ERRATUM

Volume 186, Number 2 (2001), in the article "Asymptotics for the Ginzburg–Landau Equation in Arbitrary Dimensions," by F. Bethuel, H. Brezis, and G. Orlandi, pages 432–520 (doi:10.1006/jfan.2001.3791): The proof of Proposition VI.4 on pages 487–489 in Section VI.3 should be modified as follows.

VI.3. Estimates for $|\nabla |u_{\varepsilon}||$, $1 \le p < 2$

We follow here closely the argument of [Bethuel–Brezis–Hélein 2, Lemma X.13]. Let $1 \le p < 2$ and set

 $\rho = |u_{\varepsilon}|.$

The equation for ρ^2 is

$$-\Delta \rho^{2} + 2 |\nabla u|^{2} = \frac{2}{\varepsilon^{2}} \rho^{2} (1 - \rho^{2}) \quad \text{in } \Omega.$$
 (VI.21)

We are going to prove

PROPOSITION VI.4. Let $1 \le p < 2$. There exist constants K_p and $0 < \alpha < 1$ depending only on p, Ω , K_0 , and C_0 such that, for $0 < \varepsilon < 1$,

$$\int_{\Omega} |\nabla \rho|^p \leqslant K_0 \varepsilon^{\alpha}.$$

Proof. We introduce the set

$$S = \{x \in \Omega, \rho(x) > 1 - \varepsilon^{1/2}\}$$

and the function

$$\bar{\rho} = \max\{\rho, 1 - \varepsilon^{1/2}\},\$$

such that $\rho = \overline{\rho}$ on *S* and

$$0 \leqslant 1 - \bar{\rho} \leqslant \varepsilon^{1/2} \qquad \text{in } \Omega. \tag{VI.22}$$

© 2002 Elsevier Science (USA) All rights reserved.

$$(\mathbf{AP})$$

ERRATUM

We multiply (VI.21) by $\bar{\rho}^2 - 1$ and integrate over Ω :

$$\begin{split} \int_{\Omega} \nabla \rho^2 \, \nabla \bar{\rho}^2 + \int_{\Omega} \frac{2\rho^2 (1-\rho^2)(1-\bar{\rho}^2)}{\varepsilon^2} &= 2 \int_{\Omega} (1-\bar{\rho}^2) \, |\nabla u|^2 - \int_{\partial \Omega} \frac{\partial \rho^2}{\partial n} \, (1-\bar{\rho}^2), \\ \int_{S} |\nabla \rho^2|^2 &\leq 2\varepsilon^{1/2} \int_{\Omega} |\nabla u|^2 + 2 \int_{\partial \Omega} |\nabla |u|| \, (1-\bar{\rho}^2). \end{split}$$

From assumption (H1) we deduce that

$$\int_{\Omega} |\nabla u|^2 \leqslant K |\log \varepsilon|,$$

whereas it follows from (H2) that $1 - \bar{\rho}(x) = 0$ if $x \in \partial \Omega$, dist $(x, \Sigma) \ge \varepsilon$, so that

$$\begin{split} \int_{\partial\Omega} |\nabla |u| | (1-\bar{\rho}) &\leq \varepsilon^{1/2} \int_{\partial\Omega \, \cap \, \operatorname{dist}(x, \, \Sigma) \, \leq \, \varepsilon} |\nabla |u| | \\ &\leq K \varepsilon^{-1/2} \max\{x \in \partial\Omega, \, \operatorname{dist}(x, \, \Sigma) \leq \, \varepsilon\} \leq K \varepsilon^{3/2}. \end{split}$$

Here we have used the fact that

$$|\nabla u|(x) \leq \frac{K}{\varepsilon} \qquad \forall x \in \overline{\Omega}.$$

Combining the previous relations we obtain

$$\int_{S} |\nabla \rho|^2 \leq K \varepsilon^{1/2} |\log \varepsilon|.$$
 (VI.23)

Finally, since by (H1)

$$\int_{\Omega} (1-\rho^2)^2 \leqslant K\varepsilon^2 \left|\log \varepsilon\right|$$

and since $(1-\rho^2) \ge \varepsilon^{1/2}$ on $\Omega \setminus S$, we obtain

$$|\Omega \setminus S| \leq K\varepsilon |\log \varepsilon|.$$

Hence

$$\begin{split} \int_{\Omega \setminus S} |\nabla \rho|^{p} &\leq \left(\int_{\Omega} |\nabla \rho|^{2} \right)^{p/2} |\Omega \setminus S|^{1-p/2} \\ &\leq K |\log \varepsilon|^{p/2} |\Omega \setminus S|^{1-p/2} \\ &\leq K \varepsilon^{1-p/2} |\log \varepsilon|. \end{split}$$
(VI.24)

Combining (VI.23) with (VI.24) we deduce the result.