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1 I n t r o d u c t i o n  

We start with a problem on a geodesic ball B '  centered at the North pole in $3: 

( l . l a )  r - A s 3 U  = U 5 + AU in B',  

(1.1b) / U > 0 in B',  

(1 .lc) U = 0 on OB', 

where As3 is the Laplace-Beltrami operator on B' .  Let 0* C (0, 7r) be the radius 

o r B ' ,  i.e., the geodesic distance of the North pole to OBq The values 0 < 0* < 7r/2 

correspond to a spherical cap contained in the Northern hemisphere, 0* -- 7r/2 

corresponds to B ~ being the Northern hemisphere and the values rr/2 < 0* < ~c 

correspond to a spherical cap which covers the Northern hemisphere. Finally, 

0* = 7r corresponds to B '  = S 3 \ {South pole}. 

Our main focus is to identify the range of  values of the parameters 0 * and A for 

which there exists a solution of  Problem (1.1). Recall that a similar problem in R 3 

has been investigated in [6]: 

(1.2a) / -AR3U = U ~ + AU, U > 0 in BR. C R ~, 

(1.2b) / U = 0 on OBR.. 

The result established in [6] is the following: 

T h e o r e m  BN.  Problem (1.2) has a solution if and only if 

7r2/(4(R*) 2) < A < ~2/((R*)2). 

Moreover, the solution (after scaling) is a minimizer for  

Inf{ f.. IWl2dx-af.  
subject to the constraint that u 6 H~ (B~. ) and 
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B U ~ dx = 1. 

This solution was shown to be unique [15]. 

By contrast, we shall see that on the sphere S 3 the situation is quite different, 

especially for  negative values of  A. There are three cases to be distinguished: 

C a s e  A :  3 + 4A > 0; 

C a s e  B :  3 + 4A = 0; 

C a s e  C :  3 +  4A < 0. 

The special value A = - 3 / 4  is related to the fact that the conformal  Laplacian on 

S 3 is AR~ - (3/4). 

C a s e  A has been extensively studied by Bandle, Benguria and Peletier (cf. [3] 

and [4]). The main result for this case resembles that of  Theorem BN. 

T h e o r e m  1.1 ([3], [4]). When 3 + 4A > O, there exists a solution o f  Problem 

(1.1) i f  and only i f  

(1.3) A~ -- (Tr 2 -4 (0" )2 ) / (4 (0" )  2) < A < A, ( - A s s )  -- (~r 2 - (0")2)/(0") 2. 

In fact, the solution can be obtained, after scaling, by minimization o f  the 

functional 

(1.4) E(U) =/i, ,  {IVUI2 - ;~U2} dy, 

subject to the constraint 

(1.5) / U 6 dy = l. 
J/) t 

R e m a r k  1.1. The range 3 + 4A > 0 is the one for which one can say that any 

solution must be radial by [12] applied to (2.3a-b). The solution is unique by [15]. 

In Case B, Problem (1.1) has no solutions for any 0*. Here, equation (l . la)  can 

be reduced to - A R 3 v  = v ~ in a ball of  radius R = tan(0*/2) in R 3 (see Section 

2); and the classical Pohozaev identity implies that this equation has no nontrivial 

solution on any ball. 

C a s e  C :  3 + 4A < 0. 

This case is extremely interesting because the minimum of  E(U),  defined 

in (1.4), subject to (1.5), is n e v e r  achieved. As we shall see, non-minimizing 

solutions do exist for some range of  values of  the parameters 0 * and A. 

First we give a nonexistence result. 

T h e o r e m  1.2. There are no solutions o f  Problem (1.1) i f  O* E (0,7r/2] and  

A < - 3 / 4 .  
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This theorem was proved in [3], using a result of Padilla ~17] which states that 

ff 0* < 7r/2, then any solution of Problem (1.1) must be radial. In Section 3, we 

give another proof, which does not require solutions to be radially symmetric. 

Next, we turn to the question of existence. 

T h e o r e m  1.3. Given any O* C (7r/2, 7r) there exist at least two non-constant 

solutions o f  Problem (1 .1) for  A sufficiently large and negative. 

R e m a r k  1.2, The solutions given in Theorem 1.3 are radial and in  th is  p a p e r  

we c o n c e n t r a t e  o n  r a d i a l  s o l u t i o n s .  However, we call attention to the fact 

that Padilla's result does not guarantee radial symmetry when 0* > 7r/2. In fact, 

we believe that there might be non-radial solutions in this range (see Remark 1.3). 

We show in Section 2 that for large negative values of A, Problem (1.t) can be 

reduced to a singular perturbation problem which enters in the theory developed 

in [11, [2] and these results can be applied to prove Theorem 1.3. 

The following theorem is an improvement of Theorem 1.3 in that it gives the 

existence of an increasing number of solutions as I~1 becomes larger and larger. 

T h e o r e m  1.4. Given any O* E (7r/2, 7r) and any k >_ 1, there exists a constant 

Ak > O such that fo r  A < --Ak, Problem (1.1) has at least 2k solutions such that 

U(North pole) e (O, [A]U4). 

R e m a r k  1.3. The solutions we construct in Theorems t .3 and 1.4 are radial. In 

view of the result of [ 1] concerning the Morse index of the radial solutions computed 

in the full Sobolev space (including non-radial functions), it is reasonable to expect 

non-radial solutions bifurcating off the branches of radial solutions. 

In Sections 6 and 7, we establish qualitative properties of these solutions (see 

Theorems 6.1 and 7.1). 

In all the above results, we addressed the question of existence of solutions of 

Problem (1.1) for 0 * fixed in the interval (Tr/2, 7r ); we left A < - 3 / 4  free and proved 

the existence of solutions for A sufficiently large negative. 

It is natural to address a "reverse" question: fix A < - 3 / 4  and ask for which 

radii 0* there exist solutions. Numerical evidence reported by Bandle and Benguria 

[3] suggests the existence of a curve 0 = MI(A) defined for A E ( - ~ ,  -3 /4)  with 

the properties 
~r/2 < M~ (),) < 

such that 
O* < MI(A) 

O* > MI(A) 

for )~ < - 3 / 4  and M1(-3/4) -- ~, 

there exist no solutions, 

there exists at least one solution. 
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Recently, this s tatement was partially established by  Chert and Wei [9]: they 

proved  that one solution exists i f  re - 0* is sufficiently small  (depending on )~). In 

Section 6, we  use this result to establish a stronger result. 

T h e o r e m  1.5. Given any )~ < - 3 / 4 ,  there exist at least two solutions o f  

Problem (1.1) i f  re - O* is sufficiently small (depending on A). 

Assuming  that M1 ()~) exists, we can by  Theorem 1.3 assert  that 

lira MI( ) = 
)~-+--oo 

tn view of  Theo rem  1.3 and further numerical  evidence, we now propose  a 

more  refined question concerning the solutions of  Problem (1.1) with the property 

that U(North  pole) 6 (0, pql/4). Specifically, let 

(1.6) An = - ( 1 / 4 ) ( n  2 - 1), n = 2 , 3 , . . . .  

O p e n  P r o b l e m  1.1. Do there exist curves 0 = M k ( A ) f o r  k = 1 , 2 , 3 , . . .  

defined on ( -oo ,  A2k ) satisfying 

rr/2 < Mk(A) < re fo r  A < A2k and Mk(A2k) = re, k = 1, 2 , . . . ,  
such that 

0* < M1 (A) ~ there exist no solutions 

Mk (A) <0" < Mk+l ()~) ~ there exist exactly 2k solutions 

and 
lim Mk (A) = rr/2 for  k = 1, 2, 3 , . . . .  

k-+-oo  

In Figure l ,  we give a sketch of  the regions in the (0", A)-plane, separated by 

the curves Mk (A), in which we expect  different numbers  of  solutions. 

In Figure 2, we show three pairs o f  solutions of  P rob lem (1.1) when  A = - 1 5  

and 0* = 3. 

It  would be interesting to study the behavior  of  these solutions in the l imit  as 

O* -+ re. It  seems that some converge to u = 0 on S a \ (Southpole), some converge 

to the constant  I)q 1/4, while others converge on S 3 \ (Southpole) to "ground states" 

described in (1.7) below. 

R e m a r k  1.4. The critical numbers  An are, up to a factor, the "radial"  eigen- 

values #n of  ( - A s  s) in the whole  of  S a, which are given by  

#n = n u - 1, n = 2 , 3 , . . . ,  

with associated eigenfunctions 

= sin( 0)/sin(O). 

For n odd, the functions ~ are symmetr ic  with respect  to 0 = re/2; and for n 

even, they are anf isymmetr ic  with respect  to 0 = rr/2. For  further details, we refer 

to Section 4. 
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0 sol ~ sot " ~ _  0 sol 
0~ 0.~ o ~ ~ ~  ~ ~ ~ T r  

0 sol 

0 sol 
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~I3 6 sol 

, 

Figure 1. Regions in the (0", A)-plane with their number  of  solutions: proved in 

the region A _> - 3 / 4  and expected in the region A < - 3 / 4 .  

U 

o 5 i t 5  2 2.5 " 0 o s  ~ 1 5  2 2 5  3 

0 0 0 
Figure 2. Pairs of  1-spike, 2-spike and 3-spike radial solutions u(O) of  Problem 

(1.1) for A = - 1 5  and 0* = 3. 

A special role in the analysis o f  these solutions is played by  a family o f "g round  

states". They are solutions of  the problem 

(1.7a) ~ --As3U = U 5 + AU in S 3, 

(1.7b) / U > O in S 3. 

These branches emanate from the constant solution U0 = [A] 1/4 of  equation (1. la)  

at the eigenvalues # = #2~+1 = 4m(ra + 1), ra = 1, 2 , . . . .  We prove the following 

result about them. 

T h e o r e m  1.6. L e t m  > 1, and l e t A <  - r e ( m + 1 ) .  Then for  every k C 

{1, 2 , . . . ,  m}, there exists (at least) one solution U ~ of  Problem (1.7), where Uk = 

Uk (0) has the following properties: 

(a) uk(O) has exactly k local maxima, or spikes on (0, 7r); 

(b) Uk(Zr --O) = uk(O) forO < 0 < 7r; 
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(c) ~k(o) < IAi l/4. 

In Figure 3, we show a solution uk (0) such as discussed in Theorem 1.6 for 

A = -100  with k = 8 local maxima. 
~(0), 

4 

AAAAAAAA p,p/4 3 2/~jVI VV vvv~ 
0 ~ - -  0 0.5 1 ~5 2 2.5 3 

Figure 3. The 8-spike ground state solution Us(0) at A = -100;  notice the 

monotonici ty o f  the maxima and the minima. 

In Theorem 1.6, we have the restriction that solutions lie below Uo = IAI 1/4 

on the North pole. We have convincing numerical evidence that there also exist 

solutions with values above Uo at the North pole. This suggests the following 

O p e n  P r o b l e m  1.2. Under the same assumptions as in Theorem 1.6, can one 

establish the existence o f  solutions Ok = uk (0) o f  Problem (1.7) with the properties 

(a) ~k(0) has exactly k local minima on (0, 7r); 

(b) fik(Tr-- 0) = uk(O)forO < 0 < :r; 

(c) ~k(0) > IAI1/~z 

In Theorem 1.6 and in Open Problem 1.2, we have considered even solutions, 

branching of f the  constant solution U0 at the eigenvalues #2m+1- However,  branches 

of  solutions should also emanate f rom U0 at the eigenvalues #2m- 

O p e n  Problem 1.3. Let m _> 1 and A < - m  2 + (1/4). Given any k C 

{1 , . . . ,  m}, can one establish the existence o f  solutions Uk = ~k(O) o f  Problem 

(1.7) with k - 1 local maxima (resp., minima) on (0, 7r) ? 

When m = 1 and A < - 3 / 4 ,  this open problem asks whether there exists an 

increasing or decreasing solution of  Problem (1.7). We emphasize that even this 

case is still open. See also Section 8. 

R e m a r k  1.5. As we shall see, some o f  the proofs in this paper do not depend 

on the power  5 in equation (1. I a) being critical. 

The plan of  the paper is the following. 

1. Introduction. 
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2. Preliminaries. 

3. Nonexistence for R* _< 1 and A _< - 3 / 4 .  Proof of  Theorem 1.2. 

4. Linearizing around the constant solution in S 3. 

5. Positive solutions on S3: Proof of  Theorem 1.6. 

6. Proof of  Theorem 1.4; Part I: Single-spike solutions. 

7. Proof of  Theorem 1.4; Part II: Multi-spike solutions. 

8. Further open problems. 

After the Introduction, we introduce in Section 2 several equivalent formulations 

of  Problem (1. t). Then, in Section 3, we prove a nonexistence result. In Section 

4, we present a detailed study of  the problem obtained by linearizing around the 

constant solution U0 = [)ql/4 of  Problem (1.7) when A < 0. Then, in Section 

5, we prove Theorem 1.6; and in Sections 6 and 7, we prove Theorems 1.4 and 

1.5. Finally, in Section 8, we conclude with the formulation of  some further open 

problems. 

Some of  our results were announced in [7]. 

2 P r e l i m i n a r i e s  

In this section, we present various changes of  va~ables leading to different 

formulations of  Problem (1.1). First, by stereographic projection onto the equator 

plane, we transform Problem (1.1) to a problem in R 3, which can be more easily 

compared with the results stated in Theorem BN. We show that for large negative 

values of  A it is possible to formulate Problem (1.1) as a singular perturbation 
problem. 

We concentrate on radial solutions. It is convenient for later purposes to work 

with the equation in three different variables: in r = Ix], in 0 = 2 arctan(r), and 

in t = (1/2){(1/r) - r}. In this last variable, equation (1.1a) transforms into a 

generalized Emden-Fowler equation. 
N 

s 
Figure 4. Stereographic projection. 
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Stereographic projection. Let E : R 3 --+ S :~ be the stereographic project ion 

with vertex at the South pole (see Figure 4), and let u(x) = U(Ex) ,  where  x c R 3. 

Then equation (1.1 a) becomes  

(2.1) -(1/p3)div(pVu) := )~u + u "~, p(x) = 2/(1 + Ixl~), z c Bn , ,  

where R* = tan(0*/2).  For the p roof  o f  (2.1), we note that i f  y = Ex, then 

and that 

dy = det(JacE) dx and det(JacE)  :-: p3(x) 

we obtain 

(2.4a) f - c 2 A w  + Vn, (~)w = uP, w > 0 in B1, 

(2.4b) ~ w = 0 on OB1, 

where 

To bring the prob lem in line with Problem (1.2) we per form one more  t ransforma- 

tion and set 

(2.2) v(x) = u(x)X/-P-~). 

Then Problem ( l .  1) becomes  

3 + 4A v5 
(2.3a) , - A v -  ( l + l x l 2 )  2 v +  , v > 0  i n B n . ,  

(2.3b) v = 0 on OBn., 

and we see that whether  2 > - 3 / 4  or ;~ < - 3 / 4  determines whether  the coefficient 

o f  v is posit ive or negative. 

Theorems  1.3 and 1.4 are concerned with values of  ), which axe large and 

negative. In this range, Problem (2.3) can be reformulated as a singular perturbation 

problem. Putting 

w(~) = Av(R*~), with A = 13 + 4;q- 1/4, 

c = zR*,~ = a / ( / e * v / 1 3  + 4AI) 

We now assume radial symmetry.  

with r = ix[. Equation (2.1) then becomes  

it r 2 u  / \ t  4r'2 
(2.5a) ~ )  + (1 + r2) ~ (uS + Au) = 0, 

(2.5b) u > 0, 

(2.5c) u'(0) = 0 and u(R*) = O. 

and Vn. (~) = 1/({1 + 

Returning to (2.1), we write u(x) = u(r) 

0 < r < R * ,  

0 < r < R * ,  

8, IVUl~ dv = fB=. IVuI~Pd~" 
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E m d e n - F o w l e r  f o r m u l a t i o n .  W e  in t roduce  the  var iables  

(2.6) 2t = l / r -  r and y( t)  = u(r) ,  and pu t  2T* = 1/R* - R*. 

T h e n  P r o b l e m  (2.5) t r ans fo rms  to 

, 1 - 5 T* 
(2.7a)  Y q- (1 q--t2) 2(y  q- ay)  = 0 < t < oo, 

(2 .7b)  y > O  T* < t < cx~, 

(2.7c)  y ( T " )  = 0 and  l im y(t)  exists.  
~--+oo 

Note  that  the Nor th  po le  r = 0 is n o w  m a p p e d  on to  t = oc, and  the  Sou th  po le  

r = oo on to  t = - a o .  T h e  equa to r  r = 1 is loca ted  at t = 0, and  the equa t ion  

is invar iant  under  the t r an s fo rma t ion  t -~ - t .  Equa t i on  (2.7a) is a genera l i zed  

E m d e n - F o w l e r  equa t ion  in that,  w h e n  w e  o m i t  the 1 in the d e n o m i n a t o r  and  put  

)~ = 0, then  the  equa t ion  b e c o m e s  

y"  + t - 4 y  5 = 0, 

wh ich  is an e x a m p l e  o f  the c lass ica l  E m d e n - F o w l e r  equat ion .  

G e o d e s i c  c o o r d i n a t e s .  Le t  8 be  the geodes ic  radia l  coord ina te  cen te red  at 

the Nor th  po le  (cf. F igure  4), and  let  u(r)  = z(8) be  a func t ion  o f  8 only;  then  

P r o b l e m  (2.5) b e c o m e s  

(2.8a) f - z"  - 2coth(8)  z I = z s + Az, 0 < 8 < 8*, 

(2.8b) / z > 0, 0 < 0 < 8", 

(2.8c) z = 0, 8 = 8*. 

We see tha t  this equa t ion  is invar iant  under  the t r an s fo rma t ion  8 -+ rr - 8. Fo r  

convenience ,  w e  give he re  also two  express ions  re la t ing  8 and  t: 

(2.9) t = cot(8) and  sin2(8) = 1/ (1  + t2). 

3 N o n e x i s t e n c e  for  R* _< 1 a n d  A < - 3 / 4 .  
P r o o f  o f  T h e o r e m  1.2 

We es tab l i sh  a m o r e  genera l  f o r m  o f  T h e o r e m  1.2, and  dea l  wi th  the p r o b l e m  

(3.1a) f - e 2 A w  + V ( x )  w = w s in B1, 

(3.1b) ~ w = 0 on  OB1, 

in wh ich  V (x) is a s m o o t h  poten t ia l  func t ion  and  B1 the uni t  bal l  in 1% 3. 
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L e m m a  3.1. Assume that f o r  some a = (al, a2, a3) C/71, 

3 OV 
(3.2) Z ( x i  - a,) ~x~x/+ 2V > 0 in B1 

i = 1  

and that w satisfies Problem (3 .1 ) for  some e > O. Then w = O. 

Theorem 1.2 follows as a corollary of Lemma 3.1 when we take 

V(r)  = Vn. (r) = 1/({1 + (R*)%z} 2) 

and observe that 

OV 
~,g~, + 2v = !(#v) '~ > 0 

i=1 

for0 < r <_ 1, 

when V(r)  = VR* (r) and R* _< 1. 

P r o o f  o f  Lernrna  3.1. Multiply equation (3.1a) by 3 ~i=1 (xi - ad (a~laxO 
and integrate over B1. This yields 

"/0 "L 'L 7 B1 tC~P#'~,) [(x-a).n]+--~ IWl2+5 
1 1 

(3.3) 

liB (~=1 -ai)-ff~x~) :2i',w" JU 7 1 (Xi OV w2 1 

where n denotes the normal to 0131. Next, multiply equation (3.1a) by v to obtain 

(3.4) .2LII:WI'~-SBIV(X)w'~-LIw6, 
Now multiplying (3.4) by 1/2 and then subtracting the result from (3.3), we obtain 

(3.5) -~- B1 ~ [ (x - -a ) -n ]+-~  1 ( x i - - a i )  oxi + 2 V  w 2 = 0 .  

Plainly, (3.5) and (3.2) imply that w = 0. [] 

The same argument shows that if a = (al, a2, a3) is any point in B1 and if 

3 OV 
Z ( x ,  - a , ) ~ x  i + 2V > 0 
i=1 

somewhere in B1, 

then any solution of Problem (3.1) must be identically zero. This suggests the 

following. 
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Open Problem 3.1. Assume that V _> 0 in B1 and that for any a E B1, 

3 OV 
(3.6) Z (x~ - ai) ~x~x/+ 2V < 0 somewhere in B1. 

i=1 

Is it true that for every e sufficiently small, there is a solution of  

(3.7a) f -e2Aw + V(x) w = w 5, w > 0 in B1, 

(3.7b) [ w = 0 on OB1 ? 

I f  the answer is negative, can one find a necessary and sufficient condition on V 

which guarantees the existence of  a solution of  Problem (3.7) for all e sufficiently 

small? 

4 L i n e a r i z i n g  a r o u n d  t h e  c o n s t a n t  s o l u t i o n  i n  S 3 

It is illuminating first to consider the analogue of  equation (1. la) in the whole 
of  $3: 

(4.1) - A s ~ U  = U 5 + SU in S 3. 

It is evident that because )~ < 0, the constant function 

u0 = t~l 1/4 

is a solution of  (4.1). Linearizing equation (4.1) around this solution, i.e., taking 

U = [A[ 1/4 + er and dropping terms of  o(e), we arrive at the equation 

(4.2) - A s 3 r  = 41A[r in S z. 

Tbfs leads to the search for nontrivial bounded solutions of  (4.2), i.e., for eigen- 

values of  -As3  on S 3, 

(4.3) -As~ r = #r in S 3. 

Thus, for radial solutions r = ~(0), we seek solutions of  the problem 

(4.4a) f -~o" - 2 cot(0) ~ = #~ for 0 < 0 < 7r, 

(404b) / ~'(0) = 0. 

Since cot(0) ,-~ 0 -1 as 0 --+ 0, for each initial value ~(0), there exists a unique 

solution. We find that it is an appropriate multiple of  the function 

(4.5) ~(0; . )  -- s in( 'v/1 + #) 
sin(O) 
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Plainly, for  ~(0; #) to be bounded on the whole interval [0, 7r], we require that 

7cV/1 + # = nTr for some integer n _> 1. 

This yields the following family of  eigenvalues and eigenfunctions: 

sin(n0) 
(4.6) #~ = n 2 - 1 and ~y~(0) - sin(P) ' n _> 2. 

We see by  inspection that ~ has n - 1 zeros on (0, r@ They are given by 

Ok = (k/n)Tc, k = 1 , 2 , . . . , n -  1. 

Note that ~ is odd with respect to 7r/2 if  n is even, and it is even with respect to 

7r/2 if  n is odd. 

In Section 5, the critical points of  ~n play an important role. By inspection, we 

find that 

(i) ~2k has k - 1 critical points on (0, 7r/2) and k - 1 critical points on (~r/2, ~r), 

where k = 1, 2 , . . . .  

(ii) ~2k+l has k - 1 critical points on (0, ~r/2) and k -  1 critical points on (7r/2, 7r), 

as well as one critical point at 0 = ~r/2; k = 1, 2 , . . . .  

We also observe that, thanks to the scaling factor ~ in the numerator  of 

the expression (4.4) for  ~2(0; #), we can say the following about the location of  

critical points. 

L e m m a  4.1.  Let  # > #n. Then the solution ~p(0; #) of  Problem (4.3) has at 

least ra critical points on (0, re/2), where 

TL 
m = - - 1 i f n  is even, 

2 
n - - 1  

m -- if  n is odd. 
2 

In Figure 5, we show ~(0; #) for # =/*5 = 24 and for # > 1'5. 

R e m a r k  4.1.  General  bifurcation theory yields the existence of  a branch of 

solutions of  (4.1), i.e., a pair ()~(s), U(s)) depending on a parameter  s, defined in 

a neighborhood of  s = 0, with ),(0) = -# ,~ /4  and U(0) = [)~(0)] 1/4 (cf. [11], [5], 

and [8]). At the first interesting value )~ = - # 2 / 4  = - 3 / 4 ,  we have an explicit 

description o f  this branch. Specifically, it is given by 

( 3 )  U4 { a(s)( l  +r2) } U2 
3 u(r;s)= a(s)=l+s, - l < s < o c ,  a(8) = - ~ ,  ~2(8) + r2 ' 

where u(r; s) is a solution of  Problem (4.1) expressed in terms of  the radial variable 

r in R 3. 
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Figure 5. The function ~(0; #) for # = #5 = 24 and for # = 30. 
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Next, by analogy with (4.3), we consider the eigenvalue problem for -2~ s3 

on a ball B'  = B~. = {0 < 0 < 0*}, where 0* E (0,~r), with Dirichlet boundary 

condition 

(4.7a) f - & s 3 r  = #r in B~., 

(4.75) ~ r = 0 on OB'o,. 

We find the principal radial eigenfuncfion r = 1 q)~(0) and the corresponding 

principal eigenvalue #~ by adjusting # so that 0* coincides with the first zero of  

~(0; #), i.e., 

~(0;#~) > 0 fo r0  < 0 < 0 "  and ~(0";#~) = 0. 

This means that we require that 

0*vq+.  
This yields for the principal eigenvalue and eigenfuncfion 

71" 

7r2 -(0*)2 and ~ ( 0 )  - sin(~-O) 
(4 .8)  ~ - (0*) 2 sin(0) 

Similarly, higher eigenvalues and eigenfunctions are found by putting 

0 " ~  = jTr, 

In this manner, we obtain 

j = 1 , 2 , . . . .  

J27r2 - (8*)2 and ~ (0) - , j = 1, 2 , . . . .  
(4.9) #~ - (8*) 2 sin(0) 
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5 Pos i t i ve  s o l u t i o n s  on  $3: P r o o f  o f  T h e o r e m  1.6 

In this section, we establish that for every n >_ 1 and every A < - n ( n  + 1), there 

exist n classical solutions Uj, j = 1, 2 , . . . ,  n, of the problem 

(5.1a) S - A s 3 U  = U5 + AU on S 3, 

(5.1b) ~ U > 0 on S 3. 

They are of  the form Uj = uj (0) and have the following properties: 

(a) u~(O) = u~(~r - 0),  0 < 0 < re, 

i.e., they are symmetric with respect to the equator 0 = 7r/2; 

(b) uk(O) E (0,1~11/4); 

(c) given any 1 < j < n, the solution uj has precisely k local maxima and j - 1 

local minima on the interval (0, 7r). 

We emphasize here that numerical evidence suggests that there are also solutions 

for which U(0) > I~,11/4 (see Open Problem 1.2). Here the focus is on those 

endowed with property (b). 

The construction of  these solutions is carried out by means of a shooting 

technique based on ideas developed in [18], [19]. This method uses a continuation 

argument in which the movement  of  critical points is closely followed as the 

shooting parameter varies. 

The analysis is best carried out in terms of  the Emden-Fowler  formulation 

given in Section 2. In this formulation, Problem (5.1)becomes / 1/1  (5.2a) Y" + t2)~-----5 (Y 5 - I,~ly) = O, - oc  < t < oc ,  

(5.2b) y > O, - oe < t < oc, 

(5.2c) lim y(t)  exists. 
t--~-t-c~ 

Note that the finite limits of  y(t)  as t --+ - t -~  correspond to the value of  U at the 

North  pole (t = co) and at the South pole (t = -co) .  

For convenience, we scale y so that the constant solution becomes unity. Thus, 

we write 
y(t)  = IAli/4~(t). 

Then Problem (5.2) becomes 

( 5 . 3 a )  [ y "  + I ~ l a ( t ) f ( y )  = O, - ~ < t < ~ ,  

(5.3b) / Y > 0, - ~ < t < oc, 

(5.3c) lim y(t)  exists, 
t --+-t-cx~ 
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where  we  have omit ted the overbar  again and writ ten 

1 
(5.4) a(t) -- (1 + t2) ~ and f ( y )  = y5 _ y. 

To construct  solutions o f  Problem (5.3), we consider  the "initial value p rob lem"  

(5.5a) f y"  + [Ala(t)f(y) = O, 

(5.5b) ~ y(t)  -+ 7 as t --+ +ec. 

It is wel l -known that for  every 3' C R,  Problem (5.5) has a unique local solution; 

we denote it by  y = y(t) = y(t ,  7). 

Let  7 E (0, 1). Then y starts be low the constant solution, and y"( t )  > 0 as long 

as y < 1. Therefore,  

h = i n f { t : y < l o n ( t ,  c c ) } > - o o  and y( t l )  = 1. 

There  are now two possibilities: either y~ < 0 for all t < h ,  or y has another  critical 

point  

r l  = inf{t : y '  < 0 on (t, t l )}  > - c o  and y ' ( n )  = 0. 

Since y" < 0 when y > 1, it fol lows that i f  71 exists, then y crosses the line y = 1 

again, so that we  can define the point  

t2 = inf{t : y > 1 o n  (t, t l )}  > --00 and y(t2) = 1. 

Next,  we name  the fol lowing critical point, i f  it exists, 

7-2 = inf{t : y' > 0 on (t, t2)} > - o o  and Y'(7-2) = 0, 

and the next  point  o f  intersection 

t3 = sup{t :  y < 1 on (t, t2)} > - o o  and y(ta) = 1. 

We continue this process as long as there exist critical points. Plainly, these points 

all depend on 7; and by  construction, they are ordered according to 

t1(7) > n (7) > t2(7) > 7-2(7) > t3(7) > 7-3(7) > "  

Since y = I is a solution of  equation (5.5a), it fol lows f rom a uniqueness argument  

that y'( tk)  r O. Therefore,  

Y(r2k+l (7), 7) > 1 and Y"(7-2k+l (@, 7) < 0 f o r k  = 1 , 2 , . . . ,  

as long as they exist. Hence  these critical points are all isolated. Similarly, 

y(r2k(7),7)  < 1 f o r k  = 1 , 2 , . . .  
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and 

y"(T2k("/),"/) > 0 if  y(~-2k("/),~/) > 0 f o r k  = 1 , 2 , . . . ,  

so that these critical points are also isolated. Since y"  r 0 at these critical points, 

they depend continuously on % and they cannot  coalesce. In Figure 6, we  show a 

graph of  y(t) and indicate a few of  the critical points defined above. 

v(t)~ 

1.8 

1.6 

T5 
1.4 "7-3 ~/-1 

1.21 

0.8 

0.6 ,..,f 

0.4 

0.2 

0 I 1 I I 

4 2 ~ 2 4 

Figure 6. Solution graph y(t) with critical points T1, 7-2, ~-a, r4 and Ts. 

We give an upper  bound for y(Tk) whenever  r~ C [0, oo). Let  

F(y) = fo p 
1 6 1 2 

f(~) d~ = ~u - ~ v .  

Plainly, F has two zeros: 

y -- 0 and y = a a___ef 31/4. 

L e m m a  5.1.  We have 

0 < Y(~-k) < a ifrk >_ O. 

The proof  of  L e m m a  5.1 makes  use of  the energy function 

1 
(5.6) H(t) - 2[Ala(t~--- ~ y'z(t) + F(y(t)).  

I f  y(t) is a solution of  Problem (5.5), then 

(5.7) H ' ( t )  - a'(t) y,2(t). 
21ala2(t) 



EI,LIPTIC EQUATIONS WITH CRITICAL EXPONENT 295 

Hence, H '  < 0 on I t -  and H '  > 0 on R +. By an elementary computation,  

y'(t, 7) = ~ f ( 7 ) t  -3 + O(t-5) as t --+ +oo, 
O � 9  (5.8) 

r, V 
y(t; 7) = "r - 6 f ( ~ / ) t  -2 + O(t  -4) as t +0% 

and therefore 

(5.9) l l(y(t)) --+ F(7  ) as t --+ +oc. 

P r o o f  o f  L e m m a  5.1.  Since H '  > 0 on (0, 2 )  and rk > 0, it follows that 

~r(Tk) < H(oo); 

hence, because of  (5.9) and the fact that 0 < 7 < 1, 

~(v(T~)) < F(~) < O. 

This means that 0 < y('rk) < el, as asserted. [] 

We now follow these critical points as "y descends from 7 = 1. Thus we begin 

by investigating their existence and location when 7 is close to " / =  1. Let  us write 

(5.10) y(t) = l + ~z(t), 

in which e = 1 - 7 is a small positive number. Then, by standard ODE theory, 

(5.11) z(t) = r + O(e) as e -~ 0, 

uniformly on sets of  the form [T, oo) for any constant T > - 2 ,  where r is the 

unique solution of  the problem obtained from Problem (5.5) by lineafizing around 

y = l :  

(5.12a) / ~'' + 4lAla(t)~ = 0, - c o  < t < +0% 

(5.12b) / ~(t) ~ - 1  as t + +oo. 

Proceeding as for Problem (5.5), we can also define a sequence of  zeros {t 0} and 

critical points {T ~ } for the solution ~ of  Problem (5.12): 

0 t~ > T~ > t~ > Tg(?) > t3('0 > ~.0(?) > . . .  

for as long as they exist. 

Equation (5.12a) is the same as equation (4.3), but then in terms of  the E m d e n -  

Fowler coordinates, and 

(5.13) # = 41A I. 
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Thus, the eigenvalues and eigenfunctions are known explicitly, and since A < O, 

we define 

1 1 sin(n0) 
An = - ~  = - ( n 2 - 1 )  and r  = ~n(0) = s in(0)  ' n = 2~3,~ 

In particular, we know from Section 4 that ~ has n - 1 zeros and n - 2 critical 

points, and that i f  A < An, then ~ has n zeros and n - I critical points. We state this 

as a 1emma. 

L e m m a  5.2.  (a) Le t  n >_ 2, and  A < A~. Then  the solut ion ~(t) o f  P r o b l e m  

(5.12) has zeros t o f o r  k = 1, 2 , . . . ,  n and  critical po in t s  7 ~ f o r  k = 1, 2, . . . ~ n - 1. 

(b) L e t m  >_ 1, a n d  A < A2,~+1 = - r e ( m +  1). T h e n ~  ~ > O f o r k  = 1 , 2 , . . . , m .  

Uniform continuity o f  the solution o f  Problem (5.10) with respect to the initial 

value 7 on sets o f  the form [T, oo) for  any T C R,  shows that the following holds. 

o f o r  s o m e  k > 1. Then  f o r  L e m m a  5.3.  Suppose  that  ~ has  a crit ical po in t  -c k 

"7 < 1 sufficiently close to 1, the crit ical  p o i n t  rk (7) also exists and  

Te (7) -4 7~ as 7 / ~  1. 

As we lower 7, the critical points move  continuously with respect  to 7- In the 

following lemma, we show that they eventually move off  to the region t < 0. Let  

7~ = inf{7 < 1 : rk exists on (% 1)}. 

L e m m a  5.4.  Le t  "ok (7) be a crit ical po in t  wh ich  exists f o r  7 c lose to 1, so that 

7~ is well-def ined.  Then  there exists 6 > 0 such  that  

 k(7) < o ifTe(7;,7 +6). 

P r o o f .  For  simplicity, we omit  the subscript k. 

If-7* = 0, then the assertion follows f rom the continuous dependence on initial 

data. Thus, we assume that 7* C (0, 1). 

Suppose that there exists a decreasing sequence {T j} which converges to 7* 

such that 

T(Tj)  > 0 f o r a l l j  = 1 , 2 , . . . .  

Since the sequence {r(Tj) } is bounded away from +oc and the sequence {y(r j )}  is 

bounded by  Lemma  5.1, it follows that there is a subsequence {Tj' } such that 

r(Tj,) ~ r* and y(r(Tj , ))  -4 y* as j '  ~ o0 
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for some "r* _> 0, and y* E [0, cr]. I f  y* ~ {0, 1}, then it follows f rom the Implicit  

Function Theorem that 7-(7) is welt-defined in a neighbourhood of  7*, which 

contradicts the definition of  7*- I f  V* = 0 or V* = 1, then by  uniqueness, y(t) = 0 

or y(t) = 1 for all t ~ R,  which contradicts the initial condition. 

This completes the proof  of  Lemma  5.4. [] 

We may now turn to the 

P r o o f  o f  T h e o r e m  1.6. We use a continuity argument. I f  A < - n (n  + 1), 

then by  Le mma  5.2, the critical points z g for  k = 1, 2 , . . . ,  n are all positive; and 

hence, by Lemma  5.3, 7-k C R + for k = 1, 2 , . . . ,  n if  3' < 1 is sufficiently close to 

1. We have seen in Lemma  5.4 that as we let "~ decrease, these critical points all 

eventually enter the region {t < 0} and thus cross the axis t = 0. I f  7-k (3') = 0 for  

some value 70, then (i) the solution y(t, ~/0) is symmetric  with respect to t = 0 and 

(ii) it has k spikes. [] 

In Figure 7, we show the one-, two- and three-spike ground states. 

y(t) 
1.4 

1.2 

1 

0.8 

9.6 

0.4 

(}.2 

0 

-4 -3 -2 -1 0 1 2 3 4 
t 

Figure 7. Three ground states, yt(t), y2(t) and y3(t) at )~ = -15 .  

We conclude with a monotonici ty  property. Let  y ~  be a ground state with m 

local maxima at, say, the points t l  < t2 < -.- < tm. Then 

V(tk)>V(tk+l) for  k = 1 , 2 , . . . ,  [ ~ - ~ ]  , m_>3.  

A similar property holds for the local minima. 

This follows f rom the observation that 

H(tk) = F(y(tk)) 
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and that H increases on R + and decreases on R - .  An illustration of  this property 

is given in Figure 3 in the Introduction, where m = 8 and )` = -100. 

6 Proof  of  T h e o r e m  1.4; Part  I: Single-spike solutions 

As in the previous section, it is convenient to prove Theorem 1.4 by analyzing 

Problem (1.1) in the Emden-Fowler  formulation. We scale y as in Section 5, 

equation (5.3a), and divide the resulting equation by I)`1 to obtain 

(6.1a) ( e2y '' + a( t ) f (y)  = 0, T* < t < oc, e 2 --- 1/I),1, 

(6.1b) l Y  > 0 '  T * < t < c ~ ,  

(6.1c) y(T*) = 0 and lira y(t) exists, 
t ----~ o o  

where we recall that 

1 1 
- -  R* 1), a(t) = t2)~- and f ( y )  = y5 _ y. (6.2) 2T* R* (R* > (1 + 

The main result of  this section is 

T h e o r e m  6 . L  Given any T* < O, there exists a constant el > 0 such that 

i f  e < eb Problem (6.1) has at least 2 solutions for  which y(+eo) C (0, 1), each 

solution having exactly one spike. 

The proof of  Theorem 6.1 is based on a shooting method. Given 7 C (0, 1), 

consider the initial value problem 

(6.3a) f e2y '' + a( t ) f (y)  = O, t < o% 

(6.3b) ~ y(t) -+ 7 as t -+ +oo. 

We denote the solution by y = y(t, 7) and define the point 

T(7 ) = inf{t E R :  Y(',7) > 0 on (t, oe)}. 

Plainty, T(7) may  be finite or infinite. Let A be the set of  values of  7 for which 

T(7) is finite: 

= {-y e (o, 1 ) :  r ( -y)  > - ~ } .  

I f 7  C A, then y (T ,7  ) = 0 and, because y = 0 is a solution of  (6.1a), it follows by 

uniqueness that y'(T, 7) > 0. Therefore, by continuous dependence, a neighbor- 

hood of  7 lies in A as well, and T(7 ) depends continuously on 7- Thus, A is an 

open set. Note that Theorem 1.2 implies that T(7 ) < 0. In general, A consists of 

severn connected components (see Section 7). 

The proof proceeds in a series of  steps which we formulate as propositions. We 

first state these three propositions and then give their proofs. 
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Proposition 6.1. For e small  enough there exists a 70 6 A such that the 

solution y(t, 70) o f  Problem (6.3) with initial value 70 has precisely  one spike. 

Let A1 = (71-, 7 +) be the connected component of ,4 which contains the value 

70 defined in Proposition 6.1. 

Proposition 6.2. We have 

Thus, the branch F1 --- {(7,T(7)) : 7 e .41} has vertical asymptotes at 7~. In 

Figure 8, we show the branch F1 of one-spike solutions in the variables r and u. It 

represents the graph of/~* versus 7 = u(0). 
1 . 6  

]~)~/4 

7 = ( 
0 . ~  

/ 

0 ~ " ' - ~ 1  i g i i m i i i i ~ i i n i i i i i m i i H [ i ~ i U H i i U ~ : ~ G  

5 i 0  1 . 5  20 25 30 35 

Figure 8. The branch F1 of one-spike solutions u(r),  depicted in the (R*, u(0))- 

plane for A = -4.  

Proposition 6.2 enables us to define 

T (1) (7) da = ma {T(7) : 7 A1 }. 

Proposition 6.3. 
TO) (.vl -+ 0 as r -+ O. 

It follows from Proposition 6.3 that, given any T* < O, it is possible to find 

r > 0 such that Tm~,,~ E (T*,0) for r < r and hence that F1 intersects the fine 

T = T* at least twice. This yields at least two solutions of Problem (6.t) having 

exactly one spike and thus completes the proof of Theorem 6.1. 
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Proof.  
function 

Proof  o f  T h e o r e m  1.5. The recent result of  Chen and Wei [9] implies that 

if  A < - 3 / 4 ,  then the set A is nonempty  and thus contains an element  3'*- Let 

(3'-, 7 +) be the maximal  component  of  A which contains 7% Then it follows from 

Proposit ion 6.2 that T(7)  --+ oc when 7 -+ 7 i ,  so that if  ITI (or R*) is large enough, 

there exist at least two solutions o f  Problem (6.3) which vanish at t = T. This 

proves Theorem 1.5. [] 

Let  us now prove Propositions 6.1-6.3.  

Proof  o f  Proposit ion 6.1.  We fix a point To < 0. For  e small enough, 

r~ > To; and hence there exists an initial value 70 E (0, 1) such that 

n(7o)  = To. 

Since 70 obviously depends on e, we write 70 = 70(e). 

We wish to show that for  e sufficiently small, the solution y(t, 7o) of  Problem 

(6.3) has a zero T(70) E ( -oc ,  To). We do this in two steps. First, we show that y 

has risen to a sufficiently high level at To, and then we show that the solution hits 

the t-axis. Henceforth,  we write 

y0 = y(T0,  

Since y" < 0 at To, it is clear that y0 > 1. In fact, we show that for  e small enough, 

yo > a, where a = 31/4 is the positive zero of  F(y) = gyl 6 _ 71 y2. 

L e m m a  6.1.  There exist constants a > 0 and eo > 0 such that 

F(yo) > a e for  0 < e < eo. 
f f  

In the proof  of  L e m m a  6.1 and o f  subsequent lemmas,  the energy 

(6.4) H(t) = (e2 /2a(t) ) y'2(t) + F(y(t)  ) 

plays a central role. I f  y(t) is a solution of  equation (6.1a), then 

(6.5) H'(t) - c2 a'(t) 
2a 2(t) y,2(t). 

Hence,  H ~ < 0 on R -  and H '  > 0 on R +. Moreover,  by an elementary computation, 

y'(t, 7) = (1/3e2)f(7) t-3 + O(t-5)  as t --+ +ec ,  
(6.6) 

y(t,~,) = ~ , -  (1/6e2)f(~/)t-2 + O ( t  -4) a s t  ~ + ~ ,  

and therefore 

(6.7) H(y(t))  --+ F(7) as t -~ +co.  
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(6.8) 

or 

where 

We integrate H'(t)  over (To, ec) and use (6.7). This yields 

e 2 fTi ~ a' F(70(e)) - F(yo) = - - ~  -~ y'2(t) dr, 

F(v0)  = J (e )  + F(70(c)) ,  

J(e) clef ~2 fTi~ a t = y ~ {v'(t)} ~ dr. 

For convenience, we split the integration at t = 0, writing 

d(~) = J l ( e )  + J2(e),  

where 

C2 jfOTo al (6.9) Jl(e) = -~7{y'(t)}2dt 

The expression for F(yo) then becomes 

and E2 f0 ~176 al J2(e) = ~- ~ {y'(t)} 2 dr. 

(6.10) F(yo) = Jl(e) + J2(e) + F(70(e)). 

In what follows, we successively estimate the three terms on the fight hand side of  

(6.10). 

L e m m a  6.2. 

P r o o f .  Write 

(6.11) 

Then 

(6.12a) 

(6.12b) 

There exist positive constants A and eo such that 

J1 (e) >_ Ae f o r  0 < e < eo. 

t = To + e8 and y(t) = z(s). 

z"  + a(T0 + es)f(z) = O, fo r  s > O, 

z'(O) = O and z'(s) < O, z(s) > O, for s > O .  

Substitution into the expression (6.9) for J1 (e) yields 

e ~-To/~  a'(To + es) 
(6.13) Jl(e) = 2 -~ a2(T0 +es)  {z'(s)}2ds" 

Let Z(8) be the solution of  the problem obtained from (6.12) by putting e = 0 : 

(6.14a) f Z " +  a(To)f (Z)  = 0 for s > 0, 

(6.14b) l Z'(0) = 0, 
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endowed with the properties 

Z'(s) < O and Z(s) > O f o r s > 0 .  

These properties imply that Z(s) --+ 0 as s --+ c~. It is well-known that Z is unique. 

In order to continue, we need the following result. 

L e m m a  6.3.  We have 

(6.15) z(s) -+ Z(s) and z'(s) -+ Z'(s) ase -+ O, 

uniformly on bounded intervals. 

P r o o f .  Because the family o f  solutions {z(s) : 0 < e < e0} is equicontinuous, 

it follows that 

z(s) --+ Z(s) as e --+ 0 

along a sequence, uniformly on bounded intervals. Since Z is unique, the entire 

family converges to Z as e -~ 0. That z'(s) -+ Z*(s) is proved in a similar 

manner. [] 

It follows f rom Lemma  6.3 that for any L > 0, 

foo L a'(To + cs) a'(To) fo L 
a2(To + es) {z'(s)}2 ds ~ a2(To---- ~ 

Since 

1 l fo-T~ a'(To+cs ) 
J1 (5) = -~ a s (To + es) 

when -To/e > L, it follows that 

lim inf _1 J1 (~) _> 
e--+0 C 

{Z'(s)} 2 ds as e --+ 0. 

1 fo L a'(To + c8) {z'(s)} 2 ds > -~ a2(To + es) {z'(s)}~ ds, 

1 a'(To) fo L 2 a2(To) {Z'(s)} 2 ds > O, 

as asserted. This completes the proof  of  Lem m a  6.2. [] 

Next, we estimate the last term, F('y0(e)), in (6.10). To do that, we need an 

estimate for  70 (e), to be presented in Lemma  6.5. 

L e m m a  6.4.  There exist positive constants/3 and e i such that 

y(O) < e -~/~ for c e (0, ~1). 
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P r o o f .  Fix to c (To, 0). We first show that for  e small  enough, 

(6.16) y( t ,7o(e) )  < 1/2 

Choose so > 0 such that Z(so)  <_ 1/4. 

always possible.  Then, by  L e m m a  6.3, 

fo r t0  < t <  ec. 

Because  Z(0) > 1 and Z(oc) = 0, this is 

y(To + eso) --+ 1/4 as e ~ 0; 

and hence there exists an e2 > 0 such that for  0 < e < e2, we have 

y(To + es0) < 1/2 as well  as To + eso < to. 

Since y is decreasing on (To, ec), it fol lows that i f  e < e2, then 

y(t)  < 1/2 for  to < t < 0% 

as asserted in (6.16). 

Next,  let ~; > 0 be  a constant chosen such that 

(5.17) f ( s )  < - ~ s  f o r 0  < s < 1/2, 

and let ~ be  the solution of  the p rob lem 

(6.18) e2~ '' - ~a ( to )~  = 0 for  It[ < [t0l and 

We c la im that 

(6.19) 

Note that 

v(t) < ~(t) for Itl < to. 

(p(4-to) = 1/2. 

e2y  '' - ,~ a ( t o ) y  = - , ~  a ( t o ) y  - a ( t )  f ( v )  

> - , ~  a ( t o ) u  + a(~-),~V 

= ~{ a(t) - a( to)}y  > 0 for  [t] < Ito], 

because of  (6.17) and because  a(t) > a(to)  for It I < [t0l. Thus, the function 

v = q) - y satisfies 

e2v '' - ~;a(~-)v < 0 for Itl < Itol and v(+to)  > O. 

Hence,  it fol lows f rom the M a x i m u m  Principle that v(t)  > 0, so that y(t)  < ~(t)  

for  Itl _< It0l, as asserted in (6.19). 

Solving Problem (6.18) explicitly, we conclude that 

1 cosh(p t /e )  
y( t)  < for Itl _< I~01, 

2 cosh(plt0 I/e) 
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where # = ~ a(to). In particular, we find that 

y(0) < 1/(2 cosh(~lt0l/e)) < e-.l~01/~. 

This completes the proof of  Lemma 6.4. 

L e m m a  6.5. For e sufficiently small, we have 

I~(~0(e))l _< c'e -2~/~ 

f o r  some positive constant C. 

P r o o f .  In view of  (6.17) we can estimate F by 

(6.20) IF(s)l < (t;/2)s 2 fo r0  < s < (1/2). 

Since y is decreasing on (0, oc), it follows from Lemma 6.4 that 

70(~) < y(0) < e-~/~; 

and it follows from (6.20) that 

IF(7o(e))l < (tcl2)e -2~/~ 

for c small enough. 

Finally, we estimate J2 (e). 

L e n m a a  6.6. There exist positive constants C and  eo such that 

(6.21) J2(e) < Ce-2e  -2~/~, 0 < e < eo. 

P r o o f .  Integration of  equation (6. la) over (t, oe) yields 

f 1 ~ 1 a(s) y(s) ds, - y ' ( t )  = - ~  a ( s ) f ( y ( s ) )  ds < ~ff 

since f ( y )  > - y  for y > 0. Because y(t) < y(0) for t _> 0, we conclude that 

1 ft ~176 [y'(t)l < ~Ty(0) a(s) ds < e-~/~A(t), 

where 

A(t) = a(s) ds. 

]~21US~ 

2e'z Jo a2(t) 

[] 

[] 
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Because 

l a ' ( t ) l  _ 4t t2)4 
a2(t )  (1 + t2) 3 (1 + = 4t (1  + t 2) ,-, 4t  3 

and A(t) = O(t -3) as t --+ co, it follows that 

so that 

(la'(t)l/a~(t)) A2(t) = O(t -3) as t ~ c~, 

as t--+ ~ 

([a'(t)[/a2(t)) Ae(t) 6 LI(O, c~). 

Therefore,  

J2(e)  < Cc  -2  e -2;~/E. [] 

Summariz ing,  we have found that there exist constants A > 0, C > 0 and c0 > 0 

such that 

Jl(c) > Ac, J2(c) < Ce-2 e -ez/~, IF(%(e))I  < Ce -2~/~. 

Using these bounds in (6. l 0), we conclude that there exists a constant  a > 0 such 

that 

F(yo) > c~ c for  0 < c < z0. 

This completes  the p roof  of  L e m m a  6.1. E] 

In the fol lowing lemma,  we comple te  the p roof  o f  Proposi t ion 6.1. 

L e m m a  6.7.  There exists a constant eo > 0 such that i f  0 < c < Co, then 

T(70(c)) > -o~ .  Set y~(t) = y(t, 70(~)) a n d  T~ = T(70(c)). Then we have 

(6.22) ~ y'~ (t) < 0 f o r  To < t < c~, 

[ Y'e (t) > 0 f o r  TE <_ t < To. 

Proof .  Recall  that 

y~(To) > a > 1 and y'~(To) = O. 

Since yJ < 0 as long as y~ > 1, it follows that the graph of  this solution intersects 

the line y - 1, and we can define 

TI,~ = inf{t < To:  yE > 1 on (t, To)} > - c o .  

Plainly, 

(6.23) y'c(Tl,~) > O. 
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Following the argument we used in the proof  of  Lemma 6.4, we find that 

(6.24) ITI,~ - To[ = O(e) as e --+ 0. 

In order to estimate y~(t) for t < 7"1,~, we use the expression 

(6.25) C(t) (ee/2) ,2 =- y~ (t) + a(t)F(y~(t)) .  

If  y~ (t) is a solution of  equation (6.1 a), then 

G ' ( t ) = a ' ( t ) F ( y ~ ( t ) )  < 0  as long a s 0 < y ~ ( t )  < a ,  t < O .  

If we integrate G'(t) over (t, 7'1,~), where t E (T~, TI,~), we find that 

2 t2 (e2/2) y;'2(t) + a(t)F(y~ (t)) > (e /2) y~ (TI,~) for T~ < t < Tie .  

Using once again the fact that F < 0, we conclude that 

y;(t) > y'~(TI,~) forT~ _< t < ~1,~, 

which implies that 

(6.26) 

in view of  (6.23). 

Proposi t ion 6.1. 

r > rl,  - > 

This completes the proof  of  Lemma 6.7 and establishes 
[] 

We now turn to the 

P r o o f  o f  P r o p o s i t i o n  6.2.  Let  ("/_, ~,+) be any connected component  of  A. 

Recall that ~/_ > 0 and that "7-i < 1. Suppose that the assertion of  Proposit ion 6.2 

is false and that there exists a sequence {7,}  which converges to, say, "7_, such 

that T(%~) converges to a point Too > -o0 .  Then, by continuity, ,y_ C A, which 

contradicts the definition of  "7-- Similarly for 2/+. This completes the proof  of 

Proposition 6.2. [] 

We conclude with the 

P r o o f  o f  P r o p o s i t i o n  6.3.  In the proof  of  Proposition 6.1, we introduced an 

arbitrary point To < 0. We may choose this point arbitrarily close to the origin 

t = 0. In the following lernma, we show that by choosing e small enough, we 

can insure that T, is arbitrarily close to To. Together, these observations show that 

Tmax,e. -+ 0 as e --+ 0. 

L e m m a  6.8.  Let To E (-.0% 0), and let Be(t) be the solution o f  Problem (6.3) 

constructed in Lemma 6. 7. Then 

(6.27) I~  - To[ = O(x/~) as e -+ O. 
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P r o o L  Note that 

[To -T~I < IT0 -TI,~J + fTl,~ -T~J. 

Hence,  by (6.24) and (6.26), 

O" t (6.28) ITo - T~ I < /(ly~(T~,~)l ) + O(e) as e --+ 0. 

Thus, it remains to estimate [y'(TI,~)I. This we do with the function H(t)  defined 

in (6.4). Since H '  < 0 on (TI,~, To), it follows that for some positive constants C 

and el ,  

2 > a(Tl,~)F(y,(To)) = {a(To)+O(e)}F(y~(To)) > Ce 

by Le m ma  6.1. Therefore,  

yle(T1 ) > t36 -1/2 f o r 0  < e < el,  

where B is another positive constant. Putting this inequality into (6.28), we obtain 

the estimate (6.27) we set out to prove. [] 

f o r O <  e < e l ,  

7 P r o o f  o f  T h e o r e m  1.4; P a r t  II:  M u l t i - s p i k e  s o l u t i o n s  

In this section, we show that there exist branches of  multi-spike solutions 

similar to the branch o f  single-spike solutions found in Section 6. The analysis of  

such solutions is very similar to the one presented for the one-spike solutions. The 

difference lies in the handling of  the additional spikes. For simplicity, we first take 

n = 2. The general case is almost identical. 

For  convenience,  we restate Theorem 1.4 with n = 2: 

Theorem 7.1.  Given any T* < O, there exists a constant e2 > 0 such that i f  

e < r then Problem (6.1) has at least two solutions with precisely one spike and 

at least two solutions with two spikes. 

We start as in Section 6 and define the set A. But instead of  Proposit ion 6.1 we 

prove 

Proposition 7.1.  Fore small enough, there exists 70 6 A such that the solution 

y(t, 70) of  Problem (6.3) with initial value 7o has precisely two spikes. 

Let  A2 = (72 ,7  +) be the connected component  of  A which contains the value 

70 defined in Proposit ion 7.1. 
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Proposition 7.2. We h a v e  

T ( 7  ) --> - o o  as  ff --+ "/2 i .  

Thus, the branch [`2 = {(7,T(7)) : 7 e A2} has vertical asymptotes at 7 +. In 

Figure 9, we show the graphs of [`1, r2, ra and ['4, in the variables r and u in the 

(R*, u(0))-plane. 

Define 

Proposition 7.3~ 

T(2)  (,-v "1 def max,~,., = m a x { T ( 7 ) :  7 C A2}. 

T(2) (,v~ -~ 0 as  e -+ O. 

The proofs of Propositions 7.2 and 7.3 are identical to those of Propositions 6.2 

and 6.3, so we omit them 

It follows from Proposition 7.3 that we can choose e so small that r~ intersects 

the line T = T* at least twice. 

with two spikes. 

IN1/4 

1. 

7 = ~(o) 

0.! C 

Z 
n i n i 

Figure 9. 

This yields two solutions of Problem (6.1), each 

i i i i u i i i i ~ l M i N I i m I ~ ~* 
40 g0 120 160 

The branches F1, P2, [`a and P4 of one-, two-, three- and four-spike 

solutions u(r) depicted in the (R*, u(0))-plane for A = -17. 

Proof of Proposition 7.1. We fix To E (T*, 0) and choose e so small that the 

second local maximum of the solution ( of Problem (5.12)-- counting from the 

right - -  lies in R+, i.e., ~ > 0. Then, by lowering the value of 3' starting from 1-, 

we find a value of 70 > 0 such that 

(7 . ] )  ~3(70) = To. 
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Plainly, 7o depends on e; as before, we write 70 = 70(e) and rk = 7-k(e). By  

construction, the solution y = y(t,7o(e)) has one local maximum on the interval 

(To, oe). It is the largest critical point of  y, and it is located at 7-1 (e). 

L e m m a  7.1.  We have 

(7.2) 7-1 (e) -+ 0 as e -+ O. 

For the moment ,  let us accept this result and continue with the proof  of  

Proposit ion 7.1. Note that for  all e sufficiently small, 

(7.3) To < 7-2 (e) < n (e). 

We now integrate H'(t)  over (To, r2 (e)) and obtain 

e2 fr2 a' 
(7.4) F(yo) = J(e) + F(y(7-2)), J(e) = 2 JTo ~ (y , )2  dr. 

By an analysis very similar to the one given in Section 6, we show that there exist 

positive constants C1, 6'2 and fl such that d(e) > Cle  and ]F(y(r2(e))[ < C2e ~/~ for  

e small enough. This means that there exists a constant a > 0 such that 

(7.5) F(yo) > ~ 

for small enough r We continue as in Section 6 and show that for  e small, the lower 

bound (7.5) implies that y~(t) > 0 for t < To as long as y(t) >_ O. This implies that 

y has a zero T~ < To for e small enough. This completes the proof  o f  Proposit ion 

7.1. [] 

It remains to prove L e m m a  7.1. 

P r o o f  o f  L e m m a  7.1.  Let 

(7.6) 7-_ = lira inf ~ (e) and 7-+ = lira sup ~ (e), 
~ 0  e~O 

where 7-+ may be infinite and 7-_ > To. 

We first prove that 

(7.7) r_  > 0. 

Suppose to the contrary that To _< 7-- < 0. Then, repeating the argument o f  Section 

6, with To replaced by  T1 (e), we find that for  e small enough, the solution y (t, 3'0 (e)) 

has a zero T~ in a left neighbourhood of  7-_ and is strictly increasing on [T~, T_). 
Since, by Construction, y(t, 7o (e)) has a local maximum at To for every e > O, which 

lies above the line y = 1, this is not possible. This completes the proof  o f  (7.7). [] 
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Next  we prove that 

(7.8) ~-+ < 0. 

Suppose that T+ C (0, oc). Let  71(e) -+ % along a sequence {e~} which tends to O 

as n --+ ee. Integration o f  H '  over (71 (en), ee) yields 

"-2E2 fool at (7.9) F(y(z-l(e)) = J(e) + F(7o(e)), J(e) = _~ff(y~)2 dt, 

where we have suppressed the subscript n. Note that 

e a ' (%)  {Z'(s)} 2 ds as e -+ 0; 
# ( c )  ~ 2 

and, as in Le mma  6.5, F(70(e)) = O(e-Z;V~). Thus, because a'  < 0 on R +, we find 

that for some g > 0 small enough, 

(7.10) F(y(~-I (e)) < - a e  for  0 < e < g, 

where a is some positive constant. 

We show that (7.10) implies that 

(7.11)  3(e) > 0 

for e small enough. Since by construction, ~-3 (e) = To, this contradicts the fact that 

To < 0; and we may conclude that (7.8) holds. 

For  technical reasons, we replace a(t) by the nondecreasing function 

a(t) for  t _> 0, 
g(t) / a(0) for  t _< 0. 

Denote  the solution of  Problem (6.1), with a(t) replaced by ~-(t), y(t) by g(t), and 

its critical points by gk. Plainly, ~(t) = y(t) for  t _> 0; hence, for e small enough, 

~1 (e) = ~-1 (e). The functional 

= + 

is now nonincreasing on the whole of  R.  This means that 

(7.12) F(~(t)) < - a e  for t < 7-~, 0 < e < g. 

Since ~ = y on 1% +, to prove (7.11) it suffices to show that 

(7.13) ~3(e) > 0 
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for e small enough. 

We recall that 

T3 < t 3  < ~ 2  <~2  < T 1 ,  

where tz and t2 are the zeros of  ff on (~z, q ) .  We use Sturm Comparison arguments 

to prove the following estimates: 

L e m m a  7.2.  There  exist  constants  Co > 0 a n d  Co > 0 such that  f o r  0 < e < co, 

(7.14) J'rl(e) - t2(e)l <_ c0~, 

(7.15) It3(~) - Ts(r < c0e, 

(7.16) 172(e) - tz(e)[ < CoO z/4. 

P r o o f .  On the intervals (t2, T1 ) and (T3, tz), we have ff > 1, while on the interval 

(tz, t2), we have ff C (0, 1). The  proofs of  (7.14) - (7.15) and of  (7.16) are therefore 

slightly different, and we deal with them separately. 

P a r t  1: P r o o f  o f  (7o14) - (7 .15) .  We only establish (7.14). The proof  of  

(7.15) is similar. 

We restrict ourselves to the interval (t2, ~-1) and recall that there ff > 1. Put  

= 1 + 7/ and f (y )  = f(~) ,  

so that ~ > 0. For  rl, we then obtain the equation 

(7.17) eer~ '' + -d ( t ) f ( n  ) = O. 

Since f "  > 0 on R and g(t) is nonincreasing on R +, it follows that 

def ~2 
(7.18) -a(t)](n) > - a ( n ) f ' ( 1 ) ~  = ~+ n f o r t < n ,  n > 0 .  

As a comparison function, we use 

= c o s  - 

which is a solution of  the problem 

~2~J, _~ ]r = 0, ~9(7-1 -- 0) = 0, ~9t(71) = 0, 0 = 71-E/2]~+. 

We multiply equation (7.17) by  ~ and integrate over (rl  - 0, T1). This yields after 

two integrations by  parts, in view of  the properties of  qo at ~-1 and 7-1 - 0, 

f,1 (7.19) - e 2 ~ ' ( n  - 0)~(n  - 0) = ~(t){-a( t) f (r l ( t ) )  - k~_~(t)} dr. 
1--0 
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Suppose  that r~(t) > 0 on (rl - 0,r l] .  Then by  (7.18), the integral in (7.19) is 

positive. However,  since ~o~(rl - 0) > 0, the left hand side of  (7.19) is negat ive or 

zero. We conclude that ~ mus t  have a zero on (re - 0, r~), so that 

n (e)  - <  re/2k+. 

~n an entirely similar manner,  one proves  that 

P a r t  2:  P r o o f  o f  (7 .16) .  Here  we restrict our  attention to the interval (33,32), 

where ~ < 1. Observe  that by  (7.12) there exists a constant b > 0 such that 

~(t) > by@ for ta < t < t~ and 0 < e < g, 

for  some small  g > 0. Since f is convex, we have 

f(~)  - f (1)  < f (1)  - f (bv~ ) 1 - bvG " (~ - 1) for  b~/7 < y < 1. 

Because  f (1)  = 0 and f(bv@ ) ~ -bv/J as e --+ 0, it fol lows that f o r e  small  enough, 

f (y )  < 2b v'Ty for  - 1 + by'7 < y < 0. 

Using the fact  that g(t) is nonincreasing,  we conclude that 

(7.20) ~(t)f(r]) < 2bv/eg(t2),? = v/Tk2_~, f o r t e  < t < t2, ~ < 0, 

where  we have put  k 2_ = 2bg(t2). We now use the compar ison  function 

~b(t) = sin \ c3/4 , 

which is the solution of  the p rob lem 

ea/2r ' '  + k~_r = 0, r - tg) = 0, ~ ( ~ )  = 0, where  ,) = rrea/~/k_. 

We mult iply the equation for  q by  ~b and integrate over  the interval (t2 - 0, t2). 

Proceeding as in Part  1, we find that ~ mus t  have a zero on this interval, i.e., 

0 < t 2 ( e )  -- t3 (s  <~ 7 re3 /4 /k - -  �9 

This completes  L e m m a  7.2. [] 

P r o o f  o f  L e m m a  7.1 ,  c o n t i n u e d .  Combin ing  the three bounds  of  L e m m a  

7.2, we conclude that 

~3 = { 'T3(g')  - -  t3 ( 6 ) }  -~- { t3 (s  - -  t2 ( ~ ) }  -{- { t2 (~ ' )  - -  "T I (~ ) }  -[" T1 (~') 

) T 1 (e)  --  CO (2e  -~- e 3/4) f o r  0 < e < e0. 
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Therefore, if ~-+ > 0, then for e small enough, ~a > 0 as well. This proves (7.13), 

and the proof of Lemma 7.1 is complete. [] 

T h e  n-spike  solut ion.  Finally, we turn to solutions with n spikes. They 

are located at the points {r2k-1 : k = 1, 2 , . . . ,  n}. In the construction, we fix 

T2n+l = To; and we show that the remaining spikes all converge to the origin as 

e -+ 0. Specifically, we show that 

limsuprl(e) < 0 and liminf~r2(n_l~_l(e) > 0. 
~ - - , ~ 0  - -  ~ - - + 0  ~ ~ - -  

This can be done with the methods developed in this section. 

This completes the proof of Theorem 1.4. [] 

8 Further  open p r o b l e m s  

Let M be a 3-dimensional compact Riemannian manifold without boundary. 

Consider first the problem 

(8.1a) f --Amu = Au + u 5 in M, 

(8. lb) ~ u > 0 in M, 

where AM denotes the Laplace-Beltrami operator on M. 

Let u2, u3, . . . ,  uk,. . ,  denote the sequence of positive eigenvalues of --AM (the 

first eigenvalue is ul = 0). When M = S3 we keep the notation 0 = #1 < #2 < "'" 

for the radial eigenvalues (see Section 4). 

O p e n  P r o b l e m  8.1. Is it true that for - 3 / 4  < A < 0, the only solution of  the 

problem 

(8.2a) f -As~u = )~u + u 5 in S 3 

(8.2b) ~ u > 0 in S 3 

is the constant solution u = ]AII/47 Same question for the general manifold M 

when -u2/4 < A < O. 

R e m a r k  8.1. After completing this paper, we were informed by Qinian 7in 

and Y. Y. Li that for the sphere S 3, the answer to Open Problem 8.1 is "Yes" and that 

the result is due to Gidas and Spruck [13] (see Theorem B.2 in Appendix B). Their 

argument is quite involved and relies on some remarkable identities. A different 

proof was recently given by Brezis and Li [5] which relies on the method of moving 

planes. Concerning the second part of Open Problem 8.1, which deals with general 

manifolds, it has been established in [5] that for A < 0 and [A[ sufficiently small, 

the only solution of (8.2) is constant. 
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The bifurcation analysis in [5] and [8] suggests that for a generic manifold M, 

nonconstant solutions of (8.2) exist when [A + u2/4[ is sufficiently small, A r - u2/4 

O p e n  P r o b l e m  8.2. Assume  that A < -u2 /4 .  Is there a non-constant  solution 

o f  Problem (& l ) ? Are  there more solutions as A -+ - e c  ? 

Even for the case M = S a, it is not known whether non-constant solutions of 

(8.2) exist for all A E [ -2 , -3 /4 ) .  By Theorem 1.6, they do exist for A < -2.  

Bifurcation analysis (as in [5] and [8]) shows that nonconstant solutions also exist 

for A > -2 ,  provided (A + 2) is sufficiently small. Recall that when A = -3 /4 ,  

there is a whole family of non-constant solutions (see Remark 4.1). 

By analogy with Problem (1.1), let co c M be an open set with smooth boundary 

.and consider the problem 

(8.3a) ( --AMU = Au + u 5 in M \ co, 

(8.3b) 1 u > 0 in M \ co, 

( 8 . 3 c )  u = 0 o n  O(M \ co). 

O p e n  P r o b l e m  8.3. Which domains  co have the property  that a solution o f  

(8~ exists f o r  all A sufficiently large negative ? For such domains, does the number  

o f  solutions increase as A -~ - e c  ? 

In another direction, we have 

O p e n  P r o b l e m  8,4. Assume  that A < -u2 /4 .  Is it true that, f o r  co "sufficiently 

smal l"  in some appropriate sense (capacity ?), there are at least two solutions o f  

Problem (8.3)? More  generally, assume that A < - u 2 k / 4  and co is sufficiently 

small. Are  there at least 2k solutions ? 

The techniques introduced by Coron [10] for "small holes" might possibly be 

useful here. 

Similar questions can be asked if M is a d-dimensional manifold and the power 

5 is replaced by p > (d + 2)/(d - 2). 

Next, we consider the problem 

(8.4a) ( - A v  + # V ( x ) v  = v 5 in B1, 

(8.4b) / v > 0 in B1, 

(8.4c) v = 0 on OB1, 

where p > 0 and V(x )  > 0 for x c B1. 
When V is a radial function, the result of [1], [2], combined with the Pohozaev 

inequality, establishes 
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T h e o r e m  8.1. There  ex i s t s  a so lu t ion  o f  P r o b l e m  ( 8 . 4 ) f o r  # large e n o u g h  i f  

a n d  on ly  i f  

(8.5) r i V ( r )  has  a t  leas t  1 cr i t i ca l  p o i n t  on  (0, 1). 

O p e n  P r o b l e m  8.5, A s s u m e  (8~ D o e s  the  n u m b e r  o f  so lu t ions  o f  P r o b l e m  

(8.4)  increase  as  t~ increases  to inf ini ty? 

I f  r i V ( r )  has a strict maximum, the answer should be "Yes". This is suggested by 

the results in [16] concerning the corresponding Neumann problem; see also the 

earlier paper [ 14]. 

Some conjectures along these lines have been formulated in [1] and [2] 

concerning the same problem on all of  R ~v. 
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