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1. Introduction 

Let G c ~ 3 be a smooth bounded domain with n = 8G simply connected. In 
[BBM2] we studied properties of 

H 112 (n; S1) = {g E H 112 (!1; ~ 2 ); IYI = 1 a.e. on n}. 
(In what follows, we identify ~ 2 with C.) 
The space W 1•1 n £ 00 shares some properties with H 112 and it is natural to inves-
tigate 

W 1•1 (n; S1 ) = {g E W 1•1 (n; ~ 2 ) ; IYI = 1 a. e. on n}. 
One of the issues that we shall discuss is the question of existence of a lifting 

and, more precisely, "optimal" liftings. If g E W 1•1 (!1;S1) n C0 (!1;S1), then g 
admits a "canonical" lifting cp E W 1•1 (!1; ~) n C0 (!1; ~) satisfying 

(1.1) 

(Since g E C0 and n is simply connected, there exists a cp E C0 such that g = eicp 

and (1.1) holds for this cp.) However, if one removes the continuity assumption, 
then a general g E W 1•1 (!1;S1 ) need not have a lifting cp in W 1 • 1 (!1;~). This 
obstruction phenomenon - which also holds for other Sobolev spaces - is due to 
topological singularities of g and has been extensively studied in [BBMl] ; see also 
earlier results of Schoen-Uhlenbeck [SU] and Bethuel [B2]. 

It has been established by Giaquinta-Modica-Soucek [GMS2] that every map 
g E W 1•1 (!1;S1 ) admits a lifting in BV(n;~). However, as we shall see below, for 
some maps g in W 1•1 we may have 

Min {In IDcpl; cp E BV(n;~) and g = eicp a.e.} >In IVgl, 
where the measure Dcp is the distributional derivative of cp. 
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70 HAIM BREZIS, PETRU MIRONESCU AND AUGUSTO C. PONCE 

As we shall prove (see Corollary 6 below), there is always a c.p E BV(f!; JR) such 
that g = ei'P and 

(1.2) 

The constant 2 in (1.2) is optimal (see Remark 3 below). Inequality (1.2) has 
been extended by Davila-Ignat [DI] to maps g E BV(O; 8 1 ) (here, n can be an 
arbitrary domain in JRN) ; the striking fact is that (1.2), with constant 2, holds in 
any dimension. 

It is natural to study, for a given g E W 1•1(0; 8 1 ), the quantity 

(1.3) E(g) =Min {in IDc.pl ; c.p E BV(f!; JR) and g = ei'P a.e. }· 

Another quantity which is commonly studied in the framework of Sobolev maps 
with values into manifolds (see [BBC], and also [GMS2]) is the relaxed energy 

(1.4) Erel(g) = Inf { l~~~f J I'Vgnl; 9n E coo(n; 8 1) and 9n -t g a.e. }· 

It is not difficult to prove (see Proposition 2) that 

As we shall establish in Section 3, the gap 

(1.5) E(g)- k IV'gl 

can be easily computed in terms of the minimal connection L(g) of the topological 
singularities of g. For example, if g E C00 (0 \ {P,N}; 8 1) n W 1•1, deg(g,P) = +1 
and deg (g, N) = -1, then L(g) is the geodesic distance in n between N and P, 
and the gap (1.5) equals 2nL(g). For the definition of L(g) when g is an arbitrary 
element of W 1•1 (0; 8 1 ), see (1.9) below. The concept of a minimal connection 
connecting the topological singularities has its source in [BCL ]. 

One of our main results is 

THEOREM 1. Let g E W 1•1(0; 8 1 ). We have 

(1.6) E(g)- k IV'gl = 2nL(g). 

The first result of this kind (see [BBC]) concerned the Dirichlet integral J IV' gl 2 

and maps g from a 3-d domain into 8 2 • Inequality ::::; in (1.6) has been known for 
some time (see [DH] and [GMS2]) ; it relies on the dipole construction intro-
duced in [BCL]. More generally, the [BCL] dipole construction has been adapted 
to a large variety of problems involving singularities (points and beyond) ; see 
e.g. [ABO]. The exact lower bound for the relaxed energy is always a more delicate 
issue. For W 1•2 (S3 ; 8 2 ) the corresponding lower bound obtained in [BBC] asserts 
that 
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W 1•1-MAPS WITH VALUES INTO S 1 71 

The same argument applies to W 1·N (SN+l; SN), N ~ 3, and yields 

Erei(g) ~ r IV' giN+ CNL(g), CN > 0. 
JsN+' 

The properties of LP, 1 < p < oo, are heavily used in these arguments. However, 
the space L1 is different and it is not possible to adapt the proof of [BBC] to obtain 
a lower bound of the form 

Erel(g) ~in IV'gl + o:L(g), 

for some a > 0. Such a lower bound can presumably be proved using the theory 
of Cartesian currents of [GMS2] ; however, the precise relationship between the 
formalism of [GMS2] and (1.6) is yet to be clarified. 

We call the attention of the reader to the fact that, in the H 112-setting studied 
in [BBM2], the analog of Theorem 1 is open ; we only have 

Erel(g) -lgl1-1/2 "'L(g). 

A useful quantity which plays a central role in our analysis is g 1\ \7 g. More 
precisely, given g E W 1•1 (0; ~ 2 ), consider the vector field g 1\ 'Vg defined in a local 
frame by 

g 1\ \7 g = (g 1\ gx' g 1\ gy). 

[This is the 2-d analog of the vector field D associated to W 1•2 (B3 ; 8 2 ) maps, orig-
inally introduced in [BCL] ; there is a natural analog of Din the W 1·N (SN+l; SN) 
context, for each N .] 
When g is smooth with values into 8 1 , g 1\\7 g is a gradient map since we may always 
write g = ei'P, so that g 1\ 'Vg = 'Vtp. However, if g E W 1•1(0; S 1 ), then g 1\ 'Vg is an 
L1-vector field which need not be a gradient map, e.g., when g(x) "'(x- a)/lx- al 
near a point a E 0, then g 1\ \7 g is not a gradient map since 

The following result gives an interpretation of L(g) as the "L1-distance" of 
g 1\ \7 g to the class of gradient maps : 

THEOREM 2. For every g E W 1•1(0; 8 1), we have 

(1.7) L(g) = 2_ Inf { lg 1\ 'Vg- V'?jil = 2_ Min { lg 1\ 'Vg- D?jil. 
27r1f;EC""'(fl;ffi.)}n 27r1f;EBV(fl;'R.)}fl 

There are many minimizers ?jJ in (1.7) ; however, at least one of them satisfies 
g = ei'I/J a.e. in fl. 

Let g E W 1•1 (0; ~ 2 ) n L 00 • Following the ideas of [BCL] (or, more specifically, 
[DH] for this particular setting), we introduce the distribution T(g) E V'(O; ~), 
defined by its action on Lip (0; ~) through the formula 

(1.8) (T(g),()= J(gi\'Vg)·'Vj_(, 

where V'j_( = ((y, -(x)· In other words, 

T(g) = -(g 1\ gx)y + (g 1\ gy)x = 2Det ('Vg), 
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where Det (\lg) denotes the distributional Jacobian of g. We then set 
1 

(l.g) L(g) = 27riiV~~9(T(g),(). 

We first state some analogs of the results in [BBM2] : 

THEOREM 3. Assume g E Wl,l(f2;S1). There exist two sequences (Pi),(Ni) 
in n such that I:i IPi - Ni I < 00 and 

(1.10) 

Moreover, 

(1.11) L(g) = lnfLd(Pj,Nj) 
j 

where d denotes the geodesic distance in n, and the infimum is taken over all 
possible sequences (Pi), ( Ni) satisfying 

L(i5pj- <5iil) = L(<5P;- <5NJ in (W1'00 )*. 

Conversely, given two sequences (Pi), (Ni) in n such that I:i IPi- Nil < oo, 
there is always a map g E W 1•1(r2;S1) such that (1.10) holds; this is the "gener-
alized dipole" construction (see [BBM2, Lemma 15] and Lemma 4 below). Fur-
thermore (see Theorem 10) the length of the minimal connection (as given by the 
right-hand side of ( 1.11)) equals Inf { 2~ J I \1 g I } , where the infimum is taken over 
all maps g such that (1.10) holds. 

REMARK 1. When g E BV(r2; 8 1) the analysis of singularities is much more 
delicate because there are, roughly speaking, two types of singularities : the point 
singularities (carrying a degree) and the jump singularities (along "lines"). The 
analog of (1.10) for BV(r2; 8 1) involves these two types of singularities. Here is a 
nice formula due toR. lgnat [12]. Let g E BV(r2; 8 1) and write 

Dg = (Dg)ac + (Dg)c + (Dg)J. 

where ac, C and J stand respectively for the absolutely continuous, Cantor and 
jump part. Recall Vol'pert's decomposition (see [V] and also [AFP]) 

(Dg)J = (g+- g-)vg 1tllJ(g)· 

Set 

(T(g), () = r g A [(Dg)ac + (Dg)c] . \l.L( + r Arg (g:) Vg. \l.L( d1t 1 , 
ln J J(g) g 

where Arg(g+jg-) E (-1r,1r] denotes the argument of g+jg-. Then there exist 
sequences (Pi), (Ni) in r2 such that I:i IPi- Nil < oo and (1.10) holds. We warn 
the reader that, in this formula, some of the Dirac masses located on the jump set 
J(g) do not arise from topological point singularities of g. 

As was already pointed out in [BBM2, Lemma 20], we have 

(T(g), () = 21r L deg (g, f.>.) d.X, 
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W 1 •1-MAPS WITH VALUES INTO S1 73 

where r >. = { x E D ; ( ( x) = >.} is equipped with the appropriate orientation 
(Lemma 20 in [BBM2] is stated for g E H 112 , but the proof also covers the case 
where g E W 1•1 ). Here is a new property 

THEOREM 4. Assume g E W 1•1 (D;S1), and let ( E Lip(D;!R) be such that 

IIY'(IIu'" ~ 1. Then 

(1.12) 11 deg(g, f.>.) I d>. ~ L(g). 

In particular, if ( is a maximizer in (1.9), then 

(1.13) deg(g,f.>.) 2:0 for a.e. >.. 

Finally, we study a notion of relaxed Jacobian determinants in the spirit of 
Fonseca-Fusco-Marcellini [FFM], and also Giaquinta-Modica-Soucek [GMSl]. Given 
g E W 1•1 (D;S1 ), we set (using the same notation as in [FFM]) 
(1.14) 

TV(g) = Inf{liminf { l9nx t\gnyl; gn E c=(D;IR2 ) and gn--> gin W 1•1 }. 
n---l>ex> Jn 

Of course this number is possibly infinite. The following is a far-reaching extension 
of some results in [FFM] 

THEOREM 5. Let g E W 1•1 (D; 5 1). Then 

TV (g) < oo {==} Det (V' g) is a measure. 

In this case, we have 

Det ('Vg) = 1r "2:: (<5p,- <5N,) 
finite 

and 
TV(g) =I Det ('Vg)IM· 

1 
In particular, -TV(g) is an integer which equals the number of topological singu-

1f 
larities of g (counting their multiplicities). 

Here, for any Radon measure J.L, 

IJ.LIM =Sup { (J.L, cp) ; 'P E C(D; IR), II 'PilL= ~ 1 }. 

REMARK 2. The conclusion of Theorem 5 still holds if one replaces the strong 
W 1•1-convergence in (1.14) by the weak W 1•1-convergence. There are numerous 
variants and extensions of Theorem 5 in Sections 4 and 5. 

The paper is organized as follows : 

1. Introduction 

2. Properties ofW1•1(S1;S1) 

3. Properties of W 1•1 (D; 5 1 ). Proofs of Theorems 1-4 

4. W 1•1 (D; 5 1) and Relaxed Jacobians 

5. Further Directions and Open Problems 
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5.1. Some examples of BY-functions with jumps 

5.2. Some analogs of Theorems 1, 3, and 5 for bounded domains in JR2 

5.3. Extensions of Theorems 1, 2, and 3 to higher dimensions 

5.4. Extension of TV to higher dimensions and to fractional Sobolev spaces 

5.5. Extension of Theorem 3 to maps with values into a curve 

2. Properties of W 1•1 ( S1; S1) 

Even though the core of the paper deals with maps from a two dimensional 
manifold n with values into 8 1 , it is illuminating to start with the study of W 1•1-

maps from 8 1 into itself. 
Let g E W 1•1 (81; 8 1 ). There are two natural quantities associated with g ; 

namely, 

(2.1) E(g) =Min {I'Pisv; cp E BV(S\ JR), g = eicp a.e.} 

and 
(2.2) 

Erei(g) = Inf {liminf { l.iJnl; 9n E 0 00 (8\ 8 1), deggn = 0, 9n ~ g a.e.}. 
n-+oo lsl 

It turns out that the two quantities are equal and that they can be easily 
computed in terms of g : 

THEOREM 6. Let g E W 1•1(S1; 8 1 ). Then 

(2.3) Erei(g) = E(g) = { l.iJI + 271"1 deggl. ls1 

PROOF. First equality in (2.3): "~"Let (gn) C 0 00 (81;81 ) be such that 
deg 9n = 0 and 9n ~ g a.e. Then we may write 9n = ei..Pn, with 'l/Jn E 0 00 ( 8 1; lR) 
and fs1 l'¢nl = f81 l.iJnl· Subtracting a suitable integer multiple of 271", we may 
assume ('l/Jn) bounded in W 1•1(S1;JR). After passing to a subsequence, we may 
further assume that 'l/Jn ~ 'ljJ a.e. for some 'ljJ E BV(S1 ; JR). Therefore, 

liminf { l.iJnl = liminf { l'¢nl ~ { 1'¢1 
n-+oo } Sl n-+oo } 51 } 51 

and, clearly, ei'I/J = g a.e. 
":::;" Let 'ljJ E BV(S1 ; JR) be such that 

l'l/Jisv = Min { I'Pisv ; g = eicp a. e.}. 

Consider a sequence ('l/Jn) C C00 (S1;1R) such that 'l/Jn ~ 'l/J a.e. and fs1 l'¢nl ~ 
l'l/Jisv· If we set 9n = ei..Pn, then clearly 9n E 0 00 (81;81), deggn = 0 and 9n ~ g 
a. e. Moreover, 

lim { l.iJnl = lim { l'¢nl = l'l/JIBV· 
n-+oo } Sl n-+oo } 51 
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Second equality in (2.3) : "~" This assertion has been established under slightly 
more general assumptions in [BBM2, Section 4.3]. Here is an alternative approach. 
Let g E W1•1 (S\ 8 1 ). We prove that, if cp E BV(S\ IR) satisfies g = ei"' a.e., then 

(2.4) 

The main ingredient is the chain rule formula for BV-maps, due to Vol'pert ; see 
[V], and also [AFP]. 

CHAIN RULE. Let cp E BV(S1; IR). Recall that there is a representative cp0 of 
cp which is continuous except at (at most) count ably many points an E 8 1 ; in the 
sequel, we take cp to be cp0 itself. Moreover, at the points an, cp admits limits from 
the "right" and from the "left", say cp( an+) and cp( an-). 

Let rp be the distributional derivative of cp, which is a Borel measure. The 
diffuse part of rp is 

n 

Vol'pert's chain rule for BV-maps on a bounded interval (or a closed curve) asserts 
that, ifF E C 1 (1R;IR), then 

F ~ cp = F'(cp)rpd + L (F(cp(an+))- F(cp(an- )))oan· 
n 

A more general version of the chain rule, which is valid in JRN, is stated and ex-
plained in the proof of Lemma 5 in Section 3 below. 

We now return to the proof of (2.4). By the chain rule formula, we have 

g = iei"'rpd + L (ei<p(an+)- ei<p(an-)) Oan· 
n 

Using the continuity of g, we have g(an) = ei<p(an+) = ei<p(an-) for each n. Hence, 

g = iei"' VJd· 
Since g E L1 and ei"' = g a.e., we thus find that 

Consequently, 

0 1 0 0 

g 1\ g = --;-g = 'Pd· 
zg 

(2.5) lriJIM = lriJdiM+IriJ-rpdiM = lgA!JIM+Igl\g-rpiM = r I!JI+Igl\g-riJIM· ls1 
On the other hand, 

(2.6) lg 1\ g- riJIM ~ l(g 1\ g- rp, 1)1 = l(g 1\ g, 1)1 = 271"1 deggl. 

(The last equality is clear when g is smooth ; the case of a general W 1•1-map follows 
by approximation.) Finally, by combining (2.5) and (2.6) we find that 

as claimed. 

I'PIBv ~ r I!JI + 27!"1 deggl, ls1 
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Second equality in (2.3) : ":::;" Since 8 1 \ {1} is simply connected, we may write 
g = eicp on 8 1 \ {1}, for some r.p E W 1•1 (S1 \ {1};~) such that lcf'l = lgl in 8 1\{1}. 
Since r.p is continuous, we have 

r.p(1-)- r.p(1+) = 21rdegg. 

Passing to the full 8 1, we have 

I'PIBv= [ lcf'l+lr.p(1-)-r.p(1+)1= [ lgl+27rldeggl. 
Jsl\{1} ls1 

As a consequence of Theorem 6, we have 

CoROLLARY 1. For every g E W 1•1 (S1 ; S1 ), 

(2.7) E(g):::; 2lglwl,l. 

REMARK 3. The constant 2 in (2.7) is optimal. Indeed, for g = Id, we have 
lglw1,1 = 21r, while E(g) = 47r by Theorem 6. 

It is easy to see from the definition of the relaxed energy that Ere! is lower 
semicontinuous with respect to the pointwise a. e. convergence in 8 1. In view of 
Theorem 6, we have the following: 

COROLLARY 2. Let (gn) C W 1•1 (S1 ; 8 1) be such that gn ---+ g a. e. for some 
gEW1•1 (S1;S1). Then 

(2.8) [ lgl + 27rl deg gl :::; lim inf( [ lgnl + 27rl deg gnl). lsl n-+oo lsl 

REMARK 4. The constant 21r in (2.8) cannot be improved. In fact, assume 
that (2.8) holds with 21r replaced by some C. In particular, for any sequence 
(gn) C coo ( 8 1; 8 1) such that deg gn = 0 and gn ---+ Id a. e., we have 
(2.9) 

27r + C = [ lgl + Cl deggl:::; liminf( [ lgnl + Cl deggnl) = liminf [ lgnl· 
} Sl n-+oo } Sl n-+oo } Sl 

On the other hand, according to Theorem 6, the sequence (gn) can be chosen so 
that 

(2.10) lim { lgnl = { lgl + 27rl deggl = 47r. 
n-+oo lsl lsl 

A comparison between (2.9) and (2.10) implies C :::; 21r. 

Inequality (2.8) still holds if one replaces I deggl and I deggnl by clegg and 
deggn, under the additional assumption that the sequence (gn) is bounded in 
W 1•1 . This assumption is essential ; see Remark 5 below. More precisely, we have 

PROPOSITION 1 ([BBM2]). Let gn,g E W 1•1 (S1 ;S1 ) be such that gn---+ g a.e 
and 

sup lgniBv < oo. 
n 

Then 

(2.11) [ lgl+27rdegg::;liminf( [ lgnl+27rdeggn)· lsl n-+oo lsl 
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We present here an alternative proof based on Corollary 2. 

PROOF. Assume l9niBv ::; C, \1 n. In particular, 

1 1 . c I deggnl ::; -2 l9nl::; -2 · 
7r Sl 7r 

77 

Since deg 9n takes only integer values, after passing to a subsequence, we can assume 
that d = deggn, \1 n. Given c > 0, lethE C 00 (S1;S1) be such that degh = -d 
and h(x) = 1, \1 x E S 1 \B"'(1). Clearly, 

hgn ----+ hg a. e. in 8 1 and deg hgn = 0, \1 n. 

It follows from Corollary 2 that 
(2.12) 

r l.9h + ghl + 27r(degg- d)::; liminf r l.9nh + 9nhl::; liminf r l.9nl + r lhl. 
} Sl n-->oo } 51 n-->oo } 51 } 51 

(2.13) 

Comparison between (2.12) and (2.13) yields 

r 1.91- 2 r 1.91 + 27r(degg- d)::; liminf r l.9nl· ls1 ls1 nB,(l) n-->oo ls1 
Taking c----+ 0, we obtain (2.11). 

An immediate consequence of Proposition 1 is 

COROLLARY 3. Under the assumptions of Proposition 1, we have 

r 1.91::; liminf( r l.9nl- 27rl deggn- deggl). 
} 51 n-->oo } 51 

REMARK 5. Proposition 1 (or, equivalently, Corollary 3) is false without the 
assumption supn l9niBv < oo. Here is an example. Let n 2 1 be a fixed integer. 
Given 0 ::; j ::; n- 1, let aj,n = ~ and Ij,n = [aj,n, aJ+l,n- 2 ~] C R On each 
interval Ij,n, we define fn(t) = 27rj - aj,n· We then extend fn continuously to 
[0, 27r], so that fn is affine linear outside the set uj hn, and fn(27r) = 27r(n- 1). 
By construction, fn is Lipschitz, nondecreasing, and fn(27r)- fn(O) E 27rZ. Note 
that 

J[o, 21r]\ Uij,nl = ; . 
j 
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Set 9n ( 0) = e -if n (B). Then, we have 9n ----. g a.e., where g = Id ; however, 

while 

r 191 + 27rdegg = 471", ls1 

r l9nl + 27rdeggn = 0, v n. ls1 

3. Properties of W 1•1 (0; S1) 

We start with the rigorous definitions of T(g) and of the class Lip mentioned 
in the Introduction. If g E W 1•1 (0; ~ 2 ), we set 

where (x, y) is any orthonormal frame at some point on 0, and we let 

Recall that we defined T(g) by 

(T(g), () =In ((g 1\ 9x)(y- (g 1\ 9y)(x), V ( E Lip (0; ~). 

Here, ( ~~) 1\ ( ~~) = u1 v2 - u2v1 , and the integrand is computed in any orthonor-

mal frame (x, y) such that (x, y, n) is direct, where n is the outward normal to G. 
(This integrand is frame invariant.) The class of testing functions, Lip(O;~), is 
the set of functions which are Lipschitz with respect to the geodesic distance d in 
0. For such a map, we set 

I(ILip = Sup l((x)- ((y)l = ll'\7(llu"'· 
x=f.y d(x, y) 

We next collect some straightforward properties of T(g) and L(g) : 

LEMMA 1. We have 

a) T(g) = -T(g), V g E W 1 • 1 (0;~ 2 ) n L00 ; 

b) T(gh) = T(g) + T(h), V g,h E W 1•1 (0;S1); 

1 
c) L(g) :S 27rl9lwl,lll9lloo, v g E W 1 • 1 (0;~ 2 ) n£00 ; 

d) lfgn, g E W 1 • 1 (0;~ 2 )nL 00 are such thatgn----> gin W 1•1 and ll9nll£oo :S C, 
then L(gn) ----> L(g). 
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W 1•1-MAPS WITH VALUES INTO S1 

PROOF. The only property that requires a proof is d). Since 

I(T(gn), ()- (T(g), ()I::::; In l9niiY'(gn- g)IIY'(I +In l9n- giiY'giiY'(I, 

we have 
IL(gn)- L(g)l::::; Gl9n- 9IW1 •1 + ll(gn- g)Y'gll£1 

and d) follows by dominated convergence. 

Recall the following density result of Bethuel-Zheng [BZ] : 
LEMMA 2. The class 

R = {g E W 1·1(0; S1); g E C00 (0 \A; S1), where A is some finite set} 

is dense in W1·1(0;S1). 

79 

When g E R, a straightforward adaptation of the proof of Lemma 2 in [BBM2] 
yields the following : 

LEMMA 3. lfg E W 1•1(0;S1), g E C 00(0\ {a1, ... ,ak};S1), then 

k 

T(g) = 21f L dj8ar 
j=l 

Here, d1 = deg (g, a1) is the topological degree of g restricted to any small circle 
around a1, positively oriented with respect to the outward normal. Moreover, L(g) 
is the length of the minimal connection associated to the configuration ( a1, d1) and 
to the geodesic distance on 0 (see Remark 6 below). 

REMARK 6. By the definition ofT(g), we have (T(g), 1) = 0. Thus, Z::::7=l dj = 
0, by Lemma 3. Therefore, we may write the collection of points (a1) (repeated with 
multiplicity ldJI) as (P1, ... , P£, N1, ... , N£), where e = ~ I::7=1ldJI ; the points of 
degree 0 do not appear in this list, aj is counted among the points Pi if d1 > 0, and 
among the points Ni otherwise. Then 

This formula first appeared in the context of S2-valued maps ; see [BCL]. 

Using the density of R in W 1·1 (0; S1 ), one can easily obtain Theorem 3 from 
Lemma 3. The analog of Theorem 3 for H 112 (0; S 1 ) was proved in [BBM2], and 
the arguments there also apply to our case. 

A converse to Theorem 3 is also true. Namely, for any sequences (Pi), (Ni) 
in 0 satisfying Li IPi- Nil< oo, one can find g E W 1·1(0;S1) such that (1.10) 
holds ; see [BBM2]. Motivated by this, we state the following : 

OPEN PROBLEM 1. Let 1 < p < 2. Given g E W 1·P(O; S 1 ), can one find (Pi), 
(Ni) such that Li IPi- Nil 2/p-l < oo and (1.10) holds? 
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80 HAIM BREZIS, PETRU MIRONESCU AND AUGUSTO C. PONCE 

OPEN PROBLEM 2. Given two sequences of points (Pi), (Ni) in 0 such that 
Ei I Pi - Ni 12/P-1 < oo for some 1 < p < 2, does there exist some g E W 1·P(O; 8 1 ) 

such that (1.10) holds ? If the answer is negative (as we suspect), what is the 
right condition on the points Pi, Ni (in terms of capacity ?) which guarantees the 
existence of g ? 

We now consider the following class 
-=-----:-:=--=-:-W 1,1 

Y=C00 (0;81 ) ; 

this class is properly contained in W 1•1(0;81) (see Remark 8 below). 
It turns out that maps in Y can be characterized in terms of their distribution 

T(g): 

THEOREM 7. Let g E W 1•1(0; 8 1 ). Then the following properties are equiva-
lent : 

a) g E Y; 

b) T(g) = 0; 

c) there exists cp E W 1•1 (n; JR) such that g = ei'P. 

REMARK 7. When n is a smooth bounded open set in JR2 , the equivalence a) 
{::}b) was established by Demengel [D]. We could adapt the argument in [D] to our 
case, but we present below a different approach, based on an idea of Carbou [C]. 

REMARK 8. Using Theorem 7, it is easy to construct maps in W1•1(0; 8 1) \ Y. 

Assume, e.g., that n = 8 2 , and let g(x,y,z) = ~~::~~~- By Lemma 3, we have 

T(g) = 27r(ON-8s), where N, 8 are the North and South pole of 82 • By Theorem 7, 
this implies that g ~ Y. 

PROOF OF THEOREM 7. 
a)* b) By Lemma 3, we have T(g) = 0 if g E 0 00 (0;81). By Lemma 1, g ~--+ 

T(g) is continuous with respect to W 1·1-convergence, and thus T(g) = 0, V g E Y. 
b) ::::} c) We argue as in [C] ; see also [BBMl]. Let x0 E n and assume that 

n c IR2 near Xo. Since T(g) = 0, the £ 1-vector field 

F = (~~) = (: ~::) 
. fi 8F1 8F2 . h f d" "b . B . f h sat1s es, near XQ, ay = OX 1ll t e sense 0 1Stn UtlOnS. y a vanant 0 t e 

Poincare Lemma (see [BBMl]), we may find a neighborhood w of x0 and a function 
'ljJ E W 1•1(w; JR) such that g = ei(?/>+C) in w, for some constant C (see [BBMl]). 

Consider a finite covering of n with open sets wi such that 

(i) in each Wj we may write g = ei'Pi for some 'Pi E W 1•1(wi; JR) ; 
(ii) win wk is connected, V j, V k. 

In wi n wk, the map 'Pi - 'Pk belongs to W1•1 and is 21rZ-valued ; thus, it has 
to be constant a.e. Since n is simply connected, we may therefore find a map cp in 
W 1•1(0; JR) such that cp- 'Pi is, a.e. in Wj, a constant integer multiple of 21r. In 
particular, g = eicp in n. 
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W 1•1-MAPS WITH VALUES INTO S 1 81 

c)::::} a) Let (47n) c C 00 (0;1R) be such that 47n-+ <pin W 1•1 . Set 9n = ei'Pn. 

Then, clearly, 9n E C00 (0; S1 ) and 9n -+gin W 1•1 . 

REMARK 9. It follows from Theorem 7 that, given a map g E W 1•1 (0;S1 ), 

in general we may not write g = ei'P for some <p E W 1•1 (0; JR) ; consider, for 
example, the map g in Remark 8. However, it follows from Theorem 2 that we 
may write g = ei'P for some <p E BV(O; JR). This conclusion still holds for maps 
g E BV(O;S1); see [GMS2] and [DI]. 

Before starting the proof of Theorem 2, we recall the "generalized dipole" 
construction presented in [BBM2] : 

LEMMA 4. Let g E W 1•1 (0; S1 ). Then, for each c > 0, there is some h = hE: E 
W 1•1 ( 0; S1 ) such that 

(i) lhlw1,1 ::::; 21rL(g) + c ; 

(ii) T(h) = T(g) ; 

(iii) there is a function 'lj! = 'lj!c: E BV(O;JR) such that h = ei1/! a.e. and i'lj!iBv::::; 
47rL(g)+c; 

(iv) meas (Supp'lj!) = meas (Supp (h- 1)) <c. 
PROOF OF THEOREM 2. Let 'lj! E BV(O; JR) and ( E C00 (0; JR) be such that 

IV'(I ::::; 1. Then 

ig 1\ \lg- D'lj!iM(n) ~In (g 1\ \lg). V'.l( -In D'lj!. V'.l( = (T(g), (), 

so that 
1 

27rlg 1\ \lg- D'lj!iM(r!) ~ L(g), 

by taking the supremum over(. 
It thus remains to construct, for each c > 0, a map 'lj! E C 00 (0; JR) such that 

In ig 1\ \lg- V''lj!i::::; 21rL(g) +c. 

Recall that, by Lemma 4, we may find some hE W 1•1 (0; S1) such that T(h) = T(g) 
and 

In IV'hl ::::; 21rL(g) + c/2. 

Set k = gh, so that k E Y, by Lemma 1 and Theorem 7. Write k = ei'P for 

some <p E wl,l and let 'lj! E C 00 (0;JR) be such that r IV'<p- V''lj!l < ~-
ln 2 

Then 

In lg 1\ \lg- V''lj!l =In i(hk) 1\ \l(hk)- V''lj!l =In ih 1\ \lh + k 1\ \lk- V''lj!l 

=in ih 1\ V'h + V'<p- V''lj!l ::::; in ih 1\ V'hi +in IV'<p- V''lj!l 

::::; In IV' hi+~ ::::; 27rL(g) +c. 

In order to complete the proof of Theorem 2, it suffices to prove the following 
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CLAIM. Given g E W 1,1(0; 51), there exists some cp E BV(O;IR.) such that 

(3.1) g = ei'f! a.e. in n 
and 

(3.2) [g 1\ \lg- Dcp[M(n) = 27rL(g). 

In other words, in (1.7), one may restrict the minimization to the class of functions 
'ljJ E BV(O; IR) such that g = ei..P. 

Using the same argument as above, we can write gas 

(3.3) 

where lf!n E W 1,1(0;1R), hn E W 1,1(0;S1) and 

1 [hn[wu ::; 27rL(g) + -. 
n 

Moreover, in view of (iv) in Lemma 4, we can also assume that hn ---+ 1 a.e. 
Note that 

(3.4) 

Subtracting a suitable integer multiple of 27r from lf!n, we may assume that ( lf!n) 
is bounded in W 1,1(0;1R). After passing to a subsequence if necessary, we can find 
cp E BV(O; IR) such that 

lf!n---+ cp a.e. in 0 and 'Vcpn ....':,. Dcp in M(O). 

Since hn ---+ 1 a.e. in 0, it follows from (3.3) that g = ei'f! a.e. in 0. Letting n ---+ oo 
in (3.4), we obtain 

{ [g 1\ \lg- Dcp[ s liminf { [g 1\ \lg- 'Vcpn[::; 21rL(g). Jn n-->oo Jn 
This establishes "::;" in (3.2). The reverse inequality follows trivially from (1.7). 

REMARK 10. Here is an example which shows that a minimizing function '1/J 

in (1.7) is not necessarily a lifting of g (modulo constants). Assume for simplicity 
n is flat and consider a map g having four singular points in n, say pl = (0, 0), 
P2 = (1, 1), N1 = (1, 0) and N2 = (0, 1). Then S = P1N1P2N2 is a square. We 
may write g = ei..p, = ei..P2 , where 

'I/J1 E 0 00 (0 \ ([P1, N1] U [P2, Nz])) and 'I/J2 E 0 00 (0 \ ([P1, N2] U [P2, N1])). 

Then [g 1\ \lg- D'l/;1[ = 21rv1 (resp. [g 1\ \lg- D'l/;2[ = 21rv2), where v1 (resp. v2) 
denotes the 1-dimensional Hausdorff measure on [P1, N1] U [P2, N2] (resp. [P1, N2] U 
[P2, N1]). 
It follows from Theorem 2 that 'l/;1, 'l/;2 are minimizers in (1.7). Moreover, we may 
assume that 'l/;1 = 'l/;2 in the square S. By convexity, the function '1/J = ( 'l/;1 + 'l/;2) /2 
is also a minimizer. Outside S, '1/J is smooth and, clearly, g = aei..P in 0\ S for some 
a E 5 1. One may check that a = -1, and thus 

ei..P = { g, in S _ ' 
-g, inn\ s 
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so that '1/J is not a lifting of g. 

Going back to the general situation, let K be the set of minimizers of the 
problem 

Minjlg/\Vg-D¢1 
1/JEBV 

satisfying J '1/J = 0. Clearly, K is convex and compact in L1(D; JR). 

OPEN PROBLEM 3. Is it true that 

'1/J is an extreme point of K {::::=:} g = ei('I/J+C) for some constant C ? 

Another result, closely related to Theorem 1, is the following : 

THEOREM 8. Let g E W 1•1 (0; 8 1). Then, 

(3.5) Inf { I'P21Bv ; g = ei('Pl +'P2 )' 'Pl E W1•1 (n; JR), 'P2 E BV(D; JR)} = 411" L(g) 0 

The analog of Theorem 8 for the space H 112 (D; 8 1 ) was established in [BBM2], 
and the arguments there can be adapted to our case. The proof we present below 
for "~" in (3.5) is however different. 

PROOF OF THEOREM 8. 

PROOF OF ":S" IN (3.5). With c > 0 fixed and h given by Lemma 4, we 
write g = hk, where k = gh. By Lemma 1 a), b), we have T(k) = 0. Therefore, 
by Theorem 7 we may write k = ei"" for some cp E W 1•1 (D;JR). It follows that 
g = ei(<p+'I/J), with '1/J given by Lemma 4. Inequality ":S" in (3.5) follows from (iii) 
in Lemma 4. 

PROOF OF "~" IN (3.5). We rely on the following 

LEMMA 5. Let cp E BV(D; JR) be such that g = ei"" E W1•1(0; 8 1 ). Then 

ID'PIM(n) = I9IW 1 •1 + lg 1\ Vg- DcpiM(O)· 

PROOF. We split the measure Dcp as 

(3.6) Dcp = (Dcp)ac + (Dcp)c + (Dcp)J, 

where ac, C, J stand respectively for the absolutely continuous, Cantor and jump 
part. Applying Volpert's chain rule to the composition f(cp), where f(t) = eit, we 
obtain 

(3.7) Dg = D(f o cp) = f'(cp)(Dcp)ac + f'(cp)(Dcp)c + j(cp;2 = ~~-) (Dcp)J. 

The meaning of this identity is the following : recall that, for every function cp E 
BV(D), the Lebesgue set of cp is the complement of a set of a-finite 1t1-measure. 
We may assume that cp coincides with its precise representative on the Lebesgue 
set of cp. Since I(Dcp)aci(A) = I(Dcp)ci(A) = 0 whenever 1t1(A) < oo, the first 
two terms in the right-hand side of (3. 7) are well-defined (i.e., independently of the 
choice of the representative of cp). The last term in (3.7) is to be understood as 
follows : the jump set J of cp is a countable union of Lipschitz curves Ci and, at 
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1{1-a.e. point X of Ci, Ci has a normal vector and 'f! has one-sided limits at X along 
the normal direction ; the quantities r.p+ and r.p- stand for the two one-sided limits. 
See [AFP] for a proof of (3.7). 

Since g E W 1·1, it follows that (Dg)c = (Dg)J = 0, so that (Dr.p)c = 0 and 

(3.8) "\lg = J'(r.p)(Dr.p)ac = ig(Dr.p)ac· 

From (3.8), we obtain that 

(3.9) g 1\ "\7 g = -ig "\7 g = (Dr.p )ac· 

Thus 
(Dr.p)J = Dr.p- g 1\ "\lg. 

Since the decomposition (3.6) consists of mutually orthogonal measures, we have 

IDr.pl = I(Dr.p)acl + I(Dr.p)JI = lig"\lgiM(O) + lg 1\ "\lg- Dr.piM(O) 

= l9lw1·1 + lg 1\ "\lg- Dr.piM(n)· 

PROOF OF THEOREM 8 COMPLETED. Write g = ei(cp1 +cp2 ), with 'Pl E W 1•1, 

'P2 E BV. Then, with h = ge-i"'1, we have h = ei"'2 , hE W 1•1 and T(h) = T(g). 
Theorem 2 and Lemma 5 yield 

ID'P21M(n) = lhlw1,1 + lh 1\ "\lh- Dr.p2IM(O) 
~ lhlw1,1 + 2rrL(h) ~ 4rrL(h) = 4rrL(g), 

since 2rrL(h):::; lhlw1,1, by Lemma 1. 

Maps in W 1•1 (0;S1 ) need not belong to H 112(0;S1). However, we have the 
following link between W1•1 and H 112 : 

THEOREM 9. Let g E W1•1 (0;S1 ). Then there exist hE W1•1 (0;S1) n 
H 112 (0; 8 1 ) and r.p E W1•1 (0;JR.) such that g = ei"'h. 

The analog of Theorem 9 for H 112(0; 8 1 ) was established in [BBM2]. 

PROOF. We rely on the following additional property of the maps h = he: 
constructed in Lemma 4 (see [BBM2]) : 

(v) hE H 112 (0; 8 1 ). 

Pick any of the maps has in Lemma 4. Then T(gh) = 0, so that, by Theorem 7, 
we may write gh = eicp for some r.p E W 1•1 (0;JR.). The decomposition g = ei'Ph has 
all the required properties. 

From Theorem 2, we have 

COROLLARY 4. Each g E W 1•1 (0; 8 1 ) may be written as g = eicp for some 
r.p E BV(O; JR.). 

COROLLARY 5 ([GMS2]). For each g E W 1•1 (0;S1 ), one can find a sequence 
(gn) c C00 (0; 8 1 ), bounded in W 1•1 , such that 9n---+ g a. e. 

We now establish 
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PROPOSITION 2. For each g E W 1•1 (0; 8 1 ), we have 

Erei(g) = E(g). 

PROOF. "::::;"Let r.p E BV(O;JR) be such that g = eicp. Let (r.pn) c C 00 (0;1R) be 
such that 'Pn-+ r.p a.e. and In l\7'Pnl-+ l'PlBV· We define Yn = ei<(Jn E C 00 (0;S1 ). 

Then Yn-+ g a.e. and In l\7gnl =In l\7'Pnl-+ l'PlBv, so that "::::;" follows. 
";:::"Let (gn) c C 00 (0;S1) be such that Yn-+ g a.e. and In l\7gnl-+ Erei(g). 

Since 0 is simply connected, we may write Yn = eicpn, with 'Pn E C 00 (0;JR). Since 
In l\7 Ynl = In l\7'Pnl, we may find some r.p E BV(O; JR) such that, after subtracting 
an integer multiple of 271" from 'Pn and up to some subsequence, 'Pn -+ r.p a.e. ; we 
then conclude that l'PlBv ::::; liminf In l\7'Pnl = Erei(g). 

n->oo 

The relaxed energy is also related to the minimal connection L(g). This is the 
content of Theorem 1 : 

(3.10) 

PROOF OF THEOREM 1. Inequality "::::;" in (3.10) was proved in [DH] when 0 
is a smooth bounded open set in JR2 , and their argument could be easily adapted 
to our situation. Here is another way. By Theorem 2, we may find some r.p1 E BV 
such that g = eicp1 and 

lg A \7g- Dr.p1lM = 27rL(g). 

Combining with Lemma 5 yields 

By Proposition 2, we finally get 

For the reverse inequality ";:::" in (3.10), we argue as follows. By Proposition 2, we 
know that 

Erei(g) = lDr.polM 

for some r.p0 E BV(O;JR) such that g = eicpo. By Lemma 5 and Theorem 2, we have 

COROLLARY 6. For each g E W 1•1 (0; 8 1), there is some r.p E BV(O; JR) such 
that g = eicp a. e. and l'PIBv ::::; 2lglwl,l. 

Corollary 6 is a special case of a much more general result of Davila and Ignat 
[DI] which asserts that the same conclusion holds for maps g E BV(O; 8 1 ). 
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PROOF. The corollary follows from Proposition 2, Theorem 1 and the inequal-
ity L(g) ::; 2~ [g[w1.1, 'V g E W 1•1 (0; 8 1 ) (this last estimate is an immediate conse-
quence of the definition (1.9) of L(g)). 

We now present a coarea type formula proved in [BBM2], which relates the 
quantity (T(g), (,) and the degree of g E H 112 (0; 8 1 ) with respect to the level sets 
of (, (in [BBM2] the result is stated for H 112-maps, but it is actually proved for 
W 1•1). More precisely, let(, E C00 (0;JR). If A E lR is a regular value of(,, let 

r>. = {X E 0; (,(x) =A}. 

We orient rA such that, for each X E r,>., the basis (r(x), \7(,(x),n(x)) is direct, 
where n(x) denotes the outward normal to 0 at x. 

Given g E H 112 (0; 8 1 ), the restriction of g to the level set rA belongs to 
W 1•1 c C0 for a.e. A ; this follows from the coarea formula. Therefore, deg (g; r>.) 
makes sense for a.e. A, and r>. is a union of simple curves, say r>. = U/'ji then we 
set 

deg(g;r>.) = Ldeg(g;")'j)· 

In [BBM2], the authors proved that for every g E W 1•1 (0; 8 1 ) we have 

(3.11) (T(g),(,) = 2n l deg(g;r>.)dA. 

We point out that this formula still holds if(, E Lip (0; JR). If we assume in addition 
that [([Lip::; 1, then a simple corollary of (3.11) is the inequality : 

(3.12) 

The main novelty in Theorem 4 is that this estimate remains true if one replaces 
deg (g; r>.) by its absolute value inside the integral in (3.12). 

PROOF OF THEOREM 4. We shall first establish (1.12) for functions g in the 
class n, and then we argue by density. 

Let g En and(, E Lip (0; JR), with [([Lip ::; 1. By Lemma 3, we can find finitely 
many points Pi, Ni such that 

k 

T(g) = 27r L (8pi- 8NJ· 
i=l 

Let A E lR be a regular value of(, such that A =f. (,(Pi), (,(Ni) for any i E {1, ... , k }. 
Then, we have 

so that 
1 k 

deg (g; r>.) = 2 L { sgn [C,(Pi)- C,] - sgn [C,(Ni)- (,] }· 
i=l 
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After relabeling the negative points Ni if necessary, we can assume that L(g) = 
k L d(Pi, Ni)· Let 'Yi be a geodesic arc in n connecting Pi to Ni. Clearly, 

i=l 

~I sgn [((Pi)-(] - sgn [((Ni)- (]I :::; card { x E 'Yi ; ((x) = ,\ }. 
Using the area formula, we obtain 

~I deg (g; f>.)l d,\:::; t, ~card { x E 'Yi ; ((x) =A} d,\ = t, ~' I~~ I :::; L(g). 

This establishes (1.12) for maps g E R. 
For a general g E W 1•1 (D; S1), it follows from Lemma 2 that we can find a 

sequence (gn) c R such that 9n ----+ g strongly in W 1•1 . In particular, by Lemma 1 d) 
we have 

L(gn) ----+ L(g). 
Passing to a subsequence, we may assume that Unlr>- converges to ulr>- in W 1•1 , 

and hence uniformly, for a.e. ,\. Thus, 

deg(gn;f>.)----+ deg(g;f>,) for a.e. ,\. 

Applying Fatou's lemma, we find 

r I deg (g; f>.)l d,\:::; liminf r I deg (gn; f>.)l d,\:::; lim L(gn) = L(g). }R n~oo }JR n~oo 

This proves (1.12). Note that (1.13) follows immediately from (1.12). In fact, if ( 
maximizes (1.9), then 

L(g) = ~ deg (g; r>.) d,\:::; ~I deg (g; f>.)l d,\:::; L(g). 

Therefore, deg(g;f>.) = ldeg(g;f>.)l ~ 0 for a.e. ,\. 

Given two (infinite) sequences of points (Pi) and (Ni) in D such that 
00 

(3.13) L d(Pi, Ni) < oo, 
i=l 

we may introduce the distribution 

(3.14) 

and the number 

(3.15) 

00 

T = 27r L(!5p,- r>NJ in (W1·00 )*, 
i=l 

1 
L =- Max (T,(), 

27r I(ILip:Sl 

where the best Lipschitz constant I(ILip refers to the geodesic distanced in n. The 
distribution T admits many representations, and it has been proved in [BBM2, 
Lemma 12'] (see also [P]) that 

L = Inf { L d(l\, Nj) ; L (!5pj - ()Nj) = L (!5p, - r>NJ in (W1·00 )* }· 
j j i 
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We also recall that if the sequences (Pi), (Ni) consist of a finite number of points 
P1,P2,··· ,Pk, N1,N2, ... ,Nk, then 

k 

(3.16) L = MjnLd(Pi,Na(i)), 
i=1 

where the minimum in (3.16) is taken over all permutations of {1, 2, ... , k }. 
In our next result, we are given points (Pi), (Ni) satisfying (3.13), and we ask 

what is the least "W1•1-energy" needed to produce singularities of degree +1 at the 
points Pi, and degree -1 at the points Ni ; more precisely, we consider the class of 
all maps g in W 1•1 (n; 8 1 ) such that 

(3.17) 

[We know (see Lemma 16 in [BBM2]) that such class of maps g is not empty.] 
The answer is given by 

THEOREM 10. Let Pi, Ni E f2 be such that I:;i d(Pi, Ni) < oo. Then 

(3.18) Inf {In IV'gl; g E W 1•1 (n; 8 1 ) satisfying (3.17)} = 2nL. 

In particular, 

(3.19) 

d(P, N) = 2~ Inf {In IV'gl ; g E W 1•1(n; 8 1), T(g) = 2n(8p- 8N)} 
= 2_ Inf { { IV'gl I g E wl~';'(D\{P,N}; 81), }· 

2n Jn deg (g, P) = +1 and deg (g, N) = -1 

PROOF. Given Pi, Ni as above, we fix some g0 E W 1•1 (n; 8 1 ) such that 

T(go) = T = 2n L(8P;- 8N;). 
i 

By Lemma 4, for each c > 0 we may find a map h E W 1•1 (f2;81 ) such that 
T(h) = T(g0 ) = T and 

L IV'hl ::; 2nL(go) + c = 2nL + c, 

which implies "::;" in (3.18). Inequality "~" in (3.18) follows from Lemma 1 c). 
To prove the second equality in (3.19), it suffices to apply Lemma 15 in [BBM2]. 

In view of Theorem 10, it is natural to define, for every P, N E n, 

p(P,N) = 2~ Inf {[g]w1,1; g E W 1•1 (f2;81), T(g) = 2n(8p- 8N) }· 

Here, [ ]wl,l is a general given semi-norm on W1•1(n; q equivalent to I lwl,l. Of 
course, p depends on the choice of [ Jw1,1. We require from [ Jw1,1 some structural 
properties : 

(P1) [ag]w1,1 = [g]w1,1, V g E W 1•1 (D;C), V a E 8 1 ; 
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(P2) [.9]wl,l = [g]w1,1, 'V g E W 1•1 (f.!; <C) ; 

(P3) [gh]w1.1 :S II9IILoo[h]wl,l + llhll£oo[g]wl,l, 'V g,h E W 1•1 (rl;<C) n L00 . 

It follows easily from (P3) that p is a distance. 

EXAMPLE 1. The semi-norm 

[g]w1.1 =In IY'gl w, 

where w is a positive smooth function defined on n, satisfies (P1), (P2) and (P3). 

EXERCISE. Compute p in this case. 

One may define a new relaxed energy associated to [ Jw1,1 by setting, for every 
g E Wl,l(f.!;Sl), 

Erel(g) = Inf {lim inf[gn]wl,l ; 9n E C00 (rl; 8 1 ), 9n - g a.e.}' 
n->oo 

and also 

L(g) = 2~ Sup {(T(g),(); IC(x)- ((y)l::; p(x,y), v x,y En}· 
We end this section with the following 

OPEN PROBLEM 4. Is it true that, for every g E W 1•1 (f.!; 8 1 ), 

4. W 1•1 (r.!; 8 1) and Relaxed Jacobians 

Given any function g E W 1·P(f.l; JR2 ), with p 2 1, a natural concept associated 
to g is the following 

TVT (g) = Inf {lim inf r I 9nx 1\ 9n y I ; 9n E coo ( n; lR 2) ' 9n - g with respect to T} ' 
n----+oo ln 

for some topology T. 

There are several topologies T of interest. For example, given 1 ::; p < 2 and 
g E W 1•P(f.l;JR2 ), we consider 

TVp,s(g) =TV computed with respect to the strong W 1·P-topology, 
TVp,w(g) =TV computed with respect to the weak W 1·P-topology. 

In the case p = 1, for every g E W 1•1 (f.!; JR2 ), we also define 

TV1,w• (g) =TV computed with respect to the weak* W 1•1-topology. 

In what follows, we are going to work with the weak W 1•1-topology and simply 
write TV for the total variation TV1,w· But we will also state results for TVp,w and 
TVp,s for every 1 ::; p < 2, and for TV1 ,w• ; see Remarks 11 and 13 below. 

Let us start with a simple 
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PROPOSITION 3. Assume g E W1•1 (!J;!R2 ) n £ 00 and TV(g) < oo. Then 
Det (V'g) E M(!J) and 

(4.1) I Det (V'g)IM ~ TV(g). 

Recall that Det (V' g) is the distributional Jacobian of g and that T(g) 
2Det(V'g) (see (1.8)). 

PROOF. Given c > 0, there exists a sequence (gn) c C00 (!J;JR2 ) such that 

(4.2) gn -' g weakly in W 1•1 ' 

(4.3) In lgnx 1\ gnyl ~ TV(g) + c, "'n. 
Let M = llgllu"' and let P: IR2 -+ BM be the orthogonal projection onto BM. Set 
9n = Pgn. It is easy to see (using Dunford-Pettis' theorem) that 9n satisfies (4.2) 
and (4.3). Moreover, by a standard regularization argument, we may assume that 
the functions 9n are smooth. In what follows, we will denote 9n by gn, and so we 
also have 

(4.4) 

We claim that 
gn 1\ V' gn -' g 1\ V' g weakly in £ 1. 

In fact, it suffices to notice that 

which follows from Egorov's and Dunford-Pettis' theorems. Hence 

gnx 1\ gny = ~ [ (gn 1\ gny)x + (gnx 1\ gn)y] 

converges to Det (V'g) in the sense of distributions. We deduce from (4.3) that 
Det (V'g) E M(!J) and that (4.1) holds. 

REMARK 11. The conclusion of Proposition 3 is no longer true if we compute 
the total variation of g with respect to the weak*-topology of W 1•1 , TV1,w•(g). 
In fact, assume g E W 1•1 (!:1; 8 1 ). It follows from Corollary 5 that there exists 
(gn) c C00 (0; 8 1 ) such that gn ~ g in W 1•1 . Since gnx 1\ gny = 0 for each n, we 
conclude that TV1,w• (g) = 0. On the other hand, for some maps gin W 1•1 (0; S 1 ) 

we have Det (V'g) = ~T(g) =f. 0; see Theorem 11 below. A fortiori, the conclusion 
of Proposition 3 fails if T is the strong £ 1-topology (or the convergence pointwise 
a.e.). 

In general, the inequality in (4.1) is strict. This fact was pointed out by an 
example in [M] ; see also [GMSl]. There, the map g E W 1•1 (0; JR2 ) takes its values 
in an eight-shaped curve and satisfies Deg (V' g) = 0 in the sense of distributions, 
while TV(g) > 0. It is therefore remarkable that equality in (4.1) holds whenever 
the map g takes its values in 8 1 . This is the content of our next result, which is 
stronger than Theorem 5 : 
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THEOREM 11. Assume g E W 1•P(f2;S1), 1 :S p < 2, is such that Det(V'g) E 
M. Then there exists a sequence (gn) c C00 (!1; JR2 ) such that 

9n ___. g strongly in W 1·P 

and 

TV(g) = lim { lgnx 1\ gnyl =I Det (V'g)IM· 
n-+oo Jn 

Moreover, in this case, 

Det (V'g) = 1r L (8p,- 8N;). 
finite 

1 
In particular, -I Det (V' g) IM equals the number of topological singularities of g, 

7r 
taking into account their multiplicities. 

REMARK 12. Theorem 11 extends and clarifies some of the results of [FFM]. 
Although in their case n is a smooth bounded domain in JR2 , the above results, 
stated for n = ac, adapt easily to bounded domains ; see Section 5.2 below. 

PROOF OF THEOREM 11. The fact that 

Det (V'g) measure ==> Det (V'g) = 1r L (8p,- ON,) 
finite 

is a consequence of Theorem 3 and a result of Smets [S] ; see also [P]. Let us assume, 
for simplicity, that Det (V' g) = 1r( 8 p - 8 N) ; the argument below still applies to the 
general case. Suppose, in addition, that n is flat and horizontal near P and N. We 
start by defining, near P and N, a map h by setting 

near P, ( x-N)=fl 
h(x)= lx-NI near N. 

For appropriate choices of±, we have deg (h, P) = +1 and deg (h, N) = -1. Then 
h extends to a map in C 00 (!1\ { P, N}; S 1 ) n W 1·P(f2; S 1 ), 1 :::; p < 2. Set 

{ 
h(x), if d(x, P) ~ 1/n and d(x, N) ~ 1/n 

hn(x) = nd(x,P)h(x), if d(x,P) < 1/n 
n d(x, N)h(x), if d(x, N) < 1/n 

Clearly, hn ___. h in W 1·P and 

fnihnx 1\ hnyl = 21!". 

Let k = gh. Since T(k) = 0, we may write k = eicp for some <p E W 1•1 (see 
Theorem 7). Moreover, g, h E W 1•P n £ 00 implies k E W 1•P. From this, we easily 
conclude that <p E W 1•P. 

Let ( <t'n) c coo (!1; JR) be such that <t'n ___. <p in W 1·P. Since a point has zero 
W 1•2-capacity, we may also assume that <t'n(x) = 0 if d(x, P) :::; 1/n or d(x, N) :::; 
1/n. Clearly, gn = hnei'Pn belongs to C00 (!1;1R2 ) and gn ___. g in W 1·P. Since 
gnx 1\ gny = hnx 1\ hny, we obtain 
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which shows that 
TV(g) S I Det (\7g)IM· 

The reverse inequality follows from Proposition 3. 

REMARK 13. Theorem 11 and Proposition 3 imply that, for every p E [1, 2), 

TVp,w(g) = TVp,s(g) = TV(g), V g E W 1•P(n; 8 1). 

We do not know whether the same holds without assuming that g is 8 1-valued : 

OPEN PROBLEM 5. Let g E W 1•1 (n; JR2 ). Is it true that 

TV1,w(g) = TV1,s(g)? 

Assume in addition that g E W 1·P(n; JR2 ) for some 1 < p < 2. Does one have 

TV1,w(g) = TV1,s(g) = TVp,w(g) = TVp,s(g)? 

REMARK 14. The analog of Remark 13 for p 2: 2 is true, but uninteresting. 
Indeed, every g E W1·P(n; 8 1 ), with p 2: 2, is a strong limit in W 1·P of a sequence 
(gn) in C00 (n; 8 1) (see, e.g., [BZ]). Thus, TV(g) = 0 and TVp,w(g) = TVp,s(g) = 0 
for every g E W 1·P(n; S 1 ). 

5. Further Directions and Open Problems 

5.1. Some examples of BV-functions with jumps. 
It is natural to try to extend the above (or part of the above) results to the 

class of maps g in BV(n; 8 1 ), where n = 8G, G c JR3 as in the Introduction. 
Every g E BV(n; 8 1) admits a lifting <p E BV(n; IR) (see [GMS2] and also [DI]). 
Hence, we may define the two quantities E(g) and EreJ(g) as in (1.3) and (1.4), 
and we always have E(g) = EreJ(g). The difficulty starts when we try to find a 
simple formula for E as in Theorem 1. To illustrate the heart of the difficulty, it is 
worthwhile to start, as in Section 2, with the simpler case BV(S1; 8 1 ). 

Clearly, every g E BV(S1; 8 1) admits a lifting <p E BV(S1; IR). Hence we may 
define the two quantities E(g) and EreJ(g) as in (2.1) and (2.2), and we always have 
E(g) = EreJ(g). It is natural to ask for an explicit formula for E(g). For 8 1-valued 
maps, there are two natural ways of defining the BV-norm of g : 

and 

I91Bv = r 191 
ls1 

I9IBVS1 = r (l9acl + l9cl) + L dsl (g(an+ ), g(an- )), 
lsl n 

where d8 1 denotes the geodesic distance on 8 1. It is easy to see that 

I91Bv = Inf {liminf r l9nl; 9n E C00 (S\ IR2 ) and 9n--+ g a.e.}, 
n---+oo Jsl 

I9IBVS1 = Inf {liminf r l9nl; 9n E C00 (S\ 8 1) and 9n--+ g a.e.}. 
n---+oo Jsl 

We also have, for every g E BV(S1; 8 1 ), 

E(g) 2: I9IBVS1 2: I9IBV· 
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Moreover E(g) -lgiBv = 0 {=::::} g E C0 and clegg= 0. R. !gnat [11] has recently 
obtained an explicit formula for E(g) -lgl 8 vs' involving the jumps of g E BV and 
a kind of degree in the sense of Definition 2 below. 

An interesting estimate for E(g) when g E BV is the following 

THEOREM 12. For every g E BV ( S\ 8 1), we have 

(5.1) E(g)::::; 2lgiBV· 

The above result is a variant of a nice theorem of [DI] which asserts that if 
u E BV(U; S1 ), where u is a domain in IRN, then u = ei'P for some r.p E BV(U; IR) 
with i'PIBv ::::; 2lgiBv· The proof of Theorem 12 is a straightforward adaptation of 
the ingenious method in [DI]. Surprisingly, the natural proof of (5.1) - via the 
explicit formula [11] for E(g)- turns out to be quite involved (see [11]) ! 

As we have already pointed out in Remark 3, the constant 2 in Theorem 12 
is optimal in W 1•1 . A less intuitive fact is that the constant 2 is also optimal for 
piecewise constant functions. Here is an example : 

EXAMPLE 2. Fix an integer k 2: 1 and set 

g(B)=ei27rj/k f 2nj () 2n(j+1) 
or k < < k ' j = 0, 1, ... 'k- 1. 

Then 
I91Bv = 2k sin~ 47r 

and E(g) = 4n- y· 
The inequality 

47r 
E(g)::::; 4n- k 

is straightforward ; however, the reverse inequality is more delicate and relies on 
the following lemma whose proof is left to the reader 

LEMMA 6. For every choice of a 1 , ... , ak E Z with L:j CYj = 1, we have 

A striking difference with formula (2.3) is that neither 2_(E(g) - lgl 8 v) nor 
27r 

2_(E(g) -lgl 8 vs') is necessarily an integer. Here is an example: 
27r 

EXAMPLE 3. Let 

{ 
1, 

g( B) = ei27r /3, 
ei47r /3, 

for 0 < () < 2n/3 
for 2n /3 < () < 4n /3 . 
for 4n /3 < () < 2n 

An easy computation shows that 
87r 

E(g) = 3' I91Bv = 3v'3 and I9IBvS' = 2n. 

In fact, it is hopeless (?) to have an analog of Theorem 6 since there is no 
reasonable notion of degree for maps in BV ( 8 1 ; 8 1 ). This is a consequence of 
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THEOREM 13. The space BV(S1 ; S 1 ) is path-connected. 

PROOF. Let <p E BV(S1 ;JR.) be such that g = ei'P. We claim that the map 

(5.2) 

is strongly continuous ; this implies that every map in BV(S\ S 1 ) can be connected 
to 1. 

The continuity ofF in (5.2) follows from 

LEMMA 7. Let f : JR.2 ---+JR. be such that : 

(i) t r--+ f(t,x) is continuous, 'V x E JR.; 

(ii) fx is continuous and bounded. 

Then, for every <p E BV(O; JR.), the map 

t r--+ f(t,<p) E BV(O;JR.) 

is continuous. 

PROOF. It suffices to establish continuity at t = 0. Set F(t) = f(t, t.p). For 
every t, we have F(t) E BV(O;JR.). Let C > 0 be such that lfx(t,x)l S C, 'V t, 'V x. 

Since 
lf(t,x)l S lf(t,O)I + Clxl, 

we find that F(t) ---+ F(O) in L 1 (0) as t ---+ 0. Therefore, it suffices to prove that 
DF(t)---+ DF(O) in M(O). By the chain rule, we have 

DF(t) = fx(t, t.p(x))(Dt.p)d + f(t, t.p+2- f~, <p-) (Dt.p)J. 
t.p -<p 

Thus, IDF(t)l S CID<pl, 'V t. On the other hand, fx(t,<p(x))---+ fx(O,<p(x)) a.e. 
with respect to (Dt.p)d· Moreover, 

f(t, t.p+)- f(t, <p-) f(O, t.p+)- f(O, <p-) ---+ ~~~--~~~ 
t.p+- t.p- t.p+- <p-

a.e. with respect to ( D<p) J. Therefore, 

ID<p(t)- Dt.p(O)IM---+ 0 as t---+ 0, 

by dominated convergence. 

There is however an interesting concept of multivalued degree which associates 
to every g E BV ( S1 ; S1 ) a bounded subset of Z. The starting point is the following 

DEFINITION 1. Let g E BV(I; S1 ), where I is an interval. A canonical lifting 
of g is any map <p E BV(I; JR.) such that 

g = ei'P and E(g) = ID<fJIM(I)· 

The structure of canonicalliftings is quite rigid. In fact, the following holds : 
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THEOREM 14. If 'PI and ip2 are two canonicalliftings of the same map g, then 

<PI- <P2 = 7f L ±b'ai· 
finite 

Moreover, if g E BV n C 0 , then the canonical lifting is uniquely determined modulo 
27f and coincides with a continuous lifting. 

Using canonical liftings, we may define a multivalued degree for all maps in 
BV(SI; SI) : 

DEFINITION 2. Let g E BV ( SI; SI). Assume g is continuous at z E SI. We 
let 

D { ip(z-)-ip(z+) · · ll'f' f · SI\{ }} egi g = 27f ; ip 1s a canomca 1 tmg o g m z . 

Since, clearly, for each canonical lifting we have 

the set Degi g is bounded. It follows from the second part of Theorem 14 that 
Degi g = { deg g} if g E BV n C0 . As another example, let 

g(B) = { 1, 
-1, 

ifO<B<1r, 
if 7f < (} < 27f. 

Then it is easy to see that Degi g = { -1, 0, 1 }. 

We collect below some properties of Degi : 

THEOREM 15. Assume g E BV(SI;SI). Then, 

(a) Degi g is a finite set of successive integers ; 

{b) Degi g is independent of the choice of z. 

Another possible definition of a multivalued degree is the following 

DEFINITION 3. Given g E BV(S\ SI ), we set 

{ 
:3 (gn) c C00 (S\SI) such that gn---+ g a.e.,} 

Deg2 g = d E Z J J . I.Ynl---+ 1.¢1, and deggn = d 

Actually, both definitions yield the same degree : 

THEOREM 16. We have 

Deg := Deg1 = Deg2 . 

Moreover, the function g f---7 Deg g is continuous in the multi valued sense. 

A final interesting property of Deg is that it is "almost always" single-valued : 
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THEOREM 17. Let 

U = { g E BV(S1 ; S 1 ) ; Deg g is single-valued}· 

Then U is a dense open subset of BV(S1 ; S 1 ). 

We omit the proofs of Theorems 14-17 and we refer the reader to [BMP] for 
details. 

5.2. Some analogs of Theorems 1, 3, and 5 for bounded domains in 

Most of the above results admit counterparts in the case where the 2-d manifold 
n is replaced by a bounded, simply connected domain in ~ 2 with smooth boundary. 
To illustrate this, we state the analogs of the main results ; namely, Theorems 1, 3 
and 5. 

Let g E W 1•1 (0; S1) and consider the distribution 

A natural (semi-) metric on fi is given by 

do(x, y) =Min {lx- yj, d(x, 80) + d(y, 80) }. 

Note that, if ( E WJ' 00 (0), then 

We also set 

IC(x)- ((y)l :S 11\i'(IIL=do(x,y), V x,y E fi. 

1 
L(g) = - Max (T(g), (). 

21!' (EW0 (0) 
II'V(IIL= 9 

We then have the following 

THEOREM 3'. There exist sequences (P;), (N;) in fi such that L:; do(P;, N;) < 
oo and 

Moreover, 

where the infimum is taken over all possible representations of T(g). 

With E(g) defined exactly as in (1.3), and Ere1(g) as in (1.4) (where 0 is 
replaced by fi), we have 

THEOREM 1'. For every g E W 1•1(0; S1), 

E(g) = Erel(g) =In j\i'gj + 2nL(g). 

Similarly, defining TV(g) as in (1.14) (with 0 replaced by fi), we also have 
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THEOREM 51• Letg E W 1•1(fl;S1). Then 

TV(g) < oo ~ Det(Vg) E M(fl) = [Co(D)]*. 

In this case, there exist a finite number of points ai E fl and integers di E Z\ {0} 
such that 

k 

Det (V g) = 7r L dibai in [wJ·oo (0) r 
i=1 

and 
k 

TV(g) =I Det (Vg)IM = 1r L ldil· 
i=1 

Theorems 11, 3' and 51 are established in [BMP]. 

5.3. Extensions of Theorems 1, 2, and 3 to higher dimensions. 
Let G c JRN+l, N ?: 2, be a smooth bounded domain and fl = 8G. Given 

u E W 1·N- 1 (fl;sN-1 ), we define the L1-vector field 

where 
Dj = det (Ux 1 , ••. , Uxi_ 1 , U, Uxi+ 1 , ••• , UxN) 

and det refers to the determinant of an N x N matrix ( u is viewed as a vector in 
JRN). 

Set 

We then associate to the map u the distribution 

T(u) = div D(u) = NDet (Vu). 

1 
L(u) =- Max (T(u), (), 

IJN IIY'<:IIL'"' 9 
where IJ N = I sN - 1 1. The relaxed energy is defined by 

Erei(u) = Inf {liminf { IVuniN- 1 ; Un E C 00 (0; sN-1 ) and Un--+ u a.e.}, 
n-->oo Jn 

where I I denotes the Euclidean norm. 

We then have the following analogs of Theorems 1-3 : 

THEOREM 111 • For every u E W 1·N-1(fl; SN- 1), 

THEOREM 211 • For every u E W 1·N-1(fl; SN- 1 ), 

lnf { ID(u)- D(v)l = iJNL(u). 
vEC 00 (!!;SN - 1 Jln 
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THEOREM 311 • For every u E W 1·N-1 (f2;SN- 1 ), there exist sequences (Pi), 
(Ni) inn such that Ei IPi -Nil < 00 and 

T(u) =aN L(OP;- 6NJ· 

For the proofs, we refer to [BMP] ; see also Section VIII in [BCL]. 

5.4. Extension of TV to higher dimensions and to fractional Sobolev 
spaces. 

Let nand u be as in Section 5.3. Set, for u E W 1·N-1(n;sN- 1), 

(5.3) 

TV(u) = Inf{liminf r ldet'Vunl; Un E C00 (0;JR.N) and Un ..__. u in W 1·N-1 }. 
n-+oo Jn 

The analog of Theorem 5 becomes 

THEOREM 511 • Let u E W 1·N-1(0; SN- 1). Then, 

TV(u) < oo ~ Det ('Vu) is a measure 

In this case, we have 

and 
TV(u) = I Det ('Vu)IM· 

REMARK 15. In the definition (5.3), one cannot replace the strong convergence 
in W 1·N-1 by weak convergence when N ~ 3. Indeed, every u E W 1·N-1 (0; sN-1 ) 

is a weak limit in W 1·N-1 of a sequence (un) c C00 (0;sN-1 ), when N ~ 3. 
However, one can replace in (5.3) the strong convergence of Un in W 1·N-1 by the 
weak convergence of Un in W 1·N-1 and the equi-integrability of I'VuniN- 1 (see 
[BMP]). 

We may even go one step further. Let N- 1 < p < oo. In [BBM3] we have 
defined the distribution Det ('Vu) for maps u E W(N- 1)/P,P(f!;SN-1). By analogy 
with the above definitions of TV, set 

TV(u) = Inf {urn inf r I det 'Vunl ; Un E C00 (0; JR.N), Un ..__. u in wCN-1)/p,p}· 
n-+oo Jn 

We have the following 

THEOREM 5111 • Let N -1 < p::::; Nand u E W(N- 1)/P,P(f!;SN- 1 ). Then, 

TV(u) < oo ~ Det ('Vu) is a measure 

and the conclusions of Theorem 511 hold. 

We refer to [BMP] for the proofs of Theorems 5" and 5"'. 

OPEN PROBLEM 6. Does the assertion of Theorem 5"' hold when p > N? 

Another topic to explore is the following: 
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OPEN DIRECTION 7. Very likely, all the results of Sections 3 and 4 extend to 
maps g E W 1•1 ( SN; S 1), N ~ 3. For example, when N = 3, point singularities are 
replaced by curves ; the analog of L(g) is the area of a minimal surface spanned by 
these curves and the analog of TV(g) is their total length. Some useful tools may 
be found in [ABO]. 

5.5. Extension of Theorem 3 to maps with values into a curve. 
Let G c ~ 3 be a smooth bounded domain with n = 8G simply connected. 

Assume r c ~ 2 is a smooth curve, with finitely many self-intersections. We then 
define 

W 1•1(!1;r) = {g E W 1 • 1 (!1;~ 2 ); g(x) E r for a.e. X E !1 }· 

Given a map g E W 1•1 (!1;r), we define the distribution T(g) exactly as in (1.8). 
We denote by A1, ... , Ak the bounded connected components of ~ 2 \r. We then 
have (see [BMP]) : 

THEOREM 31111 • Given g E W 1•1 (!1; r), there exist sequences (Pi,j), (Ni,j) in 
n, with j = 1, ... , k, such that l:i,j IAjl d(Pi,}• Ni,j) < oo and 

k 

(5.4) T(g) = 2 ~)Ajl L (8Pi,j- 8Ni,j). 
j=l 

There are many open directions here : 

1) Does Theorem 3"" remain valid for any smooth (or even rectifiable) curve, with-
out assuming that the number of self-intersections of r is finite ? 

2) What are the counterparts of Theorems 1, 2, and 5 in this general setting ? 
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