

Available online at www.sciencedirect.com





C. R. Acad. Sci. Paris, Ser. I 338 (2004) 539-543

### Partial Differential Equations

# New estimates for the Laplacian, the div–curl, and related Hodge systems

## Jean Bourgain<sup>a</sup>, Haïm Brezis<sup>b,c</sup>

<sup>a</sup> Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA <sup>b</sup> Analyse numérique, Université P. et M. Curie, BC 187, 4, place Jussieu, 75252 Paris cedex 05, France <sup>c</sup> Department of Mathematics, Rutgers University, Hill Center, Busch Campus, 110, Frelinghuysen Road, Piscataway, NJ 08854, USA

Received and accepted 22 December 2003

Presented by Haïm Brezis

#### Abstract

We establish new estimates for the Laplacian, the div-curl system, and more general Hodge systems in arbitrary dimension, with an application to minimizers of the Ginzburg-Landau energy. *To cite this article: J. Bourgain, H. Brezis, C. R. Acad. Sci. Paris, Ser. I 338 (2004).* 

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

#### Résumé

Nouvelles estimées pour le Laplacien, le système div-rot et autres systèmes de Hodge. On établit de nouvelles estimées pour le Laplacien, le système div-rot et autres systèmes de Hodge en dimension quelconque. On présente une application aux minimiseurs de l'énergie de Ginzburg-Landau. *Pour citer cet article : J. Bourgain, H. Brezis, C. R. Acad. Sci. Paris, Ser. I* 338 (2004).

© 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

#### Version française abrégée

On démontre que l'équation rot Y = g, où g est un champ vectoriel  $g \in L^3(\mathbb{R}^3, \mathbb{R}^3)$ , à divergence nulle, possède une solution Y dans  $L^{\infty}$  avec  $\nabla Y$  dans  $L^3$ . On en déduit, en particulier, l'inégalité

$$\left\|\nabla\left(\frac{1}{|x|}*f\right)\right\|_{3/2} \le c \|f\|_1$$

pour tout  $f \in L^1(\mathbb{R}^3, \mathbb{R}^3)$ , avec div f = 0.

Ces résultats se généralisent au cadre de Hodge pour les formes différentielles en dimension arbitraire. On indique une application à des questions de régularité optimale pour les minimiseurs de l'énergie de Ginzburg-Landau.

E-mail addresses: bourgain@math.ias.edu (J. Bourgain), brezis@ccr.jussieu.fr, brezis@math.rutgers.edu (H. Brezis).

<sup>1631-073</sup>X/\$ – see front matter © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. doi:10.1016/j.crma.2003.12.031

The starting point for this work is the following estimate from [5, Proposition 4].

**Theorem 1.** Let  $\Gamma$  be a closed rectifiable curve in  $\mathbb{R}^3$  with unit tangent vector t and let  $Y \in W^{1,3}(\mathbb{R}^3, \mathbb{R}^3)$ . Then

$$\left| \int_{\Gamma} Yt \right| \leqslant C |\Gamma| \|\nabla Y\|_{3}.$$
<sup>(1)</sup>

The proof in [5] relies on a Littlewood-Paley decomposition and another proof was given recently by Van Schaftingen [8] which uses only the Morrey–Sobolev imbedding.

**Remark 1.** The same proof as in [5] or [8] yields a similar inequality for any fractional Sobolev norm  $W^{s,p}$ , with sp = 3 and

$$|Y|_{W^{s,p}}^p = \iint \frac{|Y(x) - Y(y)|^p}{|x - y|^6}, \quad p > 3,$$

in place of  $\|\nabla Y\|_3$ .

Here is a simple estimate for the div–curl system of the type studied in this Note. Consider in  $\mathbb{R}^3$  the system

$$\begin{cases} \operatorname{curl} Z = f, \\ \operatorname{div} Z = 0 \end{cases}$$
(2)

for a given divergence-free vector field f. It is standard that this system has a solution, namely

$$Z = (-\Delta)^{-1} \operatorname{curl} f.$$

The standard Calderon-Zygmund theory implies that

$$\|\nabla Z\|_p \leqslant C_p \|f\|_p, \quad 1 
(3)$$

Consequently (via the Sobolev imbedding) we have for 1 ,

$$\|Z\|_{p^*} \leqslant C_p \|f\|_p, \quad 1 
(4)$$

with  $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{3}$ . We now turn to the case p = 1. One may easily see that (3) fails for p = 1. Surprisingly, (4) survives for p = 1.

Theorem 2. We have

$$\|Z\|_{3/2} \leqslant C \|f\|_1.$$
(5)

Theorem 2 implies Theorem 1. Indeed, consider the vector-field

 $f = |\Gamma|^{-1} \mathcal{H}_{\Gamma} t,$ 

where  $\mathcal{H}_{\Gamma}$  is the 1-dimensional Hausdorff measure on  $\Gamma$ . Clearly div f = 0. Solve (2) for this f; the corresponding Z satisfies

$$||Z||_{3/2} \leqslant C$$

(here we have ignored the fact that f is not an  $L^1$  function, but is a measure). Next, write

$$|\Gamma|^{-1} \int_{\Gamma} Yt = \int_{\mathbb{R}^3} Y \operatorname{curl} Z$$

540

and thus

$$|\Gamma|^{-1} \left| \int_{\Gamma} Yt \right| \leq \|Z\|_{3/2} \|\operatorname{curl} Y\|_{3}$$

which yields (1).

One may also derive Theorem 2 from Theorem 1 using Smirnov's theorem [7] which asserts that every

 $f \in L^1_{\#} = \left\{ f \in L^1; \operatorname{div} f = 0 \right\}$ 

may be written as a weak limit (in the sense of measures) of combinations of the form

$$\sum \alpha_i \frac{1}{|\Gamma_i|} \mathcal{H}_{\Gamma_i} t_i$$

with  $\alpha_i \ge 0 \forall i$  and  $\sum \alpha_i \le ||f||_1$ .

From this fact and Theorem 1 we obtain

$$\left|\int Yf\right| \leqslant C \|f\|_1 \|\nabla Y\|_3$$

for every  $f \in L^1_{\#}$ .

By Hahn–Banach, this means that for every  $Y \in W^{1,3}$ , curl Y = curl Y' (in the distributional sense) for some Y' controlled in  $L^{\infty}$  (by  $\|\nabla Y\|_3$ ). Theorem 2 follows by duality and a Hodge decomposition.

**Remark 2.** It should be pointed out that the analogue of Theorem 2 for n = 2 fails. Indeed take  $Z = (-x_2/|x|^2, x_1/|x|^2)$  for which curl  $Z = 2\pi \delta_0$ , div Z = 0, while Z is not  $L^2$ .

There is another approach to Theorem 2 via an explicit (but nonlinear) constructive way of obtaining Y'.

**Theorem 3.** Given  $g \in L^3_{\#}(\mathbb{R}^3, \mathbb{R}^3)$  there exists  $Y \in C^0 \cap W^{1,3} \cap L^{\infty}$  satisfying

$$\operatorname{curl} Y = g \tag{6}$$

and

$$\|Y\|_{\infty} + \|\nabla Y\|_{3} \leqslant C \|g\|_{3}.$$

Here and throughout the rest of this Note  $W^{1,p}$  denotes the completion of  $C_0^{\infty}$  with respect to the norm  $\|\nabla f\|_p$ . Theorem 3 resembles (and in fact implies) a result we established in [3] for the divergence equation. In the same way as in [3] one can show that there is no bounded operator  $T: L^3_{\#} \to L^{\infty}$  satisfying curl T = Id.

**Remark 3.** Theorem 3 is stronger than Theorem 2. By duality it is equivalent to a refined version of the theorem where (5) is replaced by

$$\|Z\|_{3/2} \leqslant C \|f\|_{L^{1}+W^{-1,3/2}}.$$
(5')

Another assertion (equivalent to Theorem 2) is

**Corollary 1.** We have, for every  $f \in L^1_{\#}(\mathbb{R}^3, \mathbb{R}^3)$ ,

$$\left\|\nabla\left(\frac{1}{|x|}*f\right)\right\|_{3/2} \leqslant C \|f\|_{1}.$$
(8)

(7)

Thus, consequently, for every  $f \in L^1_{\#}(\mathbb{R}^3, \mathbb{R}^3)$ ,

$$\left\|\frac{1}{|x|} * f\right\|_{3} \le C \|f\|_{1}.$$
(9)

Remark 4. A 'natural' inequality stronger than (8), involving second-order derivatives,

$$\left\|\nabla^2 \left(\frac{1}{|x|} * f\right)\right\|_1 \leqslant C \|f\|_1 \tag{8'}$$

is not true.

**Remark 5.** There are inequalities similar to (8) and (9) in 2-d: for every  $f \in L^1_{\#}(\mathbb{R}^2, \mathbb{R}^2)$ ,

$$\left\|\nabla\left(\log\frac{1}{|x|}*f\right)\right\|_{2} \leqslant C \|f\|_{1} \quad \text{and} \quad \left\|\log\frac{1}{|x|}*f\right\|_{\infty} \leqslant C \|f\|_{1}.$$

**Remark 6.** A stronger form of Corollary 1 asserts that, for every  $f \in (L^1 + W^{-1,3/2})_{\#}$ , (8) and (9) hold with  $||f||_1$  being replaced by  $||f||_{L^1+W^{-1,3/2}}$ .

**Corollary 2.** Every  $f \in L^3(\mathbb{R}^3, \mathbb{R}^3)$  admits a decomposition

$$f = \operatorname{curl} Y + \operatorname{grad} P$$
  
with  $Y \in W^{1,3} \cap L^{\infty}, P \in W^{1,3}$ .

The preceding has a generalization to Hodge-type systems in arbitrary dimension. Denote  $\Lambda^{\ell}$  the space of  $\ell$ -forms on  $\mathbb{R}^n$  ( $0 \leq \ell \leq n$ ). There is the following extension of Theorem 3

**Theorem 4.** For every  $0 < \ell \leq n - 1$ , we have that

$$\mathrm{d}W^{1,n}(\Lambda^{\ell}) = \mathrm{d}(W^{1,n} \cap L^{\infty})(\Lambda^{\ell}).$$

Here *d* denotes the exterior differential operator; see [6] for the notations. Notice that for  $\ell = 0$ , the statement obviously fails (grad *f* for  $f \in W^{1,n}$  is not necessarily equal to grad *g* for some  $g \in L^{\infty}$ ). Also in n = 3, the div-theorem from [3] corresponds to the case  $\ell = 2$ , and Theorem 3 above to  $\ell = 1$ .

There is, in particular, the following corollary of Theorem 4 to Hodge-decompositions generalizing Corollary 2. (We state the result here on a domain M, say a cube for simplicity.)

**Corollary 3.** *Let*  $n \ge 3$ *. Then* 

$$L^{n}(\Lambda^{1}M) = \mathrm{d}W_{0}^{1,n}(\Lambda^{0}M) \oplus \mathrm{d}^{*}(W^{1,n} \cap L^{\infty})(\Lambda^{2}M).$$

This fact is an important ingredient in the proof of

**Theorem 5.** Assume  $n \ge 3$  and fix a boundary condition  $g \in H^{1/2}(\partial M, S^1)$ . Let  $u_{\varepsilon}$  be a minimizer of the Ginzburg– Landau energy

$$E_{\varepsilon}(u) = \frac{1}{2} \int_{M} |\nabla u|^2 + \frac{1}{4\varepsilon^2} \int_{M} (|u|^2 - 1)^2$$

in the class  $\{u \in H^1(M, \mathbb{C}); u = g \text{ on } \partial M\}$ . Then

$$||u_{\varepsilon}||_{W^{1,n/(n-1)}} \leq C \quad as \ \varepsilon \to 0.$$

542

For n = 3, this has been established in [1,2] following an earlier argument from [5]. Corollary 3 permits us to generalize the argument in [1,2] to general dimension n > 3. For n = 2, Corollary 3 (and its consequence for Ginzburg–Landau) fails.

A word about proofs. The key analytical ingredient to obtaining Theorem 4 is the following:

**Theorem 6.** For all  $\delta \xrightarrow{>} 0$ , there is a constant  $C_{\delta}$  such that if  $f \in W^{1,n}(\mathbb{R}^n)$ ,  $||f||_{1,n} \leq 1$  and we fix one of the variables i = 1, ..., n, there exists  $g \in (W^{1,n} \cap L^{\infty})(\mathbb{R}^n)$  satisfying

- (i)  $||g||_{1,n} + ||g||_{\infty} \leq C_{\delta}$ ,
- (ii)  $\max_{j\neq i} \|\partial_j (f-g)\|_n < \delta.$

Notice that one may not take the full gradient in (ii), since that clearly would imply that  $f \in L^{\infty}$ .

The argument is constructive and starts with a Littlewood–Paley decomposition.

Using Theorem 6, one may extend Theorem 2 concerning (2) to rather general first order elliptic systems (see [4]).

#### Acknowledgements

The first author (J.B.) is partially supported by NSF Grant 9801013. The second author (H.B.) is partially supported by an EC Grant through the RTN Program "Fronts-Singularities", HPRN-CT-2002-00274. He is also a member of the Institut Universitaire de France.

#### References

- F. Bethuel, G. Orlandi, D. Smets, On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu, C. R. Acad. Sci. Paris, Ser. I 337 (6) (2003) 381–385.
- [2] F. Bethuel, G. Orlandi, D. Smets, Approximation with vorticity bounds for the Ginzburg–Landau functional, Comm. Contemp. Math., in press.
- [3] J. Bourgain, H. Brezis, On the equation div Y = f and application to control of phases, J. Amer. Math. Soc. 16 (2003) 393–426. Announced in C. R. Acad. Sci. Paris, Ser. I 334 (2002) 973–976.
- [4] J. Bourgain, H. Brezis, in preparation.
- [5] J. Bourgain, H. Brezis, P. Mironescu, H<sup>1/2</sup>-maps into the circle: minimal connections, lifting and the Ginzburg-Landau equation, Publ. Math. IHES, in press.
- [6] T. Iwaniec, Integrability Theory of the Jacobians, Lecture Notes, Universität Bonn, 1995.
- [7] S.K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents, Algebra i Analiz 5 (1993) 206–238 (in Russian); English translation: St. Petersburg Math. J. 5 (1994) 841–867.
- [8] J. Van Schaftingen, A simple proof of an inequality of Bourgain, Brezis and Mironescu, C. R. Acad. Sci. Paris, Ser. I 338 (1) (2004) 23–26.