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We give a new variational formulation for the two-sided obstacle problem with measure
data. This formulation allows to prove in particular that the solution does not depend
on the part of the data which is concentrated on a set of zero newtonian capacity.

1. Introduction

We first recall a phenomenon originally observed in [1] for some variational problems

of Thomas–Fermi type. Let Ω be a smooth bounded domain in RN containing 0

and consider the problem{
−∆u+ |u|p−1u = δ in Ω ,

u = 0 on ∂Ω .
(1)

It was proved in [1] that if p ≥ N
N−2 with N ≥ 3, then (1) has no solution in

the sense of distributions with u ∈ Lp(Ω). However, in some sense, the unique

“natural solution” is u = 0. This has to be interpreted in the following way: take

any sequence fn of smooth functions such that fn → δ in the sense of measures and

fn → 0 strongly in L1
loc(Ω\{0}) and let un be the solution of{
−∆un + |un|p−1un = fn in Ω ,

un = 0 on ∂Ω ,
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then un → 0 in L1, (un) is bounded in Lp, un → 0 in Lploc(Ω\{0}) and |un|p−1un ⇀ δ

in the sense of measures (see [3]). Some variants of this result were obtained in [14],

for this type of problem as well as for solutions of variational inequalities.

The obstacle problem associated to the constraint |u| ≤ 1 corresponds, roughly

speaking, to the case p =∞ in the previous example, i.e.{
−∆u+ β(u) 3 δ in Ω ,

u = 0 on ∂Ω ,
(2)

where β is the graph

D(β) = [−1, 1] , β(u) =


[0,∞) if u = 1 ,

{0} if − 1 < u < 1 ,

(−∞, 0] if u = −1 .

The standard formulation of problem (2) in terms of variational inequalities when

δ is replaced by f ∈ H−1 is

inf
u∈K

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

fu

}
(3)

where K is the convex set

K = {u ∈ H1
0 (Ω); |u| ≤ 1}

or equivalently, 
u ∈ K

∀ v ∈ K ,

∫
Ω

∇u · ∇(v − u) ≥
∫

Ω

fu .
(4)

The defect of this formulation is that it makes no sense when f is a general measure,

e.g. f = δ, because u ∈ H1
0 (Ω) need not be continuous when N ≥ 2. [When N = 1,

problem (3) admits a unique minimizer for every measure f , and throughout the

rest of the paper we will assume that N ≥ 2.]

To overcome this difficulty, one possible approach is to consider a variant of (3):

inf
u∈K∩C0(Ω̄)

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

fu

}
. (5)

There are now various natural questions when f is a measure:

(1) Does every minimizing sequence for (5) converge to a limit (independent of

the sequence)?

By analogy with the case of problem (1), one may ask:

(2) When f = δ, does every minimizing sequence for (5) converge to 0?
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The answers to both questions are indeed positive (see Theorems 1.2 and 1.3). The

main new idea in this paper is to dualize problem (3). For f ∈ L2(Ω), the dual

problem (in the sense of convex duality, see e.g. [4], and [10] p. 108) of

min
u∈K

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

fu

}
(6)

is

min
h∈H1

0(Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ f |
}
. (7)

HereM(Ω̄) denotes the space of Radon measures on Ω̄, i.e. the dual of C0(Ω̄). More

precisely, let us recall the theorem.

Theorem 1.1 ([4]). For any f ∈ L2(Ω), there exists a unique minimizer of (6),

say u∗, and u∗ ∈ H2(Ω). Moreover, u∗ is also the unique minimizer of (7) and

1

2

∫
Ω

|∇u∗|2 −
∫

Ω

fu∗ = −
(

1

2

∫
Ω

|∇u∗|2 +

∫
Ω

|∆u∗ + f |
)
.

An interesting application of this theorem is for a problem arising in [15] where

the analysis of the Ginzburg–Landau functional with magnetic field yields a mini-

mization problem which is exactly of the kind (7), thus the minimizer is identified

with the solution of an obstacle problem (the authors in [15] were not aware of this

theorem and gave a direct proof without duality).

When f ∈ L2 is replaced by a general measure µ, problem (6) does not make

sense. However, it does make sense when µ is a special measure belonging to L1 +

H−1. By contrast, problem (7) makes sense for a general measure µ and admits a

unique minimizer.

Definition 1.1. The solution of the obstacle problem with data µ ∈ M(Ω̄) is the

unique minimizer of

min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ|
}
. (8)

Our first result relates this minimization problem with

inf
u∈K∩C0(Ω̄)

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ

}
. (9)

Theorem 1.2. For every measure µ ∈M(Ω̄), we have

inf
u∈K∩C0(Ω̄)

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ

}

= − min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ|
}
. (10)
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Moreover every minimizing sequence un for (9) converges strongly in H1
0 (Ω) to the

solution of the obstacle problem (in the sense of Definition 1.1).

The only proof that we have for (10) is not via a simple regularization as one

might expect; it is quite indirect and relies on the decomposition of the measure

µ described below. Returning to the case of the Dirac mass, we may now see that

the solution of the obstacle problem (in the sense of Definition 1.1) with µ = δ is

h = 0. Indeed, since a point has zero H1-capacity, there is a sequence of smooth

un ∈ H1
0 (Ω)∩C0(Ω̄) such that 0 ≤ un ≤ 1, un(0) = 1 and un → 0 in H1

0 (Ω); hence

inf
K∩C0(Ω̄)

{
1

2

∫
Ω

|∇u|2 − u(0)

}
≤ −1 .

Therefore, by Theorem 1.2,

min
h∈H1

0 (Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ δ|
}
≥ 1 ;

hence h = 0 is the unique minimizer and

inf
K∩C0(Ω̄)

{
1

2

∫
Ω

|∇u|2 − u(0)

}
= −1 .

This is a special case of a more general phenomenon, namely the solution “does

not feel” the part of the measure µ which is concentrated on a set of zero capacity.

To make this rigorous, we need the following lemma. The first assertion can be

found in [11], the second will be proved at the beginning of Sec. 2.

Lemma 1.1. Let µ be a Radon measure and N ≥ 2. Then µ can be decomposed in

a unique way as µ̃+ ν where

• µ̃ is a measure that vanishes on sets of zero capacity

• ν is a measure concentrated on a set of zero capacity.

Moreover, {
µ+ = µ̃+ + ν+

µ− = µ̃− + ν− ,
(11)

where, for any measure, µ+, µ− denote the positive and negative parts of µ.

Here, capacity refers to the standard newtonian capacity, i.e. H1
0 -capacity.

Another useful lemma is

Lemma 1.2 ([7]). A Radon measure µ̃ vanishes on sets of zero capacity if and

only if it admits a decomposition

µ̃ = k + η

with k ∈ L1(Ω), η ∈ H−1(Ω). Here, the decomposition is not unique.
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In particular, measures in H−1 vanish on sets of zero-capacity. A partial variant

of Lemma 1.2, when H1
0 -capacity is replaced with W 2,p-capacities, was first proved

in [12], using a lemma from [2]. In view of Lemma 1.2, we see that
∫

Ω µ̃u makes

sense for every u ∈ H1
0 (Ω) ∩ L∞(Ω) provided we interpret

∫
Ω fu as

∫
Ω ku + 〈η, u〉

where
∫

Ω ku makes sense since k ∈ L1(Ω) and u ∈ L∞(Ω), while 〈η, u〉 makes sense

since u ∈ H1
0 (Ω). In particular, problem (6) makes sense when f = µ̃, and admits

a unique minimizer.

Theorem 1.3. Let µ be any measure in M(Ω̄) and let µ = µ̃+ ν be its decompo-

sition in the sense of Lemma 1.1, then

− min
h∈H1

0(Ω)

∆h∈M(Ω̄)

1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ|

= min
u∈K

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃

}
−
∫

Ω

|ν| .

= − min
h∈H1

0(Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ̃|
}
−
∫

Ω

|ν|

and minimizers coincide, i.e. the solutions of the obstacle problem for µ and µ̃ are

the same.

Another approach to the one-sided obstacle problem u ≥ −1 with measure data

was given in [8]. Their formulation is quite different from ours. It does not rely on

duality but instead on methods of potential theory, i.e. the solution is the smallest

function in H1
0 satisfying {

−∆v ≥ µ ,
v ≥ −1 .

(12)

Their main result asserts that the smallest function exists. Moreover, it was proved

in [9, Theorem 4.3] that this solution is unchanged when µ is replaced by µ̃ + ν+

(ν+ being the positive part of ν). We believe that there is a similar formulation for

the two-sided obstacle problem −1 ≤ u ≤ 1 and that it coincides with the solution

we have obtained. At least when µ ≤ 0, the solution in the sense of (12) coincides

with our notion of solution.

In Sec. 2 we present the proof of Theorems 1.2 and 1.3. In Sec. 3, we give some

additional results and generalizations.

2. Proof of Theorems 1.2 and 1.3

As announced we start with the

Proof of the second assertion of Lemma 1.1. Let ν+ and ν− denote,

respectively, the positive and negative parts of the measure ν. We recall that ν
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is concentrated on a set of zero-capacity. We claim that there exist sequences ξn
and ζn of C∞0 (Ω) functions that satisfy

0 ≤ ξn ≤ 1 0 ≤ ζn ≤ 1 ,

‖ξn‖H1(Ω) → 0 ‖ζn‖H1(Ω) → 0 ,

ξn → 0 a.e. ζn → 0 a.e. ,

0 ≤
∫

Ω

(1− ξn)ν+ → 0 0 ≤
∫

Ω

(1− ζn)ν− → 0 ,

0 ≤
∫

Ω

ξnν− → 0 0 ≤
∫

Ω

ζnν+ → 0 .

(13)

This can be found, for example, in [14, Lemma 2.1]. For the convenience of the

reader, we present here a simpler proof.

Let us fix some δ > 0. By definition of
∫

Ω |ν|, there exists ω ∈ C∞0 (Ω) such that

|ω| ≤ 1 and ∫
Ω

ων ≥
∫

Ω

|ν| − δ . (14)

Since cap(supp ν) = 0, there exists ηn ∈ C∞0 (Ω) such that 0 ≤ ηn ≤ 1, ηn = 1 in

a neighborhood of the support of ν, and ‖ηn‖H1(Ω) → 0. Then, using the fact that

ηn = 1 in a neighborhood of the support of ν, we have∫
Ω

ηnων =

∫
Ω

ων ≥
∫

Ω

|ν| − δ .

It is immediate to check that ‖ηnω‖H1(Ω) → 0. Thus, for N large enough,

‖ηNω‖H1(Ω) < δ

and ∫
Ω

(ηNω)ν ≥
∫

Ω

|ν| − δ .

Since this is true for any δ > 0, this means that we can find a sequence ωn in C∞0 (Ω)

such that ∫
Ω

ωnν →
∫

Ω

|ν| , ‖ωn‖H1(Ω) → 0 .

Then, ξn = ω+
n and ζn = ω−n (respectively positive and negative parts of ω) provide

what is needed since ∫
Ω

(ω+
n − ω−n )(ν+ − ν−)→

∫
Ω

|ν| .

Indeed this means that∫
Ω

(1− ξn)ν+ +

∫
Ω

ξnν− +

∫
Ω

(1− ζn)ν− +

∫
Ω

ζnν+ → 0
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but each term in this sum is nonnegative, hence each term tends to zero. This

completes the proof of (13).

Consider ψ a nonnegative test-function in C1(Ω̄), and µ̃ given by the second

assertion of the lemma. Remark that∫
Ω

ψµ̃+ = sup
0≤u≤1

u∈C∞(Ω̄)

∫
Ω

ψuµ̃

∫
Ω

ψµ+ = sup
0≤u≤1

u∈C∞(Ω̄)

∫
Ω

ψuµ+ . (15)

Let us fix a δ > 0, and consider u in C∞(Ω̄) such that 0 ≤ u ≤ 1 and
∫

Ω ψuµ̃ ≥∫
Ω ψµ̃+ − δ. We then use the functions ξn and ζn defined in (13) and set vn =

ξn(1− u) + (1− ζn)u. First, 0 ≤ vn ≤ 1. In addition, (vn − u)ψ→ 0 in H1
0 . Indeed,

∇(vn − u) = (1− u)∇ξn − u∇ζn − (ξn + ζn)∇u .

The first two terms tend to 0 in L2(Ω) by strong H1 convergence of ξn and ζn to

0. For the second term, observe that ξn + ζn → 0 a.e., and |ξn + ζn| ≤ 2, while

|∇u|2 ∈ L1, hence applying Lebesgue’s dominated convergence theorem,∫
Ω

|ξn + ζn|2|∇u|2 → 0 .

Thus (vn − u)ψ → 0 in H1
0 , and a.e.

Next, using the result of Lemma 1.3, we can decompose µ̃ as k + η with

k ∈ L1(Ω), η ∈ H−1(Ω). Using Lebesgue’s dominated convergence theorem again,∫
Ω
ψkvn →

∫
Ω
ψku, and by the strong H1

0 (Ω)-convergence of ψvn to ψu, we have

〈η, ψvn〉 → 〈η, ψu〉, thus we deduce that∫
Ω

ψvnµ̃ =

∫
Ω

ψkvn + 〈η, ψvn〉 →
∫

Ω

ψku+ 〈η, ψu〉 . (16)

On the other hand,∣∣∣∣∫
Ω

ψ(vn − 1)ν+

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

ψ((1− ξn)(1− u) + ζnu)ν+

∣∣∣∣
≤ 2

∫
Ω

(1− ξn)ν+ + ζnν+ → 0

in view of (13). Similarly,∣∣∣∣∫
Ω

ψvnν−

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

ψ(ξn(1− u) + (1− ζn)u)ν−

∣∣∣∣
≤ 2

∫
Ω

ξnν− + (1− ζn)ν− → 0 .

We can now write∫
Ω

ψvnµ =

∫
Ω

ψvn(µ̃+ ν+ − ν−)→
∫

Ω

ψuµ̃+

∫
Ω

ψν+

≥
∫

Ω

ψµ̃+ +

∫
Ω

ψν+ − δ .
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Therefore,

sup
0≤v≤1

v∈C∞(Ω̄)

∫
Ω

ψvµ ≥
∫

Ω

ψµ̃+ +

∫
Ω

ψν+ ,

and using (15) again, we deduce that∫
Ω

ψµ+ ≥
∫

Ω

ψµ̃+ + ψν+ . (17)

Similarly, considering 0 ≤ u ≤ 1 such that
∫

Ω
ψuµ̃ ≥

∫
Ω
ψµ̃− − δ and using vn =

−ζn(1 − u) − (1 − ξn)u, we have −1 ≤ vn ≤ 0 and
∫

Ω
vnuψµ →

∫
Ω
ψuµ̃− + ψν−.

Finally, we are led to ∫
Ω

ψµ− ≥
∫

Ω

ψµ̃− + ψν− . (18)

Adding (17) and (18), we get∫
Ω

ψ|µ| ≥
∫

Ω

ψ(µ̃+ + ν+ + µ̃− + ν−) =

∫
Ω

ψ|µ̃|+ ψ|ν| .

But, by the triangle inequality, the converse inequality also holds, thus there is

equality in each inequality (17) and (18), which proves that∫
Ω

ψµ+ =

∫
Ω

ψ(µ̃+ + ν+)∫
Ω

ψµ− =

∫
Ω

ψ(µ̃− + ν−) .

Since this is true for every nonnegative ψ ∈ C1(Ω̄), we deduce the result. �

Consider now the Hilbert spaceH1
0 (Ω) equipped with its standard scalar product

〈u, v〉H1
0

=
∫

Ω
∇u · ∇v. Given µ ∈ M(Ω̄), consider the convex function Φµ : H1

0 →
(−∞,+∞] defined by

Φµ(h) =


∫

Ω

|∆h+ µ| if ∆h ∈M(Ω̄)

+∞ otherwise .

Lemma 2.1. We have

Φ∗µ(f) =


∫

Ω

fµ̃−
∫

Ω

|ν| if |f | ≤ 1 a.e. ,

+∞ otherwise ,

where Φ∗µ denotes the conjugate of the convex function Φµ i.e.

Φ∗µ(f) = sup
g∈D(Φµ)

(〈f, g〉H1
0
− Φµ(g)) .
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Proof. Step 1. We have

Φ∗µ = Φ∗µ̃ −
∫

Ω

|ν| . (19)

Indeed,

Φ∗µ(f) = sup
g∈D(Φµ)

(∫
Ω

∇f · ∇g −
∫

Ω

|∆g + µ|
)
.

Consider any g ∈ H1
0 (Ω) ∩ D(Φµ); clearly ∆g ∈ H−1(Ω) ∩M(Ω̄) hence ∆g + µ̃

is a Radon measure that vanishes on sets of zero-capacity. Thus, using the second

assertion of Lemma 1.1, we can write∫
Ω

|∆g + µ| =
∫

Ω

|∆g + µ̃|+
∫

Ω

|ν| ,

and we deduce (19). Hence, there only remains to compute Φ∗µ̃.

Step 2. We claim that for any f ∈ H1
0 (Ω),

Φ∗µ(f) ≥


∫

Ω

fµ̃−
∫

Ω

|ν| if |f | ≤ 1 a.e. ,

+∞ otherwise.

(20)

In view of Step 1, it suffices to prove that

Φ∗µ̃(f) ≥


∫

Ω

fµ̃ if |f | ≤ 1 a.e. ,

+∞ otherwise .

After integration by parts, we find

Φ∗µ̃(f) = sup
g∈D(Φµ̃)

(
−
∫

Ω

f∆g −
∫

Ω

|∆g + µ̃|
)
.

Thus,

Φ∗µ̃(f) = sup
h∈H−1(Ω)

h∈M(Ω̄)

∫
Ω

fh− |h− µ̃| .

Using the decomposition µ̃ = k + η given by Lemma 1.2, we can choose h = η + ζ

with ζ arbitrary in L2(Ω), and write

Φ∗µ̃(f) ≥ sup
ζ∈L2

∫
Ω

f(η + ζ)− |ζ − k| (21)

≥ sup
ζ∈L2

∫
Ω

fζ − |ζ|+
∫

Ω

fη − |k| . (22)

Thus, if |f | ≤ 1 a.e. is not satisfied, we deduce from (22) that Φ∗µ̃(f) ≥ +∞. If

|f | ≤ 1 a.e., then taking in (21) a sequence ζn in L2 which converges strongly to k

in L1, we deduce that

Φ∗µ̃(f) ≥
∫

Ω

f(η + k) =

∫
Ω

fµ̃ . (23)
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Step 3. We prove the converse inequality. If f ∈ H1
0 (Ω) ∩ C0(Ω̄) and |f | ≤ 1 a.e.,

then, for all g ∈ H1
0 (Ω) ∩D(Φµ̃),∫

Ω

∇f · ∇g − fµ̃ =

∫
Ω

−f∆g − fµ̃ ≤
∫

Ω

|∆g + µ̃| ,

hence Φ∗µ̃(f) ≤
∫

Ω fµ̃. Combining this with (23), we deduce that

∀ f ∈ H1
0 (Ω) ∩ C0(Ω̄) , Φ∗µ̃(f) =


∫

Ω

fµ̃ if |f | ≤ 1 a.e. ,

+∞ otherwise .

(24)

Let now f ∈ H1
0 (Ω) with |f | ≤ 1 a.e. We can find a sequence fn ∈ H1

0 ∩C0(Ω̄) such

that 
fn → f in H1

0 (Ω) ,

fn → f a.e. ,

|fn| ≤ 1 a.e. .

Then, like for (16), we have∫
Ω

fnµ̃ =

∫
Ω

kfn + 〈η, fn〉 →
∫

Ω

kf + 〈η, f〉 =

∫
Ω

fµ̃ . (25)

Consequently, using the lower semi-continuity of Φ∗µ̃ and (24),

Φ∗µ̃(f) ≤ lim inf Φ∗µ̃(fn) = lim inf

∫
Ω

fnµ̃ =

∫
Ω

fµ̃ .

With (20) and (19), this completes the proof of the lemma.

We are going to use the following standard lemma about duality of convex

functionals.

Lemma 2.2. Let Φ be convex lower semi-continuous from a Hilbert space H to

(−∞,+∞], then

min
h∈H

(
1

2
‖h‖2H + Φ(h)

)
= −min

u∈H

(
1

2
‖u‖2H + Φ∗(−u)

)
and minimizers coincide.

Combining this with Lemma 2.1, once for Φµ and once for Φµ̃, we deduce that

− min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ|
}

= min
u∈K

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃−
∫

Ω

|ν|
}

= − min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ̃|
}
−
∫

Ω

|ν| .
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and minimizers coincide. This concludes the proof of Theorem 1.3. In order to

complete the proof of Theorem 1.2, there only remains to prove

Lemma 2.3. We have

inf
u∈K∩C0(Ω̄)

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ

}
= min
u∈K

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃

}
−
∫

Ω

|ν| .

Proof. Let u be the solution of minK{ 1
2

∫
Ω
|∇u|2 −

∫
Ω
uµ̃}−

∫
Ω
|ν|. We can find a

sequence un ∈ H1
0 (Ω) ∩ C0(Ω̄) such that

un → u in H1
0 (Ω) ,

un → u a.e. ,

|un| ≤ 1 a.e. .

(26)

Using the functions ξn and ζn introduced in (13), we set

vn = un + ξn(1− un) + ζn(−1− un) . (27)

Observe that vn ∈ C0(Ω̄) ∩K, hence it is a suitable test-function for our problem.

We just need to prove that

1

2

∫
Ω

|∇vn|2 −
∫

Ω

vnµ→
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃−
∫

Ω

|ν| . (28)

First, we show that vn − u→ 0 in H1
0 and a.e. Indeed,

∇(vn − u) = ∇(un − u) + (1− un)∇ξn − ξn(∇un −∇u)− ξn∇u

+ (−1− un)∇ζn − ζn(∇un −∇u)− ζn∇u . (29)

But, observe that ξn → 0 a.e. and |ξn| ≤ 1, while |∇u|2 ∈ L1(Ω) hence applying

Lebesgue’s dominated convergence theorem,∫
Ω

|ξn|2|∇u|2 → 0 .

Similarly,
∫

Ω |ζn|2|∇u|2 → 0, and all the other terms of (29) tend to 0 in L2 by

construction of un and (13), hence we deduce that vn → u in H1
0 (Ω), and also

a.e. Like for (16), we deduce that
∫

Ω vnµ̃→
∫

Ω uµ̃. Then,∫
Ω

vnµ =

∫
Ω

vnµ̃+ vnν

=

∫
Ω

uµ̃+

∫
Ω

ν+ + ν− +

∫
Ω

(vn − 1)ν+ −
∫

Ω

(vn + 1)ν− + o(1) .

But, ∣∣∣∣∫
Ω

(vn − 1)ν+

∣∣∣∣ =

∣∣∣∣∫
Ω

((1− ξn)(un − 1) + ζn(−1− un)) ν+

∣∣∣∣
≤ 2

∫
Ω

(1− ξn)ν+ + ζnν+ → 0 , (30)
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in view of (13). Similarly,∣∣∣∣∫
Ω

(vn + 1)ν−

∣∣∣∣ =

∣∣∣∣∫
Ω

((1− ζn)(un + 1) + ξn(1− un)) ν−

∣∣∣∣
≤ 2

∫
Ω

(1− ζn)ν− + ξnν− → 0 .

We deduce that ∫
Ω

vnµ→
∫

Ω

uµ̃+

∫
Ω

ν+ + ν− . (31)

With the strong H1
0 -convergence of vn to u, we deduce (28). This proves that

inf
K∩C0(Ω̄)

1

2

∫
Ω

|∇v|2 −
∫

Ω

vµ ≤ 1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃−
∫

Ω

|ν|

= min
K

1

2

∫
Ω

|∇v|2 −
∫

Ω

vµ̃−
∫

Ω

|ν| .

On the other hand, clearly,

inf
K∩C0(Ω̄)

1

2

∫
Ω

|∇v|2 −
∫

Ω

vµ ≥ inf
K∩C0(Ω̄)

1

2

∫
Ω

|∇v|2 −
∫

Ω

vµ̃−
∫

Ω

|ν|

≥ min
K

1

2

∫
Ω

|∇v|2 −
∫

Ω

vµ̃−
∫

Ω

|ν| .

Thus, there is equality, and if vn is a minimizing sequence for (9), it is also a

minimizing sequence for minK
1
2

∫
Ω
|∇v|2 −

∫
Ω
vµ̃, thus converges strongly to the

solution of the obstacle problem.

3. Additional Results and Generalizations

3.1. Generalizations

All our results can be generalized to the case of general obstacles ψ ≤ u ≤ ϕ,

where ψ and ϕ belong to H1(Ω) ∩ C0(Ω̄) and are such that ψ ≤ ϕ in Ω, ψ ≤ 0 on

∂Ω and ϕ ≥ 0 on ∂Ω. The convex set

Kϕ,ψ = {h ∈ H1
0 (Ω); ψ ≤ h ≤ ϕ}

is nonempty. Indeed, it contains for example the function

ω = max(min(ϕ, 0), ψ) ,

which is also continuous. In this case, the solution of the obstacle problem with

measure data µ and obstacles ϕ and ψ is defined as the unique minimizer of the

convex functional

min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

1

2

∫
Ω

|∇h|2 +

∫
Ω

ϕ|(∆h+ µ)−| − ψ|(∆h+ µ)+| , (32)
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where (∆h + µ)+ and (∆h + µ)− denote the positive and negative parts of the

measure ∆h+ µ. Note that this functional is indeed convex because∫
Ω

ϕ|(∆h+ µ)−| − ψ|(∆h+ µ)+| =
∫

Ω

(ϕ− ω)|(∆h+ µ)−|+ (ω − ψ)|(∆h+ µ)+|

−
∫

Ω

ω(∆h+ µ)

which is convex in h (since ϕ− ω ≥ 0 and ω − ψ ≥ 0).

Theorem 3.1. Let µ be any measure in M(Ω̄) and let µ = µ̃+ ν be its decompo-

sition in the sense of Lemma 1.1, then

− min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

1

2

∫
Ω

|∇h|2 +

∫
Ω

ϕ|(∆h+ µ)−| − ψ|(∆h+ µ)+|

= min
u∈Kϕ,ψ

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃

}
−
∫

Ω

ϕν− − ψν+

= − min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

{
1

2

∫
Ω

|∇h|2 +

∫
Ω

ϕ|(∆h+ µ̃)−| − ψ|(∆h+ µ̃)+|
}

−
∫

Ω

ϕν− − ψν+ , (33)

and minimizers coincide, i.e. the solutions of the obstacle problem for µ and µ̃ are

the same. Moreover,

inf
u∈Kϕ,ψ∩C0(Ω̄)

{
1

2

∫
Ω

|∇u|2 −
∫

Ω

µu

}
= − min

h∈H1
0

(Ω)

∆h∈M(Ω̄)

1

2

∫
Ω

|∇h|2 +

∫
Ω

ϕ|(∆h+ µ)−|

−ψ|(∆h+ µ)+| −
∫

Ω

ϕν+ − ψν− , (34)

and minimizing sequences for this infimum converge strongly in H1
0 (Ω) to the solu-

tion of the obstacle problem.

Proof. The proof is basically the same as for the case of obstacles 1 and −1.

One defines

Φµ(h) =


∫

Ω

ϕ|(∆h+ µ̃)−| − ψ|(∆h+ µ̃)+| if ∆h ∈ M(Ω̄) ,

+∞ otherwise .

(35)

Using Lemma 1.1 and arguing as in Lemma 2.1,

Φ∗µ(f) = sup
g∈D(Φµ)

∫
Ω

∇f · ∇g − Φµ(g) = Φ∗µ̃(f)−
∫

Ω

(ϕν− − ψν+) . (36)
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Then, we claim that

Φ∗µ̃(f) =


∫

Ω

fµ̃ if ψ ≤ f ≤ ϕ ,

+∞ othewise .

(37)

Indeed,

Φ∗µ̃(f) = sup
g∈D(Φµ̃)

−
∫

Ω

f∆g −
∫

Ω

ϕ(∆g + µ̃)− − ψ(∆g + µ̃)+

= sup
h∈H−1(Ω)

h∈M(Ω̄)

∫
Ω

−fh− ϕ(h+ µ̃)− + ψ(h+ µ̃)+ .

Using µ̃ = k + η and taking h = −η + ζ with ζ ∈ L2(Ω), we have

Φ∗µ̃(f) ≥ sup
ζ∈L2

∫
Ω

f(η − ζ)− ϕ(k + ζ)− + ψ(k + ζ)+ .

If ψ ≤ f ≤ ϕ is not satisfied, then Φ∗µ̃(f) ≥ +∞, and if it is, taking a sequence ζn
which converges strongly to −k in L1, one gets Φ∗µ̃(f) ≥

∫
Ω fµ̃ which proves one

inequality in (37). Conversely, if f ∈ H1
0 (Ω) ∩ C0(Ω̄), and ψ ≤ f ≤ ϕ then∫

Ω

∇f · ∇g −
∫

Ω

fµ̃ =

∫
Ω

−f∆g − fµ̃ ≤
∫

Ω

ϕ(∆g + µ̃)− − ψ(∆g + µ̃)+ ,

hence Φ∗µ̃ ≤
∫

Ω fµ̃. The rest of the proof is as in Lemma 2.1, and one gets (37).

Therefore, applying Lemma 2.2, we obtain the first part of the theorem.

For the second part, we adjust the proof of Lemma 2.3 as follows. Consider u, the

minimizer of

min
Kϕ,ψ

1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃ ,

and approximate it in H1
0 and a.e. by a sequence un ∈ Kϕ,ψ ∩ C0(Ω̄). Define

vn = un + ξn(ϕ− un) + ζn(ψ − un) . (38)

First vn → u in H1
0 (Ω) and a.e., indeed,

∇(vn − u) = ∇(un − u) + (ϕ− un)∇ξn + (ψ − un)∇ζn + ξn(∇ϕ−∇u)

+ ζn(∇ψ −∇u) + (ξn + ζn)(∇u−∇un) , (39)

and all the terms tend to 0 strongly in L2(Ω). Like for (16) and (25), one has∫
Ω
vnµ̃→

∫
Ω
uµ̃. In addition,∫

Ω

vnν =

∫
Ω

ϕν+ − ψν− +

∫
Ω

(vn − ϕ)ν+ − (vn − ψ)ν− .
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But, like for (30), ∣∣∣∣∫
Ω

(vn − ϕ)ν+

∣∣∣∣ → 0 .∣∣∣∣∫
Ω

(vn − ψ)ν−

∣∣∣∣ → 0 .

We deduce that ∫
Ω

vnµ→
∫

Ω

uµ̃+

∫
Ω

ϕν+ − ψν−

and

inf
Kϕ,ψ∩C0(Ω̄)

(
1

2

∫
Ω

|∇v|2 −
∫

Ω

vµ

)
≤ 1

2

∫
Ω

|∇u|2 −
∫

Ω

uµ̃−
∫

Ω

ϕν+ − ψν−

= min
Kϕ,ψ

(
1

2
|∇u|2 −

∫
Ω

uµ̃

)
−
∫

Ω

ϕν+ − ψν− ,

(40)

while the converse inequality is straightforward. Thus

inf
Kϕ,ψ∩C0(Ω̄)

(
1

2

∫
Ω

|∇v|2 −
∫

Ω

vµ

)

= min
Kϕ,ψ

(
1

2
|∇u|2 −

∫
Ω

uµ̃

)
−
∫

Ω

ϕν+ − ψν−

= − min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

(
1

2

∫
Ω

|∇h|2 +

∫
Ω

ϕ|(∆h+ µ̃)−| − ψ|(∆h+ µ̃)+|
)

−
∫

Ω

ϕν+ − ψν− .

This completes the proof of Theorem 3.1.

Remark 3.1. The approach followed here immediately generalizes to data in

M(Ω̄)+H−1(Ω). Indeed, if the data is µ+g with µ ∈ M(Ω̄), g in H−1, the decom-

position µ+g = (µ̃+g)+ν holds, the proofs of Theorems 1.2, 1.3 and 3.1 still apply,

and the solution of the obstacle problem coincides with the solution for the data

µ̃+ g (and is the solution of the variational problem minK
1
2

∫
Ω
|∇u|2−

∫
Ω
u(µ̃+ g)

which makes sense). The class of testing functions for the dual problem becomes

{h ∈ H1
0 (Ω); ∆h+ µ ∈M(Ω̄)}.

More general scalar products on H1
0 such as

∫
Ω
∇f · ∇g+ fg can be considered

as well.
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3.2. Additional results

The solution u of the obstacle problem with data µ, a general measure, satisfies

∆u ∈ H−1 ∩ M(Ω̄). A natural question is to ask whether the measure ∆u is in

L1. Here is a partial result in that direction. (We don’t know any necessary and

sufficient condition on µ which guarantees that ∆u ∈ L1.)

Theorem 3.2. Let µ ∈M(Ω̄) and µ = µ̃+ν its decomposition given by Lemma 1.1.

Let u be the solution of the obstacle problem with obstacles +1,−1 and data µ. If

µ̃ ∈ L1, then ∆u ∈ L1.

This relies on the following theorem by Brezis and Strauss [5]: let β be a maximal

monotone graph, then ∀ f ∈ L1(Ω), there exists a unique u ∈ W 1,1
0 (Ω), with ∆u ∈

L1(Ω) satisfying

−∆u+ β(u) 3 f .

In the case of the obstacle problem, this solution coincides with our solution.

This can be proved by approximating f by a sequence of smooth functions fn
converging to f in L1. Let un be the solution of the obstacle problem for fn. By

the regularity theory [13, 6], one knows that ∆un ∈ L∞. One can also check that

un → u in H1
0 , where u is the solution of the obstacle problem for f . By the

method of Brezis–Strauss [5] (Cauchy sequence argument), we also know that ∆un
is a Cauchy sequence in L1, thus ∆u ∈ L1.

The conclusion of Theorem 3.2 is not true for a general measure µ, as can

be shown by the following counter-example. Take Ω = B(0, 1) and the radially

symmetric function f defined by
f(r) = 1 for 0 ≤ r ≤ 1

2

f(r) = 2− 2r for
1

2
≤ r ≤ 1 .

(41)

One can easily check that f ∈ H1
0 and ∆f is a measure which is not in L1. Then, f

satisfies the obstacle constraint |f | ≤ 1 and is the solution of the obstacle problem

with data µ = −∆f , but ∆f is not in L1. One could think that a result such as

∆u + µ ∈ L1 or ∆u + µ̃ ∈ L1 for u solution of the obstacle problem with data

µ, could hold. But again, this is wrong for general measures and obstacles. To see

this, consider again the function f defined in (41). Then, let u be the solution of

the obstacle problem with obstacles −1 and 1 and with data µ = −∆f |{ 1
2<r<1},

(µ ∈ L1), i.e. solution of

min
u∈H1

0∩K1,−1

1

2

∫
Ω

|∇u|2 +

∫
1
2≤r≤1

u∆f . (42)

We claim that u = f . From the duality argument, u minimizes

min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ| . (43)



May 3, 2002 14:36 WSPC/152-CCM 00067

A Variational Formulation 373

Taking f as test-function in (42), one has

min
u∈H1

0∩K1,−1

1

2

∫
Ω

|∇u|2 +

∫
1
2≤r≤1

u∆f ≤ −1

2

∫
Ω

|∇f |2 + πf ′d

(
1

2

)
,

where f ′d(
1
2 ) is the right-derivative of f at 1

2 i.e. −2. On the other hand, taking f

as a test-function in (43), we get

min
h∈H1

0
(Ω)

∆h∈M(Ω̄)

1

2

∫
Ω

|∇h|2 +

∫
Ω

|∆h+ µ| ≤ 1

2

∫
Ω

|∇f |2 + π

∣∣∣∣f ′d(1

2

)∣∣∣∣ .
But in view of the duality result (Theorem 1.3), the two minima are the same up

to a minus sign, hence there was equality, and u = f . Now it is easy to check that

∆f + µ is not in L1.
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