HOW TO RECOGNIZE CONSTANT FUNCTIONS. CONNECTIONS WITH SOBOLEV SPACES

Haïm Brezis

Dedicated to Mark Visik with esteem and friendship

1. Introduction

Most of the ideas in this paper are coming from a series of recent collaborations with J. Bourgain, Y. Li, P. Mironescu and L. Nirenberg (see J. Bourgain, H. Brezis and P. Mironescu [1], [2], [3], [4], H. Brezis and L. Nirenberg [1], H. Brezis, Y. Li, P. Mironescu and L. Nirenberg [1]). However we will adopt here on slightly different presentation and provide some simplified proofs.

The starting point is the following

Proposition 1. Let Ω be a connected open set in \mathbb{R}^N and let $f:\Omega\to\mathbb{R}$ be a measurable function such that

(1)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|}{|x - y|^{N+1}} dx \, dy < \infty,$$

then f is a constant.

The original motivation for such a proposition was twofold:

(i) Uniqueness of lifting. Given a (measurable) function $u: \Omega \to \mathbb{C}$ such that |u| = 1 a.e., there are many liftings φ , i.e., $u = e^{i\varphi}$. If φ_1, φ_2 are 2 liftings then

$$k(x) = \frac{1}{2\pi} (\varphi_1(x) - \varphi_2(x)) : \Omega \to \mathbb{Z}.$$

Under further assumptions one may hope to prove that k is a constant function. For example, if φ_1 , φ_2 are continuous and Ω is connected, then k is constant. The message I wish to convey is that the continuity assumption can be replaced by a different type of condition, such as (1), which is much more natural in the framework of Sobolev spaces (see Remark 3).

(ii) A degree theory for classes of discontinuous maps. The possibility of defining a degree for maps in Sobolev spaces (see H. Brezis and J.M. Coron [1], H. Brezis, Y. Li, P. Mironescu and L. Nirenberg [1]), is based on the fact deg $h_t(\cdot)$ remains constant along a homotopy $h_t(\cdot)$, as t varies in [0,1] (or more generally in a connected parameter space Λ). Such a conclusion holds possibly in situations where the dependence in t need not be continuous.

Remark 1. The conclusion of Proposition 1 is easy to state, but I do not know a direct, elementary, proof. Our proof is not very complicated but requires an "excursion" via the Sobolev spaces.

Remark 2. The connectedness assumption is of course needed. The conclusion of Proposition 1 still holds if in (1) N+1 is replaced by $q \ge N+1$. Indeed, it suffices to prove Proposition 1 when Ω is a ball B (and complete the general case via connectedness); then

$$\frac{1}{|x-y|^{N+1}} \le \frac{C}{|x-y|^q} \qquad \forall x, y \in B.$$

(However the conclusion still holds in some non connected domains, for example $\Omega = G \setminus \Sigma$ where G is connected and Σ is closed with meas $\Sigma = 0$. It would be interesting to study non connected domains where the conclusion of Proposition 1 holds).

On the other hand, if in (1) N+1 is replaced by q < N+1, then the conclusion fails. Indeed, for any Lipschitz function on B one has

$$\int_{B} \int_{B} \frac{|f(x) - f(y)|}{|x - y|^{q}} dx dy \le C \int_{B} \int_{B} \frac{dx dy}{|x - y|^{q - 1}} < \infty$$

since q < N + 1.

There are many consequences and variants of Proposition 1. Here are a few.

Corollary 1. Assume Ω is a connected open set in \mathbb{R}^N , and let $f:\Omega\to\mathbb{Z}$ be a measurable function such that

(2)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+1}} dx \, dy < \infty,$$

for some $1 \leq p < \infty$, then f is a constant.

Proof. Observe that

$$|f(x) - f(y)|^p \ge |f(x) - f(y)|$$

since $f(x) - f(y) \in \mathbb{Z}$.

Remark 3. When p > 1, condition (2) says that f belongs to the fractional Sobolev space $W^{s,p}$ (see e.g. Adams [1]) with s = 1/p. Therefore, we may assert that any function in $W^{s,p}(\Omega;\mathbb{Z})$ with $sp \geq 1$ is a constant. Note that the condition $sp \geq 1$ is considerably weaker than the condition sp > N which implies (via the Sobolev embedding theorem) that f is continuous. Corollary 1 is originally due to R. Hardt, D. Kinderlehrer and F.H. Lin [1] (Lemma 1.1) when p = 2 and s = 1/2 (they attribute it to Wiener when N = 2). Bethuel and Demengel [1] had obtained a similar conclusion under the stronger assumption sp > 1.

Corollary 2. Assume Ω is a connected open set in \mathbb{R}^N and A is any measurable subset such that

$$\int_{A} \int_{c_{A}} \frac{dx \, dy}{|x - y|^{N+1}} < \infty$$

then either meas(A) = 0 or $meas(\Omega \backslash A) = 0$.

It suffices to apply Proposition 1 to $f = \chi_A$, the characteristic function of A. Note that in (3), (N+1) is again optimal. If A is any subset of Ω with smooth boundary, then (3) holds if (N+1) is replaced by any q < N+1 (it suffices to consider the case where ∂A is flat and to make an explicit computation).

Now some variants of Proposition 1.

Proposition 2. Assume Ω is a connected open set in \mathbb{R}^N and $f:\Omega\to\mathbb{R}$ is a measurable function such that

(4)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+p}} dx \, dy < \infty,$$

for some $1 \le p < \infty$, then f is constant.

[Proposition 1 corresponds to the case p = 1].

Still a further generalization

Proposition 3. Assume Ω is a connected open set in \mathbb{R}^N and $f:\Omega\to\mathbb{R}$ is a measurable function such that

(5)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \psi(|x - y|) dx \, dy < \infty,$$

where $p \geq 1$ and $\psi \in L^1_{loc}(0, \infty)$, $\psi \geq 0$ satisfies

(6)
$$\int_0^1 \psi(r)r^{N-1}dr = \infty,$$

then f is a constant.

[Proposition 2 corresponds to the case $\psi(r) = r^{-N}$].

Here is one important generalization of Proposition 2.

Proposition 4. Assume Ω is a connected open set in \mathbb{R}^N and $f:\Omega\to\mathbb{R}$ is a measurable function such that

(7)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+p-\varepsilon}} dx \, dy = o\left(\frac{1}{\varepsilon}\right) \, as \, \varepsilon \to 0,$$

i.e.,

(7')
$$\lim_{\varepsilon \to 0} \varepsilon \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N + p - \varepsilon}} dx \, dy = 0$$

for some $p \geq 1$, then f is a constant.

Remark 4. Assumption (7) is clearly much weaker than (4) (when Ω is bounded) which says that

$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+p-\varepsilon}} dx \, dy = 0$$
(1) as $\varepsilon \to 0$,

On the other hand (7) is optimal since for any Lipschitz function f on Ω

(8)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+p-\varepsilon}} dx \, dy = 0 \left(\frac{1}{\varepsilon}\right)$$

because

$$\int_0^1 \frac{1}{r^{N-\varepsilon}} r^{N-1} dr = \frac{1}{\varepsilon}.$$

Here is a final generalization, which brings us closer to the connection with Sobolev spaces.

Theorem 1. Assume Ω is a connected open set in \mathbb{R}^N and $f:\Omega\to\mathbb{R}$ is a measurable function. Let $(\rho_{\varepsilon})_{\varepsilon>0}$ be a sequence of radial mollifiers, i.e.

(9)
$$\rho_{\varepsilon} \in L^1_{loc}(0, \infty), \quad \rho_{\varepsilon} \ge 0,$$

(10)
$$\int_{0}^{\infty} \rho_{\varepsilon}(r) r^{N-1} dr = 1 \qquad \forall \varepsilon > 0,$$

(11) for every
$$\delta > 0$$
, $\lim_{\varepsilon \to 0} \int_{\delta}^{\infty} \rho_{\varepsilon}(r) r^{N-1} dr = 0$.

Assume that, for some $p \geq 1$,

(12)
$$\lim_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy = 0.$$

Then f is a constant.

Note that Proposition 4 is a consequence of Theorem 1 when choosing

$$\rho_{\varepsilon}(r) = \begin{cases} \varepsilon r^{-N+\varepsilon}, & r < 1\\ 0, & r > 1. \end{cases}$$

And Proposition 3 is also a consequence of Theorem 1 when choosing

$$\rho_{\varepsilon}(r) = \begin{cases} 0 & \text{if } r < \varepsilon \\ a_{\varepsilon}\psi(r) & \text{if } \varepsilon < r < 1 \\ 0 & \text{if } r > 1, \end{cases}$$

where

(13)
$$a_{\varepsilon} = \left(\int_{\varepsilon}^{1} \psi(r) r^{N-1} dr \right)^{-1} \to 0 \quad \text{as } \varepsilon \to 0.$$

Note that, in view of (5),

$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy \le C a_{\varepsilon} \to 0 \text{ as } \varepsilon \to 0, \text{ by (13)}.$$

The proof of Theorem 1 involves an excursion into Sobolev spaces which we will now describe.

2. A new characterization of Sobolev spaces

For simplicity, we start with the case of all of \mathbb{R}^N . Let $f \in L^p(\mathbb{R}^N)$, $1 . It is well-know (see e.g. H. Brezis [1], Proposition IX.3) that if <math>f \in W^{1,p}(\mathbb{R}^N)$ then

(14)
$$\int_{\mathbb{R}^N} |f(x+h) - f(x)|^p dx \le |h|^p \int_{\mathbb{R}^N} |\nabla f|^p dx \quad \text{for every } h \in \mathbb{R}^N.$$

And conversely, if $f \in L^p(\mathbb{R}^N)$ and if there exists a constant C such that

(15)
$$\int_{\mathbb{R}^N} |f(x+h) - f(x)|^p dx \le C|h|^p \text{ as } h \to 0,$$

then $f \in W^{1,p}(\mathbb{R}^N)$.

When $p=1, W^{1,1}$ should be replaced by BV, the space of functions in L^1 who's derivatives (in the sense of distributions) are bounded Radon measures; thus $f \in BV$ if and only if

(16)
$$\int_{\mathbb{R}^N} |f(x+h) - f(x)| dx \le C|h| \text{ as } |h| \to 0,$$

and then (16) holds for all $h \in \mathbb{R}^N$ with $C = \int |\nabla f| dx$. In particular, if ρ_{ε} satisfies (9), (10) and $f \in W^{1,p}$, we have

(17)
$$\int_{\mathbb{R}^N} \rho_{\varepsilon}(|h|) dh \int_{\mathbb{R}^N} \frac{|f(x+h) - f(x)|^p}{|h|^p} dx \le C \text{ as } \varepsilon \to 0,$$

since

$$\int_{\mathbb{R}^N} \rho_{\varepsilon}(|h|) dh = \sigma_N \int_0^\infty \rho_{\varepsilon}(r) r^{N-1} dr = \sigma_N$$

where $\sigma_N = |S^{N-1}|$.

Changing variables in (17) yields

(18)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx \, dy \le C \text{ as } \varepsilon \to 0.$$

Similarly, if $f \in BV$, we have

(19)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f(x) - f(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy \leq C \text{ as } \varepsilon \to 0.$$

The heart of the matter is that (18) (resp. (19)) gives a characterization of $W^{1,p}$ when p > 1 (resp. BV).

Theorem 2. Assume $f \in L^p(\mathbb{R}^N)$ satisfies (18) with p > 1. Let (ρ_{ε}) be as in (9)-(10)-(11). Then $f \in W^{1,p}$ and

(20)
$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy = K_{p,N} \int_{\mathbb{R}^N} |\nabla f|^p dx$$

where $K_{p,N}$ depends only on p and N.

Similarly for p = 1 we have

Theorem 3. Assume $f \in L^1(\mathbb{R}^N)$ satisfies (19). Let (ρ_{ε}) be as in (9)-(10)-(11). Then $f \in BV$ and

(21)
$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f(x) - f(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy = K_{1,N} \int_{\mathbb{R}^N} |\nabla f| dx$$

where the right-hand side denote the total mass of the measure ∇f .

An interesting consequence of Theorem 3 is the following

Corollary 3. Let A be a bounded measurable set in \mathbb{R}^N . Then A has finite perimeter (in the sense of De Giorgi) if and only if

$$\int_{A} \int_{c_{A}} \frac{1}{|x-y|} \rho_{\varepsilon}(|x-y|) dx dy \leq C \text{ as } \varepsilon \to 0$$

and then

(22)
$$\lim_{\varepsilon \to 0} \int_{A} \int_{c_{A}} \frac{1}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy = K_{1,N} \operatorname{Per}(A).$$

Proof of Theorem 2. The original proof of Theorem 2 is to be found in Bourgain, Brezis and Mironescu [3]. We present here a simpler argument suggested by E. Stein [1]. Assume $f \in L^p$ satisfies (18) an let (γ_{δ}) be any sequence of smooth mollifiers. Set

$$f_{\delta} = \gamma_{\delta} \star f$$
.

Note that (18) still holds when f is replaced by its translates $(\tau_h f)(x) = f(x+h)$. Also, (18) is stable under convex combinations and thus f_{δ} satisfies (18) with the same constant C, i.e., we have

(23)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f_{\delta}(x) - f_{\delta}(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy \le C$$

where C is independent of ε and δ .

Next, let $g \in C^2(\mathbb{R}^N)$ be such that

(24)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|g(x) - g(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx \, dy \le C \text{ as } \varepsilon \to 0,$$

where ρ_{ε} satisfies (9), (10), (11). We claim that

(25)
$$\int_{\mathbb{R}^N} |\nabla g(x)|^p dx \le C/K_{p,N},$$

with C taken from (24) and

(26)
$$K_{p,N} = \int_{S^{N-1}} |(\sigma \cdot e)|^p d\sigma, \quad e \in S^{N-1}.$$

Proof of (25). Let K be any compact subset of \mathbb{R}^N . For $x \in K$ and $|h| \leq 1$ we have

$$|g(x+h) - g(x) - h \cdot \nabla g(x)| \le C_K |h|^2.$$

From (24) we have

(28)
$$\int_{K} dx \int_{|h|<1} \frac{|g(x+h) - g(x)|^{p}}{|h|^{p}} \rho_{\varepsilon}(|h|) dh \le C.$$

By (27) we have

$$|h \cdot \nabla g(x)| \le |g(x+h) - g(x)| + C_K |h|^2$$

and therefore, for every $\theta > 0$

$$|h \cdot \nabla g(x)|^p \le (1+\theta)|g(x+h) - g(x)|^p + C_{\theta,K}|h|^{2p}$$

Combining this with (28) yields

(29)
$$\int_{K} dx \int_{|h| \le 1} \frac{|(h \cdot \nabla g(x))|^{p}}{|h|^{p}} \rho_{\varepsilon}(|h|) dh \le (1+\theta)C + C_{\theta,K}|K| \int_{|h| \le 1} |h|^{p} \rho_{\varepsilon}(|h|) dh.$$

But, for any vector $V \in \mathbb{R}^N$,

$$\int_{|h|<1}\frac{|(h\cdot V)|^p}{|h|^p}\rho_\varepsilon(|h|)dh=K_{p,N}|V|^p\int_0^1\rho_\varepsilon(r)r^{N-1}dr.$$

On the other hand, it is clear from (10) and (11) that

$$\lim_{\varepsilon \to 0} \int_{|h| < 1} |h|^p \rho_{\varepsilon}(|h|) dh = 0.$$

Passing to the limit as $\varepsilon \to 0$ in (29) we find

(30)
$$K_{p,N} \int_{K} |\nabla g(x)|^p dx \le (1+\theta)C.$$

Since (30) holds for every $\theta > 0$ and every compact set K (with C independent of θ and K) we obtain (25), that is,

(31)
$$K_{p,N} \int_{\mathbb{R}^N} |\nabla g(x)|^p dx \le \liminf_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|g(x) - g(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy.$$

On the other hand, if $g \in C_0^2(\mathbb{R}^N)$ we have, as above,

$$|g(x+h) - g(x)| \le |h \cdot \nabla g(x)| + C'|h|^2 \quad \forall x \in \mathbb{R}^N, \ \forall h \in \mathbb{R}^N.$$

Hence

$$|g(x+h) - g(x)|^p \le (1+\theta)|h \cdot \nabla g(x)|^p + C'_{\theta}|h|^{2p}.$$

We multiply this by $\rho_{\varepsilon}(|h|)/|h|^p$ and integrate over the set $\{(x,h)\in\mathbb{R}^{2N}:x\text{ or }x+h\in\sup g\}$ to obtain

$$\int_{\mathbb{R}^N} dx \int_{\mathbb{R}^N} \frac{|g(x+h) - g(x)|^p}{|h|^p} \rho_{\varepsilon}(|h|) dh \le$$

$$(1+\theta) \int_{\mathbb{R}^N} K_{p,N} |\nabla g(x)|^p dx + 2C'_{\theta} |\operatorname{supp} g| \int_{\mathbb{R}^N} |h|^p \rho_{\varepsilon}(|h|) dh.$$

We first let $\varepsilon \to 0$ and then $\theta \to 0$. This yields

(32)
$$\limsup_{\varepsilon \to 0} \int_{\mathbb{R}^N} dx \int_{\mathbb{R}^N} \frac{|g(x+h) - g(x)|^p}{|h|^p} \rho_{\varepsilon}(|h|) dh \le K_{p,N} \int_{\mathbb{R}^N} |\nabla g(x)|^p dx.$$

Combining (31) and (32) yields, for every $g \in C_0^2(\mathbb{R}^N)$,

$$\lim_{\varepsilon \to 0} \int_{\mathbb{D}^N} \int_{\mathbb{D}^N} \frac{|g(x) - g(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy = K_{p,N} \int_{\mathbb{D}^N} |\nabla g(x)|^p dx.$$

Since $C_0^2(\mathbb{R}^N)$ is dense in $W^{1,p}(\mathbb{R}^N)$, it is easy to conclude (using (14)) that (20) holds for every $f \in W^{1,p}(\mathbb{R}^N)$.

We may now complete the proof of Theorem 2. Assuming $f \in L^p(\mathbb{R}^N)$ satisfies (18) and applying Claim (25) to $g = f_{\delta}$ we see that

(33)
$$\int_{\mathbb{R}^N} |\nabla f_{\delta}|^p dx \le C/K_{p,N},$$

where C comes from (18). Finally, we pass to the limit in (33) as $\delta \to 0$ and obtain $f \in W^{1,p}$.

Proof of Theorem 3. If $f \in L^1(\mathbb{R}^N)$ and satisfies (19) and we proceed as above we are led to

$$\int_{\mathbb{R}^N} |\nabla f_{\delta}| dx \le C/K_{1,N}.$$

Therefore $f \in BV$ and

$$\int_{\mathbb{R}^N} |\nabla f| dx \le C/K_{1,N}.$$

In other words we have proved that

(34)
$$K_{1,N} \int_{\mathbb{R}^N} |\nabla f| dx \le \liminf_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f(x) - f(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy.$$

On the other hand it is easy to see, using (16), that for $f \in BV$

(35)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f(x) - f(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy \leq \tilde{K}_N \int_{\mathbb{R}^N} |\nabla f| dx.$$

Unfortunately the constant \tilde{K}_N in (35) is not the same as $K_{1,N}$. It is also clear that (21) holds when $f \in C_0^2(\mathbb{R}^N)$. However we cannot conclude easily that (21) holds for every $f \in BV$ since $C_0^2(\mathbb{R}^N)$ is not dense in BV.

It remains to be shown that, for every $f \in BV(\mathbb{R}^N)$

$$\limsup_{\varepsilon \to 0} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|f(x) - f(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy \le K_{1,N} \int_{\mathbb{R}^N} |\nabla f| dx.$$

This has been established by J. Davila [1] using new ideas which are not presented here.

Remark 5. There are statements similar to Theorem 2 and Theorem 3 when \mathbb{R}^N is replaced by a smooth bounded domain Ω in \mathbb{R}^N . However the same conclusion fails for a general bounded domain Ω if $\partial\Omega$ is not smooth. It is still true (for a general Ω) that

(36)
$$K_{p,N} \int_{\Omega} |\nabla f|^p \le \liminf_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy.$$

However, it may happen for p > 1 that $f \in W^{1,p}(\Omega)$ (so that the left hand side in (36) is *finite*) while the right-hand side in (36) is *infinite*. Here is such an example. Let $\Omega = D \setminus \Sigma$ where D is a disc (in \mathbb{R}^2) and Σ is a slit. Let f be a smooth function in Ω which is discontinuous across the slit (for example two different constants on each side of the slit). Clearly $f \in W^{1,p}(\Omega)$, but the RHS in (36) is infinite. This is so because

$$\int_{\Omega} \int_{\Omega} \dots = \int_{D} \int_{D} \dots$$

and if the RHS in (36) were finite we would conclude that $f \in W^{1,p}(D)$ (by Theorem 2), which is obviously wrong. This example suggests the following

Open problem 1. Let $\Omega \subset \mathbb{R}^N$ be a bounded connected set (not necessarily smooth). Let $\delta(x,y)$ denote the geodesic distance in Ω . Let $f \in L^p(\Omega)$ be such that

$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{\delta(x, y)^p} \rho_{\varepsilon}(\delta(x, y)) dx dy \le C \text{ as } \varepsilon \to 0.$$

Does it follow that $f \in W^{1,p}$ and if so, does one have

$$\lim_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{\delta(x, y)^p} \rho_{\varepsilon}(\delta(x, y)) dx dy = K_{p, N} \int_{\Omega} |\nabla f|^p dx?$$

Remark 6. The characterization of $W^{1,p}$ (resp. BV) given by Theorem 2 (resp. 3) suggests a definition of Sobolev spaces for maps $f: M \to \tilde{M}$ between metric spaces, where M is equipped with a measure μ , namely

$$\int \int \frac{\tilde{d}(f(x),f(y))^p}{d(x,y)^p} \rho_{\varepsilon}(d(x,y)) d\mu(x) d\mu(y) \leq C \text{ as } \varepsilon \to 0.$$

Note that assumptions (10) and (11) involve the notion of a dimension N but this can be done easily by considering $\lim_{r\to 0} |\log \mu(B_r(x))|/|\log r|$. It would be interesting to study the properties of such maps (Sobolev imbeddings, etc...) and to compare this notion with other definitions (see Korevaar and Schoen [1], P. Hajlasz and P.Koskela [1], L. Ambrosio and P.Tilli [1] and the numerous references in these works).

Remark 7. There are variants of Theorems 2 and 3 when Ω is a smooth bounded domain in \mathbb{R}^N . For example, we have

Theorem 2'. Assume $f \in L^p(\Omega)$ satisfies

(37)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy \leq C \text{ as } \varepsilon \to 0,$$

with ρ_{ε} as in (9), (10), (11). Then $f \in W^{1,p}(\Omega)$ and

(38)
$$\lim_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy = K_{p,N} \int_{\Omega} |\nabla f|^p.$$

Sketch of proof. First assume that (37) holds. By a standard technique of reflection across the boundary and multiplication by a cut-off one constructs a function \tilde{f} on \mathbb{R}^N , with compact support, such that $\tilde{f} = f$ on Ω and satisfying

(39)
$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|\tilde{f}(x) - \tilde{f}(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx \, dy \le C' \text{ as } \varepsilon \to 0,$$

By Theorem 2 we conclude that $\tilde{f} \in W^{1,p}(\mathbb{R}^N)$ and thus $f \in W^{1,p}(\Omega)$.

Next one shows that if $f \in C^2(\overline{\Omega})$, then

(40)
$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx \, dy \le C(\Omega) \int_{\Omega} |\nabla f|^p dx.$$

Finally one proves that if $f \in C^2(\overline{\Omega})$

(41)
$$\lim_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_{\varepsilon}(|x - y|) dx dy = K_{p,N} \int_{\Omega} |\nabla f|^p dx.$$

The conclusion of Theorem 2' follows from an easy density argument.

Remark 8. There are several choices for ρ_{ε} which are of interest. Here are a few

A) Choice 1

$$\rho_{\varepsilon}(r) = \begin{cases} \frac{\varepsilon}{r^{N-\varepsilon}} & 0 < r < 1\\ 0 & r > 1. \end{cases}$$

This choice yields

Corollary 4. Assume Ω is a smooth bounded domain in \mathbb{R}^N . Let $f \in L^p(\Omega)$ be such that

$$\varepsilon \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+p-\varepsilon}} dx \, dy \le C \text{ as } \varepsilon \to 0,$$

then $f \in W^{1,p}(\Omega)$ and

(42)
$$\lim_{\varepsilon \to 0} \varepsilon \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N + p - \varepsilon}} dx \, dy = K_{p, N} \int_{\Omega} |\nabla f|^p.$$

Recall that the standard fractional Sobolev space $W^{s,p}$, $0 < s < 1, 1 < p < \infty$, is equipped with Gagliardo (semi) norm

(43)
$$||f||_{W^{s,p}}^p = \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+sp}} dx \, dy.$$

It is well-known that $||f||_{W^{s,p}}$ does not converge to $||f||_{W^{1,p}}$ as $s \uparrow 1$; in fact it converges to ∞ (unless f is constant) by Proposition 2. However in view of Corollary 4 we may now assert that

(44)
$$\lim_{s \uparrow 1} (1-s) \|f\|_{W^{s,p}}^p = \frac{K_{p,N}}{p} \int_{\Omega} |\nabla f|^p.$$

This "reinstates" $W^{1,p}$ as a continuous limit of $W^{s,p}$ as $s \uparrow 1$ provided one uses the norm $(1-s)^{1/p} ||f||_{W^{s,p}}$ on $W^{s,p}$.

B) Choice 2

$$\rho_{\varepsilon}(r) = \begin{cases} \frac{N}{\varepsilon^{N}} & \text{if } r < \varepsilon \\ 0 & \text{if } r > \varepsilon \end{cases}$$

This choice yields

(45)
$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^N} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} dx \, dy = \frac{K_{p,N}}{N} \int_{\Omega} |\nabla f|^p.$$

A variant is

$$\rho_{\varepsilon}(r) = \begin{cases} \frac{(N+p)r^p}{\varepsilon^{N+p}} & r < \varepsilon \\ 0 & r > \varepsilon \end{cases}$$

and then we have

(46)
$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{N+p}} \int_{\Omega} \int_{\Omega} |f(x) - f(y)|^p dx dy = \frac{K_{p,N}}{(N+p)} \int_{\Omega} |\nabla f|^p.$$

Still another choice yields

(47)
$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{N+p}} \int_{\Omega} \int_{\Omega} |f(x) - f(y)|^p dx dy = \tilde{K}_{p,N} \int_{\Omega} |\nabla f|^p.$$

C) Choice 3

$$\rho_{\varepsilon}(r) = \begin{cases} 0 & r < \varepsilon \\ \frac{1}{|\log \varepsilon| r^N} & \varepsilon < r < 1 \\ 0 & r > 1. \end{cases}$$

This choice yields

(48)
$$\lim_{\varepsilon \to 0} \frac{1}{|\log \varepsilon|} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{N+p}} dx \, dy = K_{p,N} \int_{\Omega} |\nabla f|^p.$$

D) Choice 4

Let $\gamma \in L^1_{loc}(0,+\infty)$, $\gamma \geq 0$, be such that

$$\int_0^\infty \gamma(r)r^{N+p-1}dr = 1.$$

Choosing

$$\rho_{\varepsilon}(r) = \frac{1}{\varepsilon^{N+p}} \, \gamma\left(\frac{r}{\varepsilon}\right) r^p$$

yields

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{N+p}} \int_{\Omega} \int_{\Omega} |f(x) - f(y)|^p \, \gamma\left(\frac{|x - y|}{\varepsilon}\right) dx \, dy = K_{p,N} \int_{\Omega} |\nabla f|^p,$$

for every $f \in W^{1,p}$ (with p > 1) and for every $f \in BV$ (with p = 1). Applying this in the BV case with $f = \chi_A$ we obtain a new *characterization* of sets of *finite perimeter*. Namely a measurable set $A \subset \Omega$ has finite perimeter if and only if

$$\frac{1}{\varepsilon^{N+1}} \int_A \int_{c_A} \gamma\left(\frac{|x-y|}{\varepsilon}\right) dx \, dy \le C \text{ as } \varepsilon \to 0,$$

and then

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^{N+1}} \int_A \int_{c_A} \gamma\left(\frac{|x-y|}{\varepsilon}\right) dx \, dy = K_{1,N} \mathrm{Per}(A).$$

3. Back to constant functions

All the results of Section 1 are immediate consequences of the statements of Section 2 applied in a ball $B \subset \Omega$. One concludes that f is constant on B and then that f is constant on Ω since Ω is connected.

Note that the assumption

(49)
$$\lim_{\varepsilon \to 0} \int_{B} \int_{B} \frac{|f(x) - f(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy = 0$$

implies first that $f \in BV$ and then that $\nabla f = 0$, so that f is a constant.

By contrast, when p > 1, and f takes its values into \mathbb{Z} it suffices to assumes that

(50)
$$\int_{B} \int_{B} \frac{|f(x) - f(y)|^{p}}{|x - y|^{p}} \rho_{\varepsilon}(|x - y|) dx dy \le C \text{ as } \varepsilon \to 0.$$

Indeed, (50) implies that $f \in W^{1,p}$ (attention when p = 1, (50) only implies that $f \in BV$). Then, one may use the fact that f takes its values into \mathbb{Z} to conclude that f is constant. The argument is the following: write

$$\Omega = \bigcup_{k \in \mathbb{Z}} A_k$$

where $A_k = \{x \in \Omega; f(x) = k\}$ and use a well-known result of Stampacchia (see e.g. Lemma 7.7 in Gilbarg–Trudinger [1]) asserting that $\nabla f = 0$ a.e. on A_k . Hence $\nabla f = 0$ a.e. on Ω .

Alternatively, one may deduce from (50) and assumption $f: \Omega \to \mathbb{Z}$, that

$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|}{|x - y|} \, \frac{\rho_{\varepsilon}(|x - y|)}{|x - y|^{p - 1}} dx \, dy \le C.$$

This yields easily

$$\lim_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) dx dy = 0$$

and thus f is a constant.

There are interesting extensions of some of the above results where the ratio

$$\frac{|f(x) - f(y)|^p}{|x - y|^p}$$

is replaced by a more general expression

$$\omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right).$$

Here are two results due to R. Ignat, V. Lie and A. Ponce [1].

Theorem 4. Assume $\omega:[0,\infty)\to[0,\infty)$ is a continuous function such that $\omega(0)=0$, $\omega(t)>0\ \forall t>0$ and

(51)
$$\int_{1}^{\infty} \frac{\omega(t)}{t^2} dt = \infty.$$

Assume $f \in L^1(\Omega)$ satisfies

$$\int_{\Omega} \int_{\Omega} \omega \left(\frac{|f(x) - f(y)|}{|x - y|} \right) \frac{dx \, dy}{|x - y|^N} < \infty,$$

then f is a constant.

Theorem 5. Assume $\omega:[0,\infty)\to[0,\infty)$ is a continuous function such that $\omega(0)=0$ and

$$\lim_{t\to\infty}\frac{\omega(t)}{t}=\alpha>0.$$

Assume $f \in L^1(\Omega)$ satisfies

$$\int_{\Omega} \int_{\Omega} \omega \left(\frac{|f(x) - f(y)|}{|x - y|} \right) \rho_{\varepsilon}(|x - y|) dx dy \le C \text{ as } \varepsilon \to 0.$$

Then $f \in BV$ and

$$\lim_{\varepsilon \to 0} \int_{\Omega} \int_{\Omega} \omega \left(\frac{|f(x) - f(y)|}{|x - y|} \right) \rho_{\varepsilon}(|x - y|) dx dy = \int_{\Omega} \overline{\omega}(|\nabla f_{ac}|) dx + \alpha K_{1,N} \int_{\Omega} |\nabla f_{s}| dx,$$

where $\overline{\omega}(t) = \int_{S^{N-1}} \omega(t|\sigma \cdot e|) d\sigma$ and $\nabla f = \nabla f_{ac} + \nabla f_s$ is the Radon–Nikodym decomposition of ∇f .

Here is still another open problem:

Open problem 2. Let Ω be a (smooth) connected, bounded domain in \mathbb{R}^N . Let $f:\Omega\to\mathbb{R}$ be a continuous (or even Hölder continuous) function. Let $\omega:[0,\infty)\to[0,\infty)$ be a continuous function such that $\omega(0)=0$ and $\omega(t)>0$ for t>0.(Here (51) might fail). Assume that

$$\int_{\Omega} \int_{\Omega} \omega \left(\frac{|f(x) - f(y)|}{|x - y|} \right) \frac{1}{|x - y|^N} \, dx \, dy < \infty.$$

Can one conclude that f is a constant?

4. Another approach. Connection with VMO

We first recall the definition of VMO($\Omega; \mathbb{R}$) (= vanishing mean oscillation). We say that a function $f \in VMO(\Omega; \mathbb{R})$ if $f \in L^1_{loc}(\Omega; \mathbb{R})$ satisfies

$$\lim_{\varepsilon \to 0} \frac{1}{|B_{\varepsilon}(x)|^2} \int_{B_{\varepsilon}(x)} \int_{B_{\varepsilon}(x)} |f(y) - f(z)| dy \, dz = 0 \quad \text{uniformly for } x \in \Omega.$$

Let Ω be a connected (smooth) open set in \mathbb{R}^N and let $f \in VMO(\Omega; \mathbb{Z})$. Then f is a constant. This was already observed in Brezis-Nirenberg [1] (Section I.5, part 2). Indeed if we set

$$\overline{f}_{\varepsilon}(x) = \frac{1}{|B_{\varepsilon}(x)|} \int_{B_{\varepsilon}(x)} f(y) dy$$

then $\operatorname{dist}(\overline{f}_{\varepsilon}(x),\mathbb{Z}) \to 0$ uniformly in Ω (see Brezis–Nirenberg [1], Section I.1) and thus there is some constant $k_{\varepsilon} \in \mathbb{Z}$ such that $|\overline{f}_{\varepsilon}(x) - k_{\varepsilon}| \to 0$ uniformly in Ω . Hence f is a constant.

Functions in $W^{s,p}(\Omega)$ belong to $VMO(\Omega)$ provided $sp \geq N$ (see Brezis-Nirenberg [1], Section I.2). Therefore one cannot apply directly this argument in our setting which corresponds roughly speaking to $sp \geq 1$. However one may use an argument of reduction to dimension one already used in Bourgain-Brezis-Mironescu [2].

Assume for simplicity that Ω is a square in \mathbb{R}^2 . Let $f \in W^{s,p}(\Omega)$. Then, the restrictions $f(x_1,\cdot)$ and $f(\cdot,x_2)$ still belong to $W^{s,p}(I)$ for a.e. x_1 and a.e. x_2 (where I is an interval) (see e.g. Brezis, Li, Mironescu and Nirenberg [1], Section 2).

This observation is very useful when combined with the following measure theoretical tool:

Lemma (see e.g. Brezis, Li, Mironescu and Nirenberg [1], Lemma 2). Assume that $f: \Omega \to \mathbb{R}$ is measurable. Suppose that for a.e. $x_1, f(x_1, \cdot)$ and for a.e. $x_2, f(\cdot, x_2)$ are constant functions. Then f is a constant.

The considerations above yield an alternative proof of Corollary 1 when p > 1. Indeed, if p > 1, (2) says that $f \in W^{s,p}(\Omega)$ where s = 1/p. The restrictions of f to almost every line still belong to $W^{s,p}$ with s = 1/p. Hence these restrictions are VMO.

Therefore, if $f: \Omega \to \mathbb{Z}$ one may conclude that the restrictions of f to almost every line are constant. The above lemma allows to conclude that f is constant.

The preceding argument also gives

Theorem 6. Assume $\Omega \subset \mathbb{R}^N$ is connected and let $f: \Omega \to \mathbb{Z}$ be a measurable function such that $f = f_0 + f_1 + f_2 + ... + f_k$ where $f_0 \in W^{1,1}(\Omega; \mathbb{R})$ and $f_i \in W^{s_i,p_i}(\Omega; \mathbb{R})$ with $s_i p_i \geq 1$ for i = 1, 2, ..., k. Then f is a constant.

Open problem 3. Is there a simple intrinsic assumption on f which can replace the decomposition assumption $f = f_0 + f_1 + f_2 + ... + f_k$? Is there an elegant way to unify Theorem 6 with the results of Section 1?

Another interesting direction of research is

Open problem 4. Find estimates for

$$||f-\int f||$$

in terms of the quantities appearing throughout the paper and which would imply that f is constant in various situations. The reader may find some results in that direction in Bourgain, Brezis and Mironescu [4] (see also Maz'ya and Shaposhnikova [1]).

References

- R.A. Adams [1], Sobolev spaces, Acad. Press (1975).
- L. Ambrosio and P. Tilli [1], Selected topics on "Analysis in metric spaces", Lecture Notes, Scuola Normale Superiore Pisa (2000).
- F.Bethuel and F. Demengel [1], Extensions for Sobolev mappings between manifolds, Cal. Var. PDE 3 (1995), 475–491.
- J. Bourgain, H. Brezis and P. Mironescu [1], Lifting in Sobolev spaces, J. Analyse Math. 80 (2000), p. 37-86.
- [2], On the structure of the Sobolev space $H^{1/2}$ with values into the circle, C. R. Acad. Sc. **331** (2000), p. 119–124.
- [3], Another look at Sobolev spaces, in *Optimal Control and Partial Differential Equations* (J.L. Menaldi, E. Rofman et A. Sulem, eds) a volume in honour of A. Bensoussan's 60th birthday, IOS Press, 2001, p. 439–455.
- [4], Limiting embedding theorems for $W^{s,p}$ when $s \uparrow 1$ and applications, J. Analyse Math. (to appear).
- H. Brezis [1], Analyse fonctionnelle ; théorie et applications, Masson (1983) et Dunod (1999).
- H. Brezis and J.M. Coron [1], Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. **92** (1983), p. 203–215.
- H. Brezis, Y.Li, P. Mironescu and L. Nirenberg [1], Degree and Sobolev spaces, Topological methods in Nonlinear Analysis **13** (1999), p. 181–190.
- H. Brezis and L. Nirenberg [1], Degree theory and BMO, Part I: compact manifolds without boundaries, Selecta Math. 1 (1995), p. 197–263.

- J. Davila [1], On an open question about functions of bounded variation, Cal. Var. PDE (to appear).
- D. Gilbarg and N.S. Trudinger [1], Elliptic Partial Differential Equations of Second Order, Springer, Second edition, 1983.
- P. Hajlasz and P. Koskela [1], Sobolev met Poincaré, Memoirs Amer. Math. Soc. 145 (2000).
- R. Hardt, D. Kinderlehrer and F.H. Lin [1], The variety of configurations of static liquid crystals, in *Variational Methods* (H. Berestycki, J.-M. Coron and I. Ekeland eds), Birkhauser 1990.
- R. Ignat, V. Lie and A. Ponce [1], paper in preparation.
- N. Korevaar and R. Schoen [1], Sobolev spaces and harmonic maps for metric space targets, Comm. in Anal. and Geom., 1 (1993), 561–659.
- V. Maz'ya and T. Shaposhnikova [1], On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. (to appear). E. Stein [1], personal communication.

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Boîte courrier 187 4 place Jussieu 75252 Paris cedex 05

email: brezis@ann.jussieu.fr, brezis@ccr.jussieu.fr