construct good measures which are not inL1(��)

In this section, we establish Theorem5. We shall closely follow the strategy used
in [24] to construct good measures for problem (1.3) which are not
diffuse.
Let ('k) be a decreasing sequence of positive numbers such that

'1 <
1

2
and 'k+1 <

1

2
'k ∀k�1. (6.1)

We start by briefly recalling the construction of the Cantor setF ⊂ [−1
2,

1
2]N−1 asso-

ciated to the subsequence('kj ). We refer the reader to[24, Section 2] for
details.
We proceed by induction as follows. LetF0 = [−1

2,
1
2]N−1, '0 = 1 and k0 = 0.

Let Fj be the set obtained after thej th step;Fj is the union of 2(N−1)kj cubesQi
of side 'kj . Inside eachQi , select 2(N−1)(kj+1−kj ) cubesQi,n of side 'kj+1 uniformly

distributed inQi ; the distance between the centers of any two cubesQi,n is �
'kj

2(kj+1−kj ) .
Let

Fj+1 =
⋃
i,n

Qi,n.

The setF is given by

F =
∞⋂
j=0

Fj .

We now fix a diffeomorphism

� : (−1,1)N−1 → �((−1,1)N−1) ⊂ ��

and defineF̂ = �(F ). From now on, we shall identifyF̂ with F , and simply denote
F̂ by F . For eachj�1, let

�j = 1

HN−1(Fj+1)
Fj+1

;

in particular,�j ∈ L1(��). The uniform measure concentrated onF , �F , is the weak∗
limit of (�j ) in M(��) asj → ∞. In particular,�F �0 and�F (��) = 1. An important
property satisfied by�F is given by the next
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Lemma 9. For everyx ∈ ��, we have

�F (Br(x) ∩ ��)�




1

2(N−1)kj+1
if 'kj+1 � r �

'kj

2(kj+1−kj ) ,

1

2(N−1)kj

(
r

'kj

)N−1

if
'kj

2(kj+1−kj ) � r � 'kj .
(6.2)

We say thata� b if there existsC > 0, depending only onN , such thata�Cb.
By a ∼ b, we mean thata� b and b� a. We refer the reader to[24] for a proof of
Lemma9; although a slightly stronger assumption than (6.1) is made there, the proof
of (6.2) remains unchanged.
Let v ∈ L1(�) be the unique solution of

{−�v = 0 in �,
v = �F on ��.

(6.3)

Our next step is to establish the following:

Proposition 12. Let F ⊂ �� be the Cantor set associated to the subsequence('kj )

and let v be the solution of(6.3). Assume that

2kj+1'kj+1

2kj 'kj
∼ 1 ∀j�1. (6.4)

Then, there existsC > 0 such that

v(x)�C


 1

'N−1
k1

+
j∑
i=1

1

2(N−1)ki 'N−1
ki

(
'kj

'ki

)
+

∞∑
i=j+1

1

2(N−1)ki 'N−1
ki

(
'ki

'kj+1

)N+1


(6.5)

for everyx ∈ � such that'kj+1 < d(x, ��)�'kj , j�1.

Proof. We shall suppose for simplicity that� = RN+ is the upper-half space. In
this case, the solutionv of (6.3) can be explicitly written as (see Lemma10
below)

v(z, t) = NcN
∫ ∞

0

st

(s2 + t2)N2 +1
�F (Bs(z) ∩ �RN+) ds ∀z ∈ RN−1 ∀t > 0,
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wherecN = �(N/2)
�N/2 . Applying Lemma9, we have

v(z, t)�
∞∑
i=1

(Ai + Bi)+ C0, (6.6)

where

Ai = 1

2(N−1)ki+1

∫ 'ki

2(ki+1−ki )

'ki+1

st

(s2 + t2)N2 +1
ds,

Bi = t

2(N−1)ki 'N−1
ki

∫ 'ki

'ki

2(ki+1−ki )

sN

(s2 + t2)N2 +1
ds,

C0 =
∫ ∞

'k1

st

(s2 + t2)N2 +1
ds.

An elementary (but tedious) computation using (6.4) shows that

Ai �




1

2(N−1)ki+1'N−1
ki+1

(
'ki+1

t

)N+1

if t > 'ki+1,

1

2(N−1)ki+1'N−1
ki+1

(
t

'ki+1

)
if t�'ki+1,

(6.7)

Bi �




1

2(N−1)ki 'N−1
ki

(
'ki

t

)N+1

if t > 'ki ,

1

2(N−1)ki 'N−1
ki

if 'ki+1 < t�'ki ,

1

2(N−1)ki+1'N−1
ki+1

(
t

'ki+1

)
if t�'ki+1,

(6.8)

C0�




1

tN−1 if t > 'k1,

t

'Nk1

if t�'k1.
(6.9)
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We now assume that'kj+1 < t�'kj . Inserting (6.7)–(6.9) into (6.6), we obtain (6.5).
In order to conclude the proof of Proposition12, we establish the following:

Lemma 10. Given 	 ∈ M(RN−1), let w be the solution of

{−�w = 0 in RN+ ,
w = 	 on �RN+ .

(6.10)

Then,

w(z, t) = NcN
∫ ∞

0

st

(s2 + t2)N2 +1
	(B̃s(z)) ds ∀z ∈ RN−1 ∀t > 0, (6.11)

where B̃s(z) denotes the ball in�RN+ of radius s centered at z.

Proof. Assume� = f ∈ C∞
c (R

N−1). Then,w is given as the Poisson integral off :

w(z, t) = cN
∫

RN−1

t

(|x − z|2 + t2)N2
f (x) dx ∀z ∈ RN−1 ∀t > 0.

Thus,

w(z, t)= cN
∫ ∞

0

t

(s2 + t2)N2
(∫

�B̃s (z)
f

)
ds

= cN
∫ ∞

0

t

(s2 + t2)N2
d

ds

(∫
B̃s (z)

f

)
ds.

Integrating by parts with respect tos, we obtain (6.11) for � = f . This establishes
(6.11) when � is a smooth function. The general case easily follows using a density
argument (see, e.g.,[20, Lemma 1.4]). �

We may now turn to the

Proof of Theorem 5. Let (kj ) be an increasing sequence of positive integers such that

g(2Nj )�22kj ∀j�1. (6.12)

Let ('k) be any sequence satisfying (6.1) and such that

'kj = 1

2j+kj
∀j�1.
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Let F be the Cantor set associated to('kj ). Since

2(N−1)kj 'N−1
kj

= 1

2(N−1)j
→ 0 asj → ∞,

we have|F | = 0; thus,�F /∈ L1(��). We claim that�F is a good measure. In fact,
let v be the solution of (6.3). A simple computation shows that

j∑
i=1

1

2(N−1)ki 'N−1
ki

(
'kj

'ki

)
+

∞∑
i=j+1

1

2(N−1)ki 'N−1
ki

(
'ki

'kj+1

)N+1

�C2(N−1)j

for some constantC > 0 sufficiently large. It follows from Proposition12 that

v(x)�C̃2(N−1)j if 'kj+1 < d(x, ��)�'kj ∀j�1.

Denoting�j = {
x ∈ �; d(x, ��) > 'kj

}
, we then have

∫
�
g(v)�0 =

∞∑
j=1

∫
�j+1\�j

g(v)�0 +
∫
�\�1

g(v)�0

� C

∞∑
j=1

g(C̃2(N−1)j )'kj |�j+1\�j | +O(1).

Since |�j+1\�j |�C'kj , we get

∫
�
g(v)�0�C

∞∑
j=1

g(C̃2(N−1)j )

22(j+kj )
+O(1). (6.13)

Note that, forj�1 sufficiently large, we havẽC 2(N−1)j �2Nj . We deduce from (6.12)
and (6.13) that g(v) ∈ L1(�; �0 dx). By Proposition7, we conclude that�F is a good
measure. �

7. The case whereg(t) = tp

We describe here some examples where the measure�∗ can be explicitly identified.

Example 1. g(t) = tp, t�0, with 1< p < N+1
N−1.

In this case, every measure is good (see[15]); thus,�∗ = �, ∀� ∈ M(��).
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Example 2. g(t) = tp, t�0, with p� N+1
N−1.

By [21], a nonnegative measure	 is good if and only if	(A) = 0 for every Borel
set A ⊂ �� such thatC2/p,p′(A) = 0. Recall (see[13]) that any measure� can be
uniquely decomposed as

� = �1 + �2,

where �1(A) = 0 for every Borel setA ⊂ �� such thatC2/p,p′(A) = 0, and �2
is concentrated on a set of zeroC2/p,p′ -capacity. Using the same argument as in[4,
Section 8], one then shows that for every� ∈ M(��) we have

�∗ = � − �+
2 .

Here is an interesting

Open Problem 1. Let N = 2 andg(t) = et−1, t�0. Is there a simple characterization
of the set of good measures relative tog? Is there an explicit formula of�∗ in terms
of �?

There are some partial results in this direction; see[16] and also[23].

8. Proof of Theorem 6

We start with the following:

Lemma 11. Let � ∈ M(�) and � ∈ M(��). Assume that there existsw ∈ L1(�) such
that g(w) ∈ L1(�; �0 dx) and

−
∫
�
w�� +

∫
�
g(w)��

∫
�

� d� −
∫
��

��

�n
d� ∀� ∈ C2

0(�), ��0 in �. (8.1)

Then, the pair (�, �) is good.

Proof. Since (8.1) holds, there exist�0 ∈ M(��) and a locally bounded measure�0
in �, with

∫
� �0 d|�0| <∞, such that�0�� on ��, �0�� in �, and

−
∫
�
w�� +

∫
�
g(w)� =

∫
�

� d�0 −
∫
��

��

�n
d�0 ∀� ∈ C2

0(�).

(The existence of�0 and �0 is sketched in[4, Remark B.1]).
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Let (gk) be a sequence of bounded functions satisfying (1.6)–(1.7). Let uk,wk be the
solutions associated to(�, �), (�0, �0), resp. Then, as in the proof of Lemma5 above,
we have

gk(uk)�gk(wk)→ g(w) in L1(�; �0 dx).

On the other hand,uk ↓ u in L1(�). Thus, by dominated convergence,

gk(uk)→ g(u) in L1(�; �0 dx).

We conclude thatu satisfies (1.12). Therefore,(�, �) is good. �

Proof of Theorem 6.
Step 1: Proof of

(�, �)∗ = (�∗, �∗). (8.2)

Let uk be such that

{−�uk + gk(uk) = � in �,
uk = � on ��.

Then,uk ↓ û in L1(�). By Fatou, we deduce thatg(û) ∈ L1(�; �0 dx) and

−
∫
�
û�� +

∫
�
g(û)��

∫
�

� d� −
∫
��

��

�n
d� ∀� ∈ C2

0(�), ��0 in �.

By [4, Remark B.1], there exist�̂ ∈ M(��) and a locally bounded measure�̂ in �,
with

∫
� �0 d|�̂| <∞, such that

−
∫
�
û�� +

∫
�
g(û)� =

∫
�

� d �̂ −
∫
��

��

�n
d�̂ ∀� ∈ C2

0(�).

Note that�̂�� in � and �̂�� on ��. We claim that

(a) (�̂)d = �d = (�∗)d;
(b) (�̂)c = (�∗)c;
(c) �̂ = �∗.

The subscripts “d” and “c” denote the diffuse and the concentrated parts of the measure
with respect to capH1 (see [13]). We then deduce from (a) and (b) that�̂ = �∗; in
particular, �̂ ∈ M(�).
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Proof of (a): The second equality in (a) is established in[4]. Proceeding exactly as
in the proof of Lemma 1 there, one shows that

�̂��d − �−
c .

Thus, (�̂)d��d. Since �̂��, we conclude that(�̂)d = �d.
Proof of (b): Since the pair(�∗,0) is good, it follows from Lemma11 above that

(�∗,−�−) is also good. Letv1 be the solution of (1.12) corresponding to(�∗,−�−).
By [4, Corollary B.2], we havev1�uk a.e.,∀k�1. Thus,

v1� û a.e.

By the “Inverse” maximum principle (see[8]), we obtain

(�∗)c = (−�v1)c�(−�û)c = (�̂)c. (8.3)

We conclude from (a) and (8.3) that

�∗ � �̂��.

In particular, �̂ ∈ M(�). Since (�̂, �̂) is good, we can apply Lemma11 to deduce
that (�̂,−(�̂)−) is also good. Letv2 denote the corresponding solution. Clearly,v2 is
a subsolution of (1.3). Thus,

v2�v∗ a.e.,

wherev∗ is the largest subsolution of (1.3), i.e., v∗ is the solution of (1.3) with data
�∗. Applying the “Inverse” maximum principle, we conclude that

(�̂)c = (−�v2)c�(−�v∗)c = (�∗)c. (8.4)

We deduce from (8.3) and (8.4) that (�̂)c = (�∗)c.
Proof of (c): The argument in this case is the same as in the proof of(b) and

is omitted (one should use Lemma1 in Section 2 above, instead of the “Inverse”
maximum principle).
It now follows from (a)–(c) that�̂ = �∗ and �̂ = �∗. This concludes the proof of

Step 1.

Step2: Proof of the theorem completed.
Assume(�, �) is good. Thus,(�, �)∗ = (�, �). We deduce from the previous step

that �∗ = � and �∗ = �. In other words,� is a good measure for (1.3) and � is good
for (1.1). Similarly, the converse follows. The proof of Theorem6 is complete. �
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Open Direction 1. In all the problems above, the equation in� is nonlinear but the
boundary condition is the usual Dirichlet condition. It might be interesting to investigate
problems involving nonlinear boundary conditions. Here is a typical example:




−�u+ u = 0 in �,
�u
�n

+ g(u) = � on ��,
(8.5)

whereg and � are as in the Introduction. This type of problems arises in Physics for
various choices ofg, possibly graphs; see, e.g.[9]. They have been studied in[2] when
� ∈ L2(��).

Acknowledgments

We warmly thank M. Marcus and L. Véron for interesting discussions. The first
author (H.B.) is partially sponsored by an EC Grant through the RTN Program “Front-
Singularities”, HPRN-CT-2002-00274. H.B. is also a member of the Institut Univer-
sitaire de France. The second author (A.C.P.) is supported by the NSF grant DMS-
0111298 and Sergio Serapioni, Honorary President of Società Trentina Lieviti—Trento
(Italy).

References

[1] Ph. Bénilan, H. Brezis, Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equ. 3
(2004) 673–770 (Dedicated to Ph. Bénilan).

[2] H. Brezis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972) 1–168.
[3] H. Brezis, Semilinear equations inRN without condition at infinity, Appl. Math. Optim. 12 (1984)

271–282.
[4] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, Annals of

Math. Studies, Princeton University Press, to appear. Part of the results were announced in a note
by the same authors: A new concept of reduced measure for nonlinear elliptic equations, C. R.
Acad. Sci. Paris, Ser. I 339 (2004) 169–174.

[5] H. Brezis, A.C. Ponce, Kato’s inequality when�u is a measure, C. R. Math. Acad. Sci. Paris,
Ser. I 338 (2004) 599–604.

[6] C. De La Vallée Poussin, Sur l’intégrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915)
435–501.

[7] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel. Chapitres I à IV, Publications de l’Institut de
Mathématique de l’Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No.
1372, Hermann, Paris, 1975.

[8] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, Selecta Math.
(N.S.) 10 (2004) 341–358.

[9] G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976.
[10] E.B. Dynkin, Diffusions, superdiffusions and partial differential equations, American Mathematical

Society Colloquium Publications, vol. 50, American Mathematical Society, Providence, RI, 2002.
[11] E.B. Dynkin, Superdiffusions and positive solutions of nonlinear partial differential equations,

University Lecture Series, vol. 34, American Mathematical Society, Providence, RI, 2004.
[12] E.B. Dynkin, S.E. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial

differential equations, Comm. Pure Appl. Math. 49 (1996) 125–176.



120 H. Brezis, A.C. Ponce / Journal of Functional Analysis 229 (2005) 95–120

[13] M. Fukushima, K. Sato, S. Taniguchi, On the closable parts of pre-Dirichlet forms and the fine
supports of underlying measures, Osaka J. Math. 28 (1991) 517–535.

[14] T. Gallouët, J.-M. Morel, Resolution of a semilinear equation inL1, Proc. Roy. Soc. Edinburgh
Sect. A 96 (1984) 275–288.

[15] A. Gmira, L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke
Math. J. 64 (1991) 271–324.

[16] M. Grillot, L. Véron, Boundary trace of the solutions of the prescribed Gaussian curvature equation,
Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 527–560.

[17] J.-F. Le Gall, The Brownian snake and solutions of�u= u2 in a domain, Probab. Theory Related
Fields 102 (1995) 393–432.

[18] J.-F. Le Gall, A probabilistic Poisson representation for positive solutions of�u= u2 in a planar
domain, Comm. Pure Appl. Math. 50 (1997) 69–103.

[19] M. Marcus, L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the
subcritical case, Arch. Rational Mech. Anal. 144 (1998) 201–231.

[20] M. Marcus, L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the
supercritical case, J. Math. Pures Appl. 77 (1998) 481–524.

[21] M. Marcus, L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001)
879–900.

[22] M. Marcus, L. Véron, Capacitary estimates of solutions of a class of nonlinear elliptic equations,
C. R. Math. Acad. Sci. Pari, Ser. I 336 (2003) 913–918.

[23] M. Marcus, L. Véron, Nonlinear capacities associated to semilinear elliptic equations, in preparation.
[24] A.C. Ponce, How to construct good measures, in: C. Bandle, H. Berestycki, B. Brighi, A. Brillard,

M. Chipot, J.-M. Coron, C. Sbordone, I. Shafrix, V. Valente, G. Vergara-Caffarelli (Eds.), Elliptic
and parabolic problems, Birkhäuser, to appear (A special tribute to the work of Haïm Brezis).

[25] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire de
Mathématiques Supérieures, No. 16 (Été, 1965), Les Presses de l’Université de Montréal, Montreal,
1966.


	Reduced measures on the boundary62626262
	Introduction
	Proof of Theorem 2
	Some properties of G and mu*
	Proof of Theorem 4
	Nonnegative measures which are good for every g must belong to L1(76767676XXXX)
	How to construct good measures which are not in L1(76767676XXXX)
	The case where g(t) = tp
	Proof of Theorem 6
	Acknowledgments
	References


